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Abstract

A new paradigm that combines data modeling and vector quantization in an effective coding
technique is presented. We fit a statistical model to the input data and use the best fit parameters
to synthesize training vector sets with statistics similar to the input. By knowing the best-fit
parameters, the decoder can synthesize the same training sets, while identical codebooks are
obtained at both encoder and decoder based on the same codebook generation procedure. As a
result, complete codebook adaptation is achieved with a very small increase in the bit rate. The
implementation of the new technique in the transform domain produced competitive results when
compared to other methods relying on vector quantization and transform coding. In particular,
the image Lena was coded at 0.28 bits/pizel with a peak signal to noise ratio of 32.51 dB.
Resumé

Un nowveau paradigme qui combine la modélisation des données avec le quantification vecto-
rielle dans une technique efficace de codage est présenté. La méthode génere des ”codebooks”
relatifs individuellement a chaque image, donnant une forte adaptativité qui suit le comporte-
ment statistique de l'image. Les jeuxr de vecteurs sont calculés sur la base des statistiques des
coefficients de la Transformée en Cosinus Discrete plutot que remplies par construction clas-
sique. Ainsi, l'information transmise au décodeur consiste uniquement en parametres de car-
actérisation statistique en lieu et place des références des vecteurs du "codebooks”. Le décodeur
synthétise le méme jeu de vecteurs que ceuxr utilisés par le décodeur. De plus, en utilisant le
meéme algorithme de classification, le décodeur génere un "codebook” identique a celui du codeur,
et par voie de conséquence décode les indices regus permettant la reconstruction des vecteurs au
niveau du récepteur. De tres bonnes qualités de reconstruction sont obtenues avec cette méthode
pour des taux de compression relativement élevés. En particulier ['tmage test Lena est codée a

0.28 bits/pixel et un rapport signal sur bruit créte de 32.51 dB.

1 Introduction

Vector quantization (VQ) [4, 22, 23, 37| is an effective compression technique defined as an
extension of scalar quantization to vectorial form. In its simplest form, VQ requires first
breaking the image to be compressed into vectors which are quantized to the closest codeword
of a codebook containing representative prototypes. Compression is achieved by only storing
or transmitting the address of the closest codeword, instead of the whole vector of image pixels.

For reconstruction, the decoder employs a codebook identical to the encoder. Transform vector



quantization (TVQ) assumes that the transform coefficients are vector quantized rather than
the image pixels. The perceptual weighting in the transform domain, coefficient decorrelation,
and potential use of a quality criterion matching that of the human visual system are benefits
of TVQ. Block classification has been shown to improve compression performances of TVQ
28, 29, 30].

The lower distortion generated by VQ for a given bit rate is due to its boundary and
granular gains over the scalar quantization [33]. Thus, the boundary of a vector quantizer is
shaped to match the multivariate probability density function (PDF) of the input signal, while
the boundary of a set of scalar quantizers is restricted to a hypercube shape. Also, for all
dimensions greater than one, there exist sphere coverings of the Euclidean space with higher
efficiency than those obtained by using integer or Z lattices, a property referred to as the
granular gain.

The theoretical foundations of VQ have been developed within the framework of rate-
distortion theory. It has been shown [21, 47, 51] that the performance of a vector quantizer
with an arbitrarily large vector dimension can in principle approach the distortion-rate function
(the minimum achievable distortion for a given rate) arbitrarily closely. The Bennett’s integral
which gives an approximate formula for the distortion has been recently extended from scalar
to vector quantizers [36].

The key to an effective VQ system is a good codebook, usually derived from a set of
training images. However, the nonstationary nature of image data often determines significant
statistical difference between the image being coded and the training set the codebook was
designed for [22|. Even in the case of large training sets of vectors, the input structure might
not be reflected in the current codebook, which determines low reconstructed image quality.
On the other side, an adaptive codebook typically requires large amounts of side information
for the transmission of new codewords [20, 24, 31, 39].

This paper proposes vector quantization with training set synthesis (VQ-TSS) as a method
to indirectly specify an adaptive codebook. We implemented VQ-TSS in the transform domain.
The idea is to characterize first the transformed data by fitting a statistical model. The model
parameters, called training set parameters (TSP), are then used to synthesize a training vector
set which is an approximated replica of the original data. By knowing the TSP, the decoder can
derive the same training set. Therefore, identical codebooks are obtained at both encoder and

decoder sides through the same codebook generation procedure. Since the TSP size is small,



the technique results in low bit rate encoding with good reconstruction quality.

The organization of the paper is as follows. Section 2 presents the basic concepts of VQ
and codebook generation, followed by a discussion of adaptive vector quantization. Section 3
defines the VQ-TSS paradigm. The implementation of VQ-TSS in the transform domain is
discussed in Section 4. Experimental results and comparisons are given in Section 5. Section 6

contains the conclusions and further research directions.

