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Abstract. C-arm CT is an emerging imaging technique in transcatheter
aortic valve implantation (TAVI) surgery. Automatic aorta segmentation
and valve landmark detection in a C-arm CT volume has important ap-
plications in TAVI by providing valuable 3D measurements for surgery
planning. Overlaying 3D segmentation onto 2D real time fluoroscopic
images also provides critical visual guidance during the surgery. In this
paper, we present a part-based aorta segmentation approach, which can
handle aorta structure variation in case that the aortic arch and de-
scending aorta are missing in the volume. The whole aorta model is split
into four parts: aortic root, ascending aorta, aortic arch, and descending
aorta. Discriminative learning is applied to train a detector for each part
separately to exploit the rich domain knowledge embedded in an expert-
annotated dataset. Eight important aortic valve landmarks (three aortic
hinge points, three commissure points, and two coronary ostia) are also
detected automatically in our system. Under the guidance of the detected
landmarks, the physicians can deploy the prosthetic valve properly. Our
approach is robust under variations of contrast agent. Taking about 1.4
seconds to process one volume, it is also computationally efficient.

1 Introduction

Affecting 1.8% of the global population and 10.7% of persons older than 65,
aortic valve disease is the most common valvular disease in developed coun-
tries [1]. Implantation of a prosthetic aortic valve is often necessary to replace
the severely damaged natural valve. Though open-chest valve surgery is a well
established procedure, minimally invasive transcatheter aortic valve implanta-
tion is an emerging technique, especially for high-risk patients, to minimize the
surgical trauma. Before the surgery, several important parameters of the aortic
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Fig. 1. Applications of C-arm CT to transcatheter aortic valve implantation. Left: A
C-arm CT volume. Left Middle: Automatically segmented aorta together with the
detected valve landmarks. Right Middle: 3D geometric measurements of the valve.
Right: Overlay of the segmented aorta onto a 2D fluoroscopic image for visual guidance
during surgery.

valve (as shown in Fig. 1) need to be extracted for surgery planning. For ex-
ample, the diameter of aortic valve annulus needs to be measured to select a
prosthetic valve with an appropriate size. During the surgery, 2D fluoroscopic
images are captured in real time in a C-arm system to provide guidance to physi-
cians [2]. The aortic root structure is distinguishable from the background only
during a short period when the contrast agent is applied. However, the contrast
agent is toxic and its usage should be minimized. Computed tomography (CT)
is often used to provide the necessary 3D geometric measurements in surgery
planning. However, CT is rarely used during valve implantation surgery because
2D/3D overlay (or registration) of data captured from different imaging devices
is quite difficult. Recently, C-arm CT emerges as a new imaging technique with
the following advantages, compared to conventional CT. Since both the 3D vol-
ume and 2D fluoroscopic images are captured on the same device within a short
time interval, overlay of the 3D patient-specific aorta model onto a 2D image is
straightforward and accurate (except patient motion). Besides providing visual
guidance, the extracted aortic root can predict the best C-arm angulation (the
optimal orientation of the imaging plane) to mitigate the foreshortening effect.
For more details on the clinical applications of C-arm CT, please refer to [2, 3].

A fully automatic system of aorta segmentation and valve landmark detec-
tion pays a key role in seamlessly integrating C-arm CT into the TAVI workflow.
There are only a few methods proposed in literature to segment the aorta in a
3D volume. Zhao et al. [4] proposed a semi-automatic method to segment aorta
in MR images. A user needs to manually select a seed point to initialize the fast
marching method, which generates a rough segmentation result. Graph cut is
exploited for final boundary refinement. Rueckert et al. [5] presented a tracking
based segmentation method for the ascending and descending aortas. The in-
tersection of the ascending/descending aorta with the image slice is roughly a
circle, which is easy to track along slices. However, the curved aortic arch can-
not be handled elegantly. Since the aorta is a tubular structure, many generic
tubular structure detection approaches [6–8] can be extended to detect and seg-
ment it. Automatic aortic valve landmark detection is a new topic with very
few publications in literature. Ionasec et al. [9] presented a comprehensive aortic
valve model, which included the important valve landmarks, e.g., hinge points,
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Fig. 2. Part-based aorta model (left) and automatic segmentation workflow (right).

commissure points, and coronary ostia. All the previous work focuses on a rel-
atively consistent imaging protocol with much fewer variations than ours. For
example, a roughly same portion of the aorta is captured in the volume and the
usage of contrast agent is consistent, resulting in stable image characteristics.
Furthermore, most of the previous approaches are semi-automatic (a user needs
to click at least one point [4]) and very slow (taking up to 450 seconds to process
one volume [7]).

All of the previous methods work on the well established imaging modalities,
such as MR and CT. However, automatic segmentation of the aorta in a C-arm
CT volume is far more challenging. First, the image quality from different clin-
ical sites varies quite a lot since C-arm CT is too new to have a well accepted
scanning protocol. We also observed significant variations inside the same clinical
site since physicians were testing different scanning parameters (e.g., the amount
of contrast agent and timing of the image acquisition). Conventional image pro-
cessing techniques, e.g., intensity-based thresholding, region growing, and the
watershed method, are not robust under such large variations. We propose to
use machine learning techniques to exploit the rich information embedded in an
expert-annotated dataset. Second, the field of view varies quite a lot for a C-arm
CT volume. For example, the aortic arch and descending aorta may be captured
in some volumes (see the first two examples in Fig. 3), but missing in others
(see the last two examples in Fig. 3). To address this challenge, we propose a
part-based aorta model. As shown in Fig. 2, the whole aorta is split into four
parts: aortic root, ascending aorta, aortic arch, and descending aorta. Using the
part-based model, the whole aorta does not need to be fully present. Depend-
ing on the structure that can be detected, different workflows can be exploited,
therefore, a large structure variation can be handled elegantly.

2 Part-Based Aorta Modeling and Segmentation

Due to the variation in the field of view, the aorta captured in a C-arm CT
volume changes a lot in its structure. In this paper, we present a part-based
aorta model (as shown in Fig. 2) by splitting the whole aorta into four parts:
aortic root, ascending aorta, aortic arch, and descending aorta. The aortic root is
required to be present in this application, therefore, it is detected and segmented
as the first step. To be specific, we use the recently proposed marginal space
learning (MSL) method [10] to segment the aortic root. MSL is an efficient



method to detect and segment a 3D anatomical structure in medical images
based on a discriminative machine learning technique. It is robust and works
for different imaging modalities. Due to the space limit