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Abstract. Cardiac magnetic resonance imaging (MRI) has advanced to
become a powerful tool in clinical practice. Extraction of morphological
and functional features from cardiac MR imaging for diagnosis and dis-
ease monitoring remains a time-consuming task for clinicians. We present
a fully automatic approach to extracting the structures and dynamics for
both left and right ventricles. The cine short-axis stack of a cardiac MR
scan is used to reconstruct a 3D volume sequence. A joint LV-RV model
is introduced to delineate the boundaries of both left and right ventricles
in each frame, and to combine both spatial and temporal context to track
the chamber boundary motion over cardiac cycles. Both qualitative and
quantitative results show promise of the proposed method.

1 Introduction

Accurate morphological and functional measurements of the heart anatomies are
essential in clinical applications for diagnosis, prognostic, and therapeutic deci-
sions. Magnetic resonance imaging (MRI) allows morphological characterization
of heart structures with precision. An accurate identification of the borders of the
structures to be analyzed is needed in order to extract physiologically meaning-
ful quantitative information from the images. Potential applications of cardiac
segmentation and tracking include the calculation of volume and mass, blood
ejection fraction, analysis of contraction and wall motion as well as the 3D vi-
sualization of cardiac anatomy [1].

Advantages of cardiac MRI include a wide topological field of view with visu-
alization of the heart and its internal morphology and surrounding mediastinal
structures. It has a high soft-tissue contrast discrimination between the flowing
blood and myocardium without the need for contrast medium or invasive tech-
niques. Cardiac MR is able to perform multiple non-harmful and accurate scans
required for disease monitoring. In such a scenario, fast, reproducible and accu-
rate extraction of clinical features is essential for all decision support systems.
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In addition to assessing left ventricle (LV) functions, recent research empha-
sizes the importance of right ventricle (RV) function in the prognosis of a variety
of cardiopulmonary diseases. This indicates that there is a growing interest in
the clinical relevance of both LV and RV; in particular for congenital diseases
and that more routine quantification of RV function is warranted under most
clinical circumstances. Because of ventricular interactions, RV filling influences
LV performance, and similarly, the LV affects RV function through the interven-
tricular septum. Dynamics of the RV can also infer a large amount of clinical
information [2,3,4]. The normal RV anatomy is a complex crescent-shaped struc-
ture wrapped around the LV. The RV can in some cases (especially in diseased
patients) be characterized by its non-uniform shape and high degree of trabaec-
ulations. Due to the complexity of shape and dynamics, much of the research on
the LV cannot be easily transferred to the RV.

In current clinical practice, assessment of RV structure and function remains
mostly qualitative, which involves manually delineating the inner wall (endo-
cardium) of the RV, and requires a great deal of user interaction with generally
no a-priori information. Correlation between LV and RV shows promise to im-
prove RV segmentation, as explored in [5], where five landmarks need to be
manually identified for the subsequent automatic segmentation. We proposed an
automatic approach to delineating LV and RV without any user interactions.

2 Methodology

Due to the large amount of available data, analysis such as segmentation of car-
diac images is time consuming and error-prone for human operators, which needs
to be automated in order to be clinically valuable. We present an automatic ap-
proach to extracting relevant morphological and dynamic parameters of both LV
and RV from MRI data over a cardiac cycle, as demonstrated in Fig. 1. Con-
ventional volume measurements by cardiac MRI are independent of the cavity
shape, with the area from contiguous slices integrated over the chamber of in-
terest. However, direct 3D extraction may take advantage of the chamber shape
and provide heart movement measurement in three dimensions, leading to more
accurate and realistic representations.

The proposed method segments chambers on the first frame, followed by dy-
namics extraction across the entire sequence, as shown in Fig. 2. Chamber seg-
mentation includes two stages: at the first stage, the position, orientation, and
scale of the heart chamber (LV/RV) in a 3D volume are determined to initialize
the joint model for chamber segmentation; at the second stage, local deformation
of the detected model is processed in order to fit the model to both LV and RV
boundaries.

2.1 Joint Anatomy Model

In order to accurately model the complexity of the anatomy, a representation of
the anatomic shape is created using a database of reconstructed 3D volumes that
are manually segmented. For left ventricle, the model includes LV endocardium,
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Fig. 1. Models of LV/RV fitted to a 3D reconstructed cardiac MRI volume sequence.
(a) Estimated 3D model. (b) Volume measurement across time computed based on the
fitted models. (C) 2D views of frame 1, 6, 11, 16, 21 of a single heartbeat cycle (25
frames in total).
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Fig. 2. Workflow of our automatic LV and RV detection and tracking system

LV epicardium, and LV outflow tract (LVOT). The right ventricle model con-
sists of the RV blood pool cavity, the RV outflow tract (RVOT) as far as the
pulmonary valve and the tricuspid valve opening. Both LV and RV models are
triangular meshes as shown in Fig. 3. They are used to fit a given 3D cardiac vol-
ume to delineate corresponding anatomical structures. The joint model unifies
the interventricular septum between LV the RV.