2 Codebook Generation and Adaptive VQ

2.1 Definition of terms

A vector quantizer @ of dimension & and size N is defined as a mapping @ : R*¥ — C where R*

is the k-dimensional Euclidean space and the codebook C' is a subset of R*

C’:{yl,...,yN}CRk. (1)

The output vectors {y, € Rk}izlm ~ are referred to as codewords. Any N point vector quantizer

defines a partition of R¥ into N regions {S;},_; , with the ith region given by

S; = {X € R*[Q(x) = Yi} =Q (yi) (2)

The resolution or bit rate of a vector quantizer is defined as the number of bits per vector

component used to represent the input vector

log, N
Ryq = == (3)

For coding purposes, a VQ codec has two parts: an encoder and a decoder, each one
equipped with the same codebook. The encoder assigns to each input vector x = (z1,...25)"
an index i that points to the closest codeword y, = (y;....%i)' in the codebook, while
the decoder employs the received index to extract the codeword from the codebook. The
transmission rate is controlled by choosing the size of the codebook. The distortion between

the input vector and its corresponding codeword is usually measured by the root mean squared

error (RMSE) defined as

N 1/2
Z — Yij) ) . (4)

Jj=1

P?‘I»—‘

1 ) 1/2
RMSE = dix.y) = (pIe-vl?) =



2.2 Codebook Generation

Once a distortion measure has been defined, the problem of vector quantization is to choose the
partition and the codebook such that to minimize the overall distortion for the class of images
to be processed. The most used method for populating the codebook is the generalized Lloyd
algorithm (GLA) [32], an iterative procedure that starts with an initial codebook and mono-
tonically decreases the distortion function towards a local minimum. Although conceptually
simple and easy to implement, the GLA algorithm is not computationally efficient due to its
exhaustive checking of every training vector against every codeword for the closest match.
Faster variants of GLA and other distinct codebook generation methods with increased
efficiency have been developed [7, 11, 17|. In addition, a number of algorithms have been
proposed that improve the codebook quality at the expense of increasing the computational
complexity [27, 53]. Within this paper, we employ GLA to generate small size codebooks.
However, for larger codebooks we take advantage of the particular structure of training vector

sets, by using efficient partial search during the encoding step of GLA (see Section 4.5).

2.3 Adaptive Vector Quantization

Adaptive vector quantization (AVQ) assumes that the codebook is modified according to
changes in the statistics of the input signal. The adaptation of the codebook is implemented
either through updating the codewords in the current codebook, i.e., codebook transmission, or
through switching between different codebooks which are known by both encoder and decoder.
AVQ represents a solution of the quantizer mismatch problem [25]. The concordance between
the PDF the quantizer is designed for and the input data PDF is particularly important for
fixed-rate coding schemes (schemes not employing entropy coding). Experiments regarding
PDF shape mismatch show strong decrease in performance when mismatches occur [34].

The block diagram of AVQ with codebook transmission [20] is shown in Figure 1. The
input image is partitioned into a number of subimages, each one consisting of n vectors of
dimension k. For each subimage, the locally generated codebook of size N is transmitted,
followed by the codeword indices of the vectors in subimage. If b bits are used to represent a
vector component (that is, b bits/pixel), the average bit rate Ry is given by the vector quantizer

resolution Ry and the bit rate Rop resulting from codebook transmission

logQN_i_b_N.

Ry = Ryg + Rer = p -

()

Fig 1



The tradeoff between the two terms in (5) is analyzed in [52] using the high resolution quanti-
zation theory. Since Ror is proportional with the codebook size N, the codebook transmission
is effective only for small values of N.

A different solution is to use a large universal codebook that is designed off-line and
populate the adaptive codebook with universal codewords [39, 31]. The universal codebook is
also available at the decoder, therefore, the side information is represented only by the indices
specifying the chosen codewords from the universal codebook. However, since the codewords of
the adaptive codebook are restricted to universal codewords, an increase of the reconstruction

distortion is expected in the case of significant changes in the input statistics.

3 Vector Quantization with Training Set Synthesis

The main contribution of this paper is a method to achieve the codebook adaptation to the
input statistics with a very small overhead. The new compression paradigm, called wvector
quantization with training set synthesis (VQ-TSS), is shown in Figure 2.

At the encoding side (Figure 2a) a statistical model is first fitted to the input data. The
best-fit parameters, named training set parameters (TSP), are used to synthesize a training
set (TS) with statistics similar to the input. The codebook C', populated according to the
generalized Lloyd algorithm, is then employed to vector quantize the input data. Only the set
of codeword indices I and the TSP are stored or transmitted.

Figure 2b presents the decoding side. The received TSP are used to synthesize the T'S which
is further employed to derive the codebook. An approximate reconstruction of the original data
is finally obtained based on the indices I and the codebook C'.

The VQ-TSS advantage is that very little side information, represented by the TSP, has to
be transmitted. Thus, the complete codebook adaptation is accomplished with a small increase

in the bit rate.

4 Transform VQ-TSS

The implementation of VQ-TSS should take into account that both the data modeling and
codebook generation are performed on-line, hence, the associated procedures should be fast.

We describe and analyze below a DCT [1, 2] domain implementation of the proposed method,

called transform VQ-TSS (TVQ-TSS). The modeling of the transformed coefficients is less

Fig 2



complex, since they are (almost) decorrelated and have typically highly peaked histograms
centered around zero. A different solution is to combine subband or wavelet decomposition
with VQ-TSS, which is the subject of future work.

Unless otherwise specified, the numerical and graphical examples in this section correspond

to the 512 x 512 gray level image Lena.

4.1 Encoder and Decoder Overview

Figure 3a presents the block diagram of the TVQ-TSS encoder which includes the following

operations:

The input image is partitioned into B x B blocks and 2-dimensional DCT is computed
for each block.

e The DC coefficient is uniformly quantized and the resulting values are DPCM encoded

and transmitted.

o A classified vector quantizer is used to classity the transform blocks into ne equally
populated classes while the bits are allocated according to Section 4.2. The bit allocation

map (described in Section 4.3) and the class indices are transmitted to the decoder.

e The TSP are estimated through the expectation maximization (EM) algorithm [41] and
the codebooks are derived as described in Section 4.4 and 4.5. The vector quantization

of the transform data yields the set of codeword indices I which are transmitted together
with the TSP.

e Finally, error analysis and reduction is performed according to Section 4.6 and the error

information is transmitted.

Figure 3b presents the block diagram of the TVQ-TSS decoder. The processing starts
with training set synthesis based on the received TSP, followed by codebook derivation and
decoding of the codeword indices I. The error information is then used to reduce a selected set
of errors. The inverse transformation of the corrected data produces an approximated replica

of the original image.

Fig 3



4.2 Transform Block Classification and Bit Allocation Scheme

Let us consider the DCT of the B x B blocks representing the input image. Following the usual
notation we denote the coefficient in the upper-left corner of a block as the DC coefficient, while
the remaining coefficients are named AC coefficients.

To increase the adaptation, we use the procedure described in [8] which classifies the
transformed blocks into ne equally populated classes according to the energy of AC coefficients.
Bits are then distributed between busy (high AC energy) and quiet (low AC energy) image areas.

The overhead information in bits/pixel due to block classification is

Rpc = ([logy(ne)]) /B (6)

where [-] is the ceiling of the argument. For example, in the case of B = 8 and ngc = 4, the

overhead due to class information is

2
Rpc = 61 0.031 bits/pixel. (7)

A bit allocation scheme that gives real and positive bit rates is derived in [43] by supposing
that each vector component is optimally encoded (in the distortion-rate sense). The overall
distortion is minimized subject to the positive allocation restriction and an imposed bit rate
Rac. The scheme assigns to the AC coefficient in position (u,v), belonging to class ¢, and

having the variance o2(u,v), a number of bits equal to

1 o2 (uw) . * 9 9
Rc(u, U) — { 2 ]-Og2 0* ) lf O < 9 S Uc (u7 U) } — max (O, l 10g2 O-C (U, U)) (8)

0 otherwise 2 o*

where 6* is the solution of

2 (u,v)

1 o
5 Z 10g2 0" = RAC- (9)

0% <oz (u,)

We compute the bit allocation for each vector of DCT coefficients by summing the values
derived in equation (8) and rounding the result.

Note that (8) and (9) give optimum allocation only in the ideal case when the rate-
distortion bound is achieved. We however preferred the above formulation to more complex

algorithms such as the one described in [45].

4.3 Vector Formation

Each energy class is treated separately after the allocation of bits. The vector formation in the

case of B = 81is shown in Figure 4. The DCT block is decomposed into the DC coefficient and 17

8



vectors taken in zigzag order and denoted by v = (ACy, ACy)T, vy = (AC3, ACy, AC5)T ...,
vir = (ACs, ACs, ACg3)". As one can see, the maximum vector dimension is k., = 4,
due to efficiency constraints resulting from the GLA algorithm (we explain this limitation in
Section 4.5). In addition, the first two vectors have lower dimension (2 and 3, respectively) to
limit the size of the corresponding codebook. The reason is that most of the energy is typically
concentrated on the first transform coefficients, which results in a large number of allocated bits
for these coefficients. Recall that the size of a codebook depends exponentially on the number
of bits allocated for a certain vector, which is equal to the sum of all allocations received by
the vector components.

Table 1 gives two examples of bit allocation based on equations (8) and (9). For both
cases, the resulting bit rate is very close to the imposed bit rate R4c. Note that the vectors

with indices greater than 4 and 8, respectively, have zero bit allocation for each energy class.

4.4 Modeling the AC Coefficients

The analysis of AC coefficients is thoroughly covered in the literature. Most of the methods
assume statistically independent coefficients and model them with Laplacian distribution [42],
Gaussian or Gamma (38|, Generalized Gaussian [6], or Mixture of Gaussian Distributions [12].
The continuous asymptotic equipartition property theorem [15] has been used in conjunction
with the statistical analysis to design lattice vector quantizers with large vector dimensions
9, 19].

Since parameter estimation is performed on-line, the multivariate analysis is too compu-
tationally expensive. In addition, a multivariate model results in a large number of parameters
whose transmission would increase the bit rate. The strongest argument, however, in favor of
univariate models is that the AC coefficients are almost decorrelated. As a consequence, by
neglecting the nonlinear dependencies among the coefficients (whatever dependencies remain
after the correlation is removed), they can be approximated as statistically independent random
variables.

We can improve this assertion by enhancing the vector formation procedure described in
Section 4.3 with a simple rule that derives the vectors from coefficients belonging to spatially
separated blocks [5]. Thus, if the first vector component is filled with a coefficient from the ith
block, the second component is filled with a coefficient from the (i + p)th block, the third with

a coefficient from (i + 2p)th block, and so forth, where p is the separation distance. As a result,

Fig 4

Table 1



the vector components are close to statistical independence.

We further assume that the underlying coefficient density is a Mixture of Gaussian Distri-
butions (MGD). The MGD model has more degrees of freedom, therefore, it captures the input
statistics better than models relying on one elementary distribution [18]. According to MGD,
if x = (71,...,2%)" is a vector of AC coefficients resulting from the above vector formation,
the PDF of its jth component is given by

M;

f](x) - z_: ijgjm(aj)ﬂ .7 - 13 H -aka (10)

where M; is the number of Gaussians employed in modeling and g;,,, is the Gaussian distribution

having a priori probability Pj,,, mean p;,,, and variance me, with

M;
Z -ij =1L (11)
m=1

The maximum-likelihood estimates of {P]m, Hjms Gfm} with m = 1,..., M;, are part of the

training set parameters and are obtained by differentiating the logarithm of likelihood function.
The iterative procedure that solves the likelihood equations is the EM algorithm, described in
Appendix A. Note that the MGD model and EM algorithm have recently been employed for
clustering [54] and texture processing [40].