2.2 Learning-Based Model Fitting

A typical cardiac MR scan to examine the LV/RV morphology and functionality
contains a short axis stack, which consists of image slices captured at the different
positions along the short axis of heart chambers (e.g., LV). These image slices
can be aligned using the physical coordinates (location and orientation) recorded
during acquisition. A 3D volume is reconstructed from this stack of aligned image
slices. If each image slice is captured in a time sequence and synchronized to



Automatic Delineation of Left and Right Ventricles 253

Fig. 3. Joint model (a) of LV (b) and RV (c). The RV inner boundary and LV
epicardium are jointly modeled, sharing the same triangular mesh parts.

each other, a 3D volume sequence is obtained, which is used for 3D chamber
segmentation and dynamics extraction in our proposed system.

To estimate our joint anatomical models in the reconstructed volumetric data,
we train a series of detectors to estimate the model pose (including translation,
orientation, and scale) and boundaries on a large database with both LV and
RV annotated. We use a probabilistic boosting tree (PBT) [6] for each detector,
which selects a set of discriminative features that are used to distinguish the
positive samples from negatives from a large pool of features. Image orienta-
tion information recorded during acquisition can also be used to help initialize
pose estimation. For the detector at the translation stage, we choose 3D Haar
wavelet-like features [7], which are calculated efficiently using integral image
based techniques. For the detectors at the orientation and scale search stages,
steerable features [8] are applied because they do not require volume rotation
and re-scaling which are computationally expensive, especially when the search
hypothesis space is large.

In order to detect the model pose, we need to solve for the nine-parameter
space, including three translations, three orientations, and three scales, i.e.,

θ = {(cx, cy, cz), (αx, αy, αz), (sx, sy, sz)} (1)

where (cx, cy, cz), (αx, αy, αz), (sx, sy, sz) are the position, orientation and scale
parameters. To estimate the above parameters efficiently, we apply a marginal
space search strategy [8], which groups the original parameters space into subsets
of increasing marginal spaces such that the posterior probability can be expressed
as:

p(θt|It) = p(cx, cy, cz|It)p(αx, αy, αz|cx, cy, cz, It)
p(sx, sy, sz|αx, αy, αz, cx, cy, cz, It)
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We train a series of detectors that estimate parameters at a number of sequen-
tial stages in the order of complexity, i.e., translation, orientation, and scale.
Different stages utilize different features computed from 3D volumetric data.
Multiple hypotheses are maintained between stages, which quickly removes false
hypotheses at the earlier stages while propagates the right hypothesis to the final
stage. Only one hypothesis is selected as the final detection result.

With the model pose estimated, we align the mean shape (an average model
of all annotations) with data to get an initial estimate of the object shape.
To capture the true anatomical morphology of the target object (e.g., LV and
RV), we deform the mean shape by searching the boundary for each vertex of
the model. The boundary hypotheses are taken along the normal directions at
each vertex of the mean model. Detection is achieved using a boundary detector
using PBT with steerable features. The detected boundaries are constrained by
projecting the detected model onto a shape subspace obtained by the annotated
dataset, which was constructed using principal component analysis. Although
more sophisticated representations, such as local affine models [9,10], can also
be applied to constrain shape deformations, we choose the global PCA shape
model due to its efficiency during online detection.

The joint LV-RV model provides a mechanism to improve search and fitting
accuracies based on the geometric constraint between LV and RV. For example,
when LV is robustly detected, the RV parameter search range can be inferred to
be in a much smaller space than the original RV search range without any a-prior
information. The unified septum boundary constraint (LV and RV must share
the same septum boundary) improves model fitting. Therefore, the joint model
leads to more robust and accurate detection and delineation of the anatomies.

2.3 Dynamics Extraction

In this section, we present our tracking method to extract dynamic shape defor-
mation automatically from an MRI sequence, which includes three main steps:
initialization, deformation propagation, and motion smoothing. In the initial-
ization step, the learning-based model fitting approach is applied to the initial
frame to detect the shape for both LV and RV, as described in Sec. 2.2.

Starting from the detection result at the initial frame, the model deforma-
tions are propagated to neighboring frames using both the learned features and
the local image templates. To ensure temporal consistency and smooth motion
and to avoid drifting and outliers, two collaborative trackers, an intensity-based
matching tracker and a boundary detection tracker, are used in our method. The
intensity-based matching tracker directly computes the temporal displacement
for each point from one frame to the next based on the image intensity, while the
detection tracker obtains the deformations in each frame with maximal probabil-
ity [11]. The above two trackers are integrated into a single Bayesian framework:

arg max
Xt

p(Xt|Yt−1:t) = argmax
Xt

p(Yt|Xt)p(Xt|Yt−1), (2)

where Yt−1:t = (Yt−1, Yt) are the image intensity and local feature responses
from the two neighboring frames It−1:t = (It−1, It). For clarity, we use Xt to
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denote a concatenation of the mesh point positions, Xt = [X1, · · · , Xn], which
need to be estimated at the current time instance t, and n is the total number
of points in the mesh model.