The derivation of the best value for M; (in the maximum likelihood sense) requires multi-
ple runs of the EM algorithm, which induces additional complexity. Therefore, we have off-line
selected M; as being equal to the number of Gaussians that maximize the compression perfor-
mance. For most of the images we tested, M; = M = 4 proved to be a good solution.

The estimated parameters corresponding to the first and second AC coefficients of the
highest energy class are shown in Table 2b and Table 2d, respectively. The values used for
parameter initialization were computed as in Appendix A and are presented in Table 2a and
2¢, respectively.

Figure 5 shows the PDFs of the same coefficients derived with equation (10). In the same
figure, we compare the MGD result with estimates obtained through nonparametric analysis
with the optimal Epanechnikov kernel [13] (the optimal kernel is presented in Appendix B).
The two curves are very close to each other. In addition, the PDF of the first coefficient is
bimodal and asymmetric, which justifies the modeling based on a mixture of distributions.

Following the MGD, the modeling of one coefficient yields 3M — 1 = 11 parameters which

have to be transmitted along with the minimum and maximum values of that coefficient. Thus,
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only 13 parameters represent the overhead per coefficient paid to specify the adaptive codebook
at the receiver. We note that for codebooks smaller than 13 codewords (that is, for vectors with
1,2, or 3 bits allocated) it is more efficient to use codebook transmission instead of modeling
and synthesizing the training set. However, for larger codebooks, VQ-TTS is superior.

In conclusion, a given AC coefficient undergoes one of the following actions, according to

the number of bits allocated to its vector:

e Modeling and quantization based on a codebook derived from the synthesized training

set, when more than 3 bits are allocated.

e Quantization based on a codebook derived from the real data, when 1,2, or 3 bits are

allocated.

e No action, when there are no bits allocated.

4.5 Training Set Synthesis and Codebook Generation

The joint PDF of a vector x = (z1,..., ;)" whose components are assumed to be statistically

independent is equal to the product of marginal densities. With the marginal densities modeled

according to (10), the joint PDF of x is given by

f(x) = li[lfj(ﬂf) = 1:[1 > Pimgjm(2)- (12)

m=1

The joint PDF corresponding to the vector v; = (AC), AC5)T (see Figure 4) of the highest
energy class is presented in Figure 6a. For comparison, Figure 6b shows the 2-dimensional
Epanechnikov density estimate of the same data. Observe that the two surfaces have the same
global features, each exhibiting two significant modes.

To generate a training set whose underlying distribution is approximated by (12), we
uniformly sample the space covered by x using a k-dimensional cubic lattice {x,},=1.; with
minimum point separation A. Then, we associate to each lattice point x, the weight f(x,). If
% mins Tj.maz| 18 the range of values for the jth component of x, then the number of samples for
dimension j is l; = | (%) max — Tjmin)/A], where |-]| is the down-rounded integer. The number

of lattice points L is the product of the number of samples for each dimension

L= TTL5mmme — pmi)/A. (13)

=1
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To reduce the error caused by sampling, the value of A should be small. However, equation
(13) shows that the number of lattice points is inversely proportional to the kth power of A.
Since the number of lattice points L and the vector dimensionality k directly determine the speed
of the GLA algorithm for codebook generation [44], we limited their values to L., = 50,000
and ke, = 4, which induced an overall compression/decompression time of only a few seconds.
As an example, for the first three vectors (of dimension 2, 3, and 4) of the highest energy class
derived from image Lena, the value of A resulting from (13) is 5, 14, and 27, respectively.

The lattice points and their weights constitute the training set used as input to the GLA
algorithm. An efficient prediction-based implementation of GLA can be achieved by taking into
account that the lattice points form an ordered and uniformly spaced set. Thus, there is a high
probability that two lattice points with successive indices are allocated to the same codeword.
The search for the closest codeword to the current lattice point can therefore be performed in a
small neighborhood of the codeword associated with the previous lattice point. This technique
saves a lot of unnecessary operations.

Figure 7 presents two codebooks derived from synthesized training sets. They correspond
to the vectors vi = (ACy, ACy)" and vy, = (ACs, ACy, AC5)T of the highest energy class of
image Lena. The number of codewords in each codebook is according to the bit allocation
scheme from Table la. Based on these two codebooks the vector quantization of the data
corresponding to vy and vq yielded an error (RMSFE) of 16.88 and 20.12, respectively. When
actual data rather than synthesized vectors are used as the training set, the quantization errors
become 16.45 and 18.67, respectively. The latter errors are very close to the former (0.22 dB
and 0.65 dB), which shows that good quality codebooks can be populated based on synthesized
training sets. Additional comparisons expressed in dB are presented in Table 3 for various

images from our test set.

4.6 Error Analysis and Reduction

To further control the errors [35] generated by the quantization process, the largest E errors
are considered and their positions inside the DCT blocks are coded and transmitted. The error
reduction is achieved using 2 correcting values (one positive and one negative) for all errors.
Each DCT block has a one-bit flag that shows whether inside the block corrections are operated
or not.

Two additional bits are required for each correction. One indicates the sign of correction.

12
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The other shows whether the next correction belongs to the same block as the current correction.
In the case of image Lena of 512 x 512 pixels, the overhead required by the reduction of £ = 1024
errors is

1 1024 x (6 + 2)
Rer =51 T 512 x 512

The first term in (14) is due to the error flag, while the second term is due to the 6 bit-address

= 0.047 bits/pixel. (14)

specifying the position in the block plus the two correction bits.

4.7 Overall Bit Rate

When a uniform quantizer of 7 bits is used to process the DC coefficient of image Lena, the

DC information results in a bit rate of
Rpe = 0.096 bits/pixel. (15)
The overall bit rate is computed by using (7), (14), and (15)

Rov = Rac+ Rpc+ Rpc + Rrsp + Rgr (16)
= Rac +0.031 4 0.096 + 0.01 4 0.047 =~ Rac + 0.18 bits/pixel

where we assumed that the bit rate Rpgp required by the TSP is about 0.01 bits/pixel. The

allocated bit rate for the AC coefficients R4c is used to control the overall bit rate.

5 Experimental Results and Comparisons

A compression/decompression module was implemented in C according to the encoder and de-
coder diagrams from Figure 3. We tested the new compression method on a Sun Ultra 60 Work-
station. The 20 test images used are available via anonymous ftp to whitechapel.media.mit.edu
under /pub/testimages. They are all 512 x 512 pixel monochrome still images with 256 gray
levels. As a compression quality measure we employed the peak signal to noise ratio (PSNR)

which is expressed in dB as
255

= 20logw 7R

where RMSFE is the root mean squared error between the original and the reconstructed image.

PSNR (17)

A first set of results is presented in Table 4 containing the PSN Rs of the images in the
test set after compression/decompression at 0.28 bits/pixel. The coding time for one image was

less then 5 seconds while the decoding took about 3 seconds.
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The PSN R values for the images Goldhill and Lena coded at different bit rates are given in
Table 5. Figure 8 and 9 show the originals and encoded images at 0.25, 0.35, and 0.5 bits/pixel,
respectively.

The PSNR-based comparisons presented in Figure 10 show that TVQ-TSS performance is
better that that of JPEG standard (sequential encoding mode). The improvement in PSNR is
almost 1 dB for the Lena image. One can also observe that (for the same image) our method
performs better than other three recent techniques which employ vector quantization of the
DCT coefficients (classified VQ in the transform domain [29], VQ with variable block-size [30],
and additive vector decoding of transform coded images [50]). Although the computational
complexity is higher for TVQ-TSS, the processing time is only a few seconds on a standard
workstation.

It is worth-noting that although TVQ-TSS is based on a fixed-rate allocation scheme, it
performs very close to techniques based on variable rate VQ (see for example the entropy-coded
lattice vector quantizer reported in [48]). However, while fixed-rate coding is often desirable,
improved rate-distortion performance is possible with a variable rate scheme [22]. We therefore
expect that a scheme combining the VQ-TSS principles with variable-rate coding would achieve
even better results. Such a scheme would be based on entropy-constrained algorithms for

codebook design [10].

6 Conclusions

This paper introduced VQ-TSS as a new method to achieve codebook adaptation to the in-
put statistics with a small amount of side information. We presented a transform domain
implementation of VQ-TSS, called TVQ-TSS, and showed that the performance of TVQ-TSS
is competitive with other compression schemes based on VQ and transform coding. Further
related research includes variable-rate coding based on VQ-TSS, and the implementation of

VQ-TSS in the subband and wavelet domains [3, 14, 16, 46, 49].
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Appendix A

The estimation of parameters for a Mixture of Gaussian Distributions has been first derived in
[26]. Let us assume that n observations are taken from a mixture of M Gaussian subpopulations,
where the value of M is known. The problem is to find the maximum-likelihood estimates of the
a priori probabilities B,,, means p,,, and variances o2, where m = 1,..., M and Mo p,=1.
By taking the partial derivatives of the likelihood function and setting them equal to zero a set
of nonlinear equations is obtained. The EM algorithm solves these equations using an iterative
approach.

The expectation step involves the computation of the conditioned a posteriori probability

that the ith observation of value x; belongs to the mth Gaussian subpopulation, given z;

Pliml;) = ) (A1)

%:1 ngm(xz) 7

2

m-*

where g, is the Gaussian of mean p,, and variance o

The maximization step updates the values of P,,, fiy,, 02

P =13 P(mlz,) (A2)
n.=1
= LY Pl (A3)
pm—npmiZI mlx;)x; .
1 n
2 . L 2
oL = —an Zz::l P(ml|z;)(x; — pm)”. (A.4)

For all experiments, we initialize the EM algorithm as following. The histogram of the
n observations is divided into M parts corresponding to M equally populated sets. Then the

mean /i, and o2 is computed for each set. Since the sets are equally populated, the starting a

L
M*

priori probabilities have the same value, P,, =

When EM is used for modeling the AC coefficients, a faster histogram-based implemen-
tation is possible by taking into account that the coefficients have integer values in a the
relatively small range. Let us denote by z,,;, and z,,,, the minimum and maximum values,
and by A [Tmin, Tmaz] — {0, 1...} the histogram of the observations.