The likelihood term p(Yt|Xt) is computed from both boundary detection and
local image template matching as follows,

p(Yt|Xt) = (1 − λ)p(Ft|Xt) + λp(Tt|Xt), (3)

where Ft is the steerable feature response [8], Tt is the local image template
centered at Xt−1 in the previous frame It−1, and λ is the weighting coefficient
of the matching term. Given the resulting shape Xt−1 from the previous frame
t − 1, the prediction term p(Xt|Yt−1) can be simplified as p(Xt|Xt−1). In
our system p(Xt|Xt−1) is modeled as a Gaussian distribution based on the
shape distance d(Xt, Xt−1) =‖ Xt − Xt−1 ‖. The objective function (2) can
be optimized by searching in a local neighborhood centered at Xt−1. To speed
up the computation, we apply the optical flow technique to search for the new
position Xt along the local gradient direction in the current frame It.

The above deformation propagation step is repeated until the full 4D model is
estimated for the complete sequence. In this way the collaborative trackers com-
plement each other, as the intensity-based matching tracker provides temporally
consistent results and its major issue of drifting is addressed by the boundary
detection.

Finally to obtain a smooth motion field, the tracking is performed in both
forward and backward directions given the periodic nature of the cardiac motion,
and a Gaussian kernel is applied to both the LV and RV shapes in the neighboring
frames, i.e., Xsmooth

t =
∑k

i=−k G(i)Xt+i, where G(i) is a normalized Gaussian
kernel N(0, σ). In our experiments we typically choose σ = 0.6 and k = 1.

3 Experiments

We collected 100 reconstructed volumes from 70 patients with left ventricles
annotated, among which 93 reconstructed volumes from 63 patients were also
annotated on right ventricles. Volumes were selected to cover a large range of
dynamic heart motion, including both end diastole and end systole. The original
short-axis stack images have an average in-plane resolution of 1.35mm, and the
distance between slices is around 10mm.

A 4-fold cross-validation scheme was applied for evaluation. The entire LV
dataset was randomly partitioned into four quarters. For each fold evaluation,
three quarters were combined for training and the remaining one was used as
unseen data for testing. This procedure was repeated four times so that each vol-
ume has been used once for testing. The same evaluation protocol was applied for
RV. For each segmented mesh, the distance from each vertex to the groundtruth
mesh (manual annotation) was computed as point-to-mesh distance. The average
distance from all vertices of the segmented mesh was used as the measurement.
Three major components, i.e., LV endocardium, LV epicardium, and RV main
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Fig. 4. Automatic delineation examples

Table 1. Point-to-mesh distance measurements obtained by a 4-fold cross validation
based on the joint LV-RV model

measure (mm) Mean Std Median

LV endocardium 2.95 4.85 1.84

LV epicardium 3.23 3.94 2.12

RV main 2.99 1.18 2.66

Fig. 5. Examples of superior performance of the joint LV-RV model over individual
RV modeling. In both (a) and (b), the left ones are the delineation results obtained by
the individual RV model and the right ones are from the proposed joint LV-RV model.
The individual RV model overestimates the RV in (a) and significantly underestimates
the RV in (b), while the joint LV-RV model provides correct delineation in both cases.



Automatic Delineation of Left and Right Ventricles 257

Table 2. Comparison of RV delineation results using joint LV-RV model against
individual RV model. Point-to-mesh distance measurements are calculated.

measure (mm) Mean Std Median

Individual RV model 4.12 6.28 2.65

Joint LV-RV model 2.99 1.18 2.66

cavity, were considered in our evaluation as listed in Table 1. Automatic de-
lineation examples are provided in Fig. 4. Fig. 5 shows examples where joint
LV-RV modeling provides superior performance to individual RV modeling. Ta-
ble 2 summarizes the quantitative results obtained by joint modeling from the
4-fold cross validation in comparison with individual RV modeling.

On the average, it took about 3 seconds to segment both LV and RV from a
single volume (e.g, 256×256×70), and about 40 seconds to fully extract dynamics
of the entire sequence (typically 20 frames) on a duo core 2.8GHz CPU.

4 Conclusions

We have presented a fully automatic method for segmenting LV and RV cham-
bers from cardiac MRI images, and extracting the dynamics of both chamber
movements. A joint ventricular model is used to delineate the boundaries of both
LV and RV in each frame. Clinically relevant measurements, such as volumes and
ejection fraction, can be calculated based on the fitted model.
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