Then we can rewrite the expectation equation (A.1) as

. Prgm(J)
P(m|j) = v —,
( | ) 7121[:1 ngm(.])

where J € [Zmin, Tmaz)-
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The maximization equations (A.2), (A.3), and (A.4) become

1 “maz L
L P ]_:;mm P(m|j)h(j) (A.6)
! S5 Pmli)h()j (A7)

Him = (mmaa: — Tmin + 1)P

M j=Tmin

Tmazx
9 1

O = o e P, L PG — o) 48)

=Tmin
The second set of EM equations is faster when the range (2,40 — Timin + 1) of the observed
values is smaller than n, the number of observations. This property is generally true for the

AC coefficients.

Appendix B

Let {x;}iz1, » be an arbitrary set of n vectors of dimension k. The kernel density estimate

with kernel K and window width A computed in x is given by

f(x):#iz:;[((x;xi» (B.1)

The kernel that yields the minimum mean integrated square error is the Epanechnikov kernel

Lo k+2)(1—x"x)  ifx'x<1

Kp(x) = { 0 otherwise (B-2)

where ¢ is the volume of the unit k-dimensional sphere.

For the 1-dimensional case, the Epanechnikov density estimate of the scalars {z;},—1__» is

flz) = % :1 (1 - (”’;72””)2) . (B.3)

)

References

[1] N. Ahmed, T. Natarajan, and K.R. Rao, “Discrete cosine transform”, IEEE Trans. Comput.,
Vol. C-23, January 1974, pp. 90-93.

[2] K. Aizawa, H. Harashima, and H. Miyakawa, “Adaptive discrete cosine transform coding with
vector quantization for color images”, Proc. IEEE Int. Conf. ASSP, Tokyo, Japan, Vol. 2, April
1986, pp. 985-988.

[3] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet trans-
form”, IEEE Trans. Image Processing, Vol. 1, April 1992, pp. 205-220.

[4] R.L. Baker and R.M. Gray, “Image compression using non-adaptive spatial vector quantization”,
Proc. 16th Asilomar Conf. Circuits, Syst. Comput., October 1982, pp. 55-61.

16



[5]

F. Bellifemine and R. Picco, “Video signal coding with DCT and vector quantization”, IFEFE
Trans. Commun., Vol. 42, February /March/April 1994, pp. 200-207.

K.A. Birney and T.R. Fisher, “On the modeling of DCT and subband image data for compres-
sion”, IEEFE Trans. Image Processing, Vol. 4, February 1995, pp. 186-193.

C.K. Chan and C.K. Ma, “A fast method of designing better codebooks for image vector quan-
tization”, IEEE Trans. on Commun., Vol. 42, February /March/April 1994, pp. 237-242.

W.H. Chen and H. Smith, “Adaptive coding of monochrome and color images”, IEFE Trans. on
Commun., Vol. COM-25, November 1977, pp. 1285-1292.

F. Chen, Z. Gao, and J. Villasenor, “’Lattice vector quantization of generalized gaussian sources”,
IEEFE Trans. Info. Theory, vol. IT-43, January 1997, pp. 92-103.

P.A. Chou, T. Lookabaugh, and R.M. Gray, “Entropy-constrained vector quantization”, IFEFE
Trans. ASSP, Vol. 37, January 1989, pp. 31-42.

D. Comaniciu, “An efficient clustering algorithm for vector quantization”, Proc. 9th Scandinavian
Conf. Image Analyis, Uppsala, Sweden, June 1995, pp. 423-430.

D. Comaniciu, R. Grisel, and F. Astrade, “Medical image compression using mixture distributions
and optimal quantizers”, Proc. IASTED Int. Conf. on Signal and Image Processing, Las Vegas,
November 1995, pp. 89-92.

D. Comaniciu and P. Meer, “Distribution free decomposition of multivariate data”, Pattern
Analysis and Applications, Vol. 2, No. 1, 1999, pp. 22-30.

P.C. Cosman, R.M. Gray, and M. Vetterli, “Vector quantization of image subbands: A survey”,
IEEFE Trans. Image Processing, Vol. 5, February 1996, pp. 202-225.

T.M. Cover and J.A. Thomas, Elements of Information Theory, John Wiley & Sons, New York,
1991.

I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis”, I[FEFE
Trans. Inform. Theory, Vol. 36, May 1990, pp. 961-1005.

W.H.Equitz, “A new vector quantization clustering algorithm”, IEEE Trans. ASSP, Vol. 37,
October 1989, pp. 1568-1575.

T. Eude, R. Grisel, H. Cherifi, and R. Debrie, “On the distribution of the DCT coefficients”,
Proc. IEEE Int. Conf. ASSP, Adelaide, Australia, April 1994, pp. V.365-V.368.

T.R. Fisher, “A pyramid vector quantizer”, IEEFE Trans. Info. Theory, vol. I'T-32, July 1986, pp.
568-583.

M. Goldberg, P.R. Boucher, and S. Shlien, “Image compression using adaptive vector quantiza-
tion”, IEKE Trans. Commun., Vol. COM-34, February 1986, pp. 180-187.

A. Gersho, “Asymptotically optimal block quantization”, IEEE Trans. Inform. Theory, Vol. I'T-
25, July 1979, pp. 373-380.

A. Gersho and R.M. Gray, Vector Quantization and Signal Compression, Kluwer Academic Pub-
lishers, Boston, 1992.

A. Gersho and B. Ramamurthi, “Image coding using vector quantization”, Proc. IEEFE Int. Conf.
ASSP, Vol. 1, May 1982, pp. 428-431.

A. Gersho and M. Yano, “Adaptive vector quantization by progressive codevector replacement,”
Proc. IEEE Int. Conf. ASSP, 1985, pp. 4.6.1-4.6.4.

N.S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice-Hall Int., New Jersey, 1984.

V. Hasselblad, “Estimation of parameters for a mixture of normal distributions”, Technometrics,
Vol. 8, August 1966, pp. 431-444.

C.M. Huang and R.W. Harris, “A comparison of several vector quantization codebook generation
approaches”, IEEFE Trans. Image Processing, Vol. 2, January 1993, pp. 108-112.

17



28]
[20]
30]
31)
32]
33)
34]

[35]

[36]
[37]

[38]

D.S. Kim and S.H. Lee, “Image vector quantizer based on a classification in the DCT domain”,
IEEE Trans. Commun., Vol. 38, April 1991, pp. 549-556.

J.W. Kim and S.U. Lee, “A transform domain classifier vector quantizer for image coding”, IEEFE
Trans. Circuits Syst. Video Technol., No. 2, 1992, pp. 3-14.

M.H. Lee and G. Crebbin, “Classified vector quantization with variable block-size DCT models”,
IEE Proc. Vis. Image Signal Processing, Vol. 141, February 1994, pp. 39-48.

M. Lightstone and S.K. Mitra, “Image-adaptive vector quantization in an entropy-constrained
framework”, IEEFE Trans. Image Processing, Vol. 6, June 1997, pp. 441-450.

Y. Linde, A. Buzo, and R.M. Gray, “An algorithm for vector quantizer design”, IEEE Trans.
Commun., Vol. COM-28, January 1980, pp. 84-95.

T.D. Lookabaugh and R.M. Gray, “High-resolution quantization theory and the vector quantizer
advantage”, IEEFE Trans. Inform. Theory, Vol. 35, September 1989, pp. 1020-1033.

J. Makhoul, S. Roucos, and H. Gish, “Vector quantization in speech coding”, Proc. IEEFE, Vol.
73, November 1985, pp. 1551-1588.

M. Miyahara and K. Kotani, “Block distortion in orthogonal transform coding - analysis, min-
imization, and distortion measure”, IEEE Trans. Commun., Vol. COM-33, January 1985, pp.
90-96.

S. Na and D.L. Neuhoff, “Bennett’s integral for vector quantizers”, IEEE Trans. Inform. Theory,
Vol. 41, July 1995, pp. 886-900.

N.M. Nasrabadi and R.A. King, “Image coding using vector quantization: A review”, IEEFE
Trans. Commun., Vol. 36, August 1988, pp. 957-971.

A.N. Netravali and B.G. Haskell, Digital Pictures, Representation and Compression, Plenum
Press, New York, 1989.

S. Panchanathan and M. Goldberg, “Algorithms and architecture for image adaptive vector
quantization”, Proc. SPIE Visual Commun. Image Processing, Vol. 1001, November 1988, pp.
336-344.

K. Popat and R.W. Picard, “Cluster-based probability model and its application to image and
texture processing”, IEEFE Trans. Image Processing, Vol. 6, February 1997, pp. 268-284.

R.A. Redner and H.F. Walker, “Mixture densities, maximum likelihood and the EM algorithm”,
SIAM Review, Vol. 26, April 1984, pp. 195-239.

R.C. Reininger and J. Gibson, “Distribution of the two-dimensional DCT coefficients for images”,
IEEE Trans. Commun., Vol. COM-31, June 1983, pp. 835-839.

A. Segall, “Bit allocation and encoding for vector sources”, IEEE Trans. Inform. Theory, Vol.
IT-22, March 1976, pp. 162-1609.

J Shanbehzadeh and P.O. Ogunbona, “On the computational complexity of the LBG and PNN
algorithms”, IEEE Trans. Image Processing, Vol. 6, April 1997, pp. 614-616.

Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set of quantizers”, IEEFE
Trans. ASSP, Vol. ASSP-36, September 1988, pp. 1445-1453.

M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice-Hall Int., New Jersey, 1995.
Y. Yamada, S. Tazaki, and R.M. Gray, “Asymptotic performance of block quantizers with differ-
ence distortion measures”, IEEE Trans. Inform. Theory, Vol. IT-26, January 1980, pp. 6-14.
7Z.M. Yusof and T.R. Fisher, “An entropy-coded lattice vector quantizer for transform and sub-
band image coding”, IEEFE Trans. Image Processing, Vol. 5, February 1996, pp. 289-298.

J.W. Woods and S.D. O’Neil, “Subband coding of images”, IEEFE Trans. ASSP, Vol. ASSP-34,
October 1986, pp. 1278-1288.

18



[50] S\W. Wu and A. Gersho, “Additive vector decoding of transform coded images”, IEEE Trans.
Image Processing, Vol. 7, June 1998, pp. 794-803.

[51] P.L. Zador, “Asymptotic quantization error of continuous signals and the quantization dimen-
sion”, IEEFE Trans. Inform. Theory, Vol. 1T-28, March 1982, pp. 139-149.

[52] K. Zeger, A. Bist, and T. Linder, “Universal source coding with codebook transmission”, IEEE
Trans. Commun., Vol. 42, February /March/April 1994, pp. 336-346.

[53] K. Zeger, J. Vaisey, and A. Gersho, “Globally optimal vector quantization design by stochastic
relaxation”, IEEE Trans. Signal Processing, Vol. 40, February 1992, pp. 310-322.

[54] X. Zhuang, Y. Huang, K. Palaniappan, and Y. Zhao, “Gaussian mixture density modeling de-
composition, and applications”, IEEE Trans. Image Processing, Vol. 5, September 1996, pp.
1293-1302.

19



Table 1: Example of bit allocation for image Lena. The processing parameters are B = 8 and
ne = 4. (a) Imposed bit rate Rac = 0.1 bits/pixel. Real bit rate (given by the sum of all
allocated bits divided by B? x n¢) = 0.105 bits/pixel. (b) Rac = 0.3 bits/pixel. Real bit rate
= (0.304 bits/pixel.

Vector
vi|valvs|vy
141101070
Energy |2 1 | 0 | 0] O
class |3 4]0 1] 010
401716 |5 |3

(a)
Vector

vi|valvs|va|vs|ve|vr]|vs

1fy17010]0]0]07]010
Energy (21 3]0 0] 0] 0]07]0/|O0
class |3 6 | 5|42 201010
41101110} 8 | 6 | 5| 3| 2

(b)
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Table 2: The a priori probabilities, means, and square root of the variances (standard devia-
tions) corresponding to the first two AC coefficients of the highest energy class of image Lena.
(a) Initialization values for the parameters of AC;. (b) Estimates after 100 EM iterations. (c)
Initialization values for the parameters of ACy. (d) Estimates after 100 EM iterations.

‘ ‘ P, ‘ Him ‘ O1m ‘ ‘ ‘ Pim, ‘ Him O1m ‘
1 0.25 | -192.121 | 68.912 1] 0.304 | -71.649 | 146.186
m |2 0.25| -64.019 | 33.041 2| 0.218 | -112.055 | 60.971
3 0.25 | 66.649 | 37.662 3 0.133 | 123.358 | 31.939
41 0.25 | 214.756 | 91.401 41 0.343 | 104.668 | 163.452
(a) (b)
‘ ‘ P2m ‘ Hom ‘ Oom ‘ ‘ PQm ‘ Hom O2m ‘
1] 0.25 | -118.574 | 67.331 1] 0.196 | 14.206 | 164.537
m | 2 || 0.25 | -24.409 | 15.203 2 || 0.145 | -22.670 | 33.696
3 0.25 | 21.626 | 15.303 31 0.088 | 5.819 14.701
411 0.25 | 130.079 | 68.912 41 0.569 | 3.116 | 90.617
() (d)

Table 3: Differences between RMSFEs generated by the codebooks derived from training sets
and those derived from actual data.

| Image name | Vector | RMSE diff (dB) | Image name | Vector | RMSE diff (dB) |

Aero Vi 1.08 Face Vi -0.78
Vo 1.11 Vo 1.30

Baboon Vi 0.46 Girl v, 0.71
Vo 1.03 Vo 1.06

Couple Vi 0.46 Lena Vi 0.22
Vo 1.12 Va 0.65
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Table 4: Coding performance for TVQ-TSS at a bit rate of 0.28 bits/pixel.

| Image name | PSNR (dB) | Image name | PSNR (dB) |

Al 32.87 Goldhill 30.08
Aero 29.65 Jet 30.85
Baboon 23.13 Lena 32.51
Bank 28.02 Loco 25.75
Barbara 26.59 London 32.25
Boat 30.11 Oleh 32.93
Couple 38.88 Pyramid 31.98
Einstein 34.14 Regan 32.05
Face 31.54 Wedding 30.57
Girl 33.94 Zelda 35.95

Table 5: TVQ-TSS numerical results corresponding to different bit rates.

| Bit rate (bits/pixel) [| 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |

PSNR | Goldhill | 29.49 | 30.27 | 30.90 | 31.47 | 31.86 | 32.02
(dB) Lena 31.84 | 32.80 | 33.59 | 34.32 | 34.53 | 34.92
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Figure 1: Adaptive VQ with codebook transmission.
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Figure 2: Vector quantization with training set synthesis. (a) Encoding side. (b) Decoding

side.
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Figure 3: Block diagram of TVQ-TSS compression. (a) Encoder. (b) Decoder.
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Figure 4: Decomposition of the 8 x 8 DCT block into one scalar representing the DC coefficient
and vectors {v;};=1_. 17 representing the AC coefficients scanned in zigzag order.
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Figure 5: The PDFs corresponding to estimated parameters given in Table 2 and the PDFs
derived through nonparametric analysis with optimal kernel of window width h = 30. (a)
Coefficient ACy. (b) Coefficient ACS.
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Figure 6: The joint PDF of the vector vi = (AC;, AC,)T of the highest energy class derived
from image Lena. (a) MGD model. (b) 2-dimensional Epanechnikov estimate.
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Figure 7: Codebooks derived from synthesized training sets (highest energy class). (a) Coefhi-
cients (ACy, ACy) T, 128 codewords. (b) Coefficients (AC3, ACy, AC5)T, 64 codewords.
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Figure 8: TVQ-TSS results: image Goldhill. (a) Original. (b) 0.25 bits/pixel, 29.49 dB. (c)
0.35 bits/pixel, 30.90 dB. (d) 0.5 bits/pixel, 32.02 dB.
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Figure 9: TVQ-TSS results: image Lena. (a) Original. (b) 0.25 bits/pixel, 31.84 dB. (¢) 0.35
bits/pixel, 33.59 dB. (d) 0.5 bits/pixel, 34.92 dB.
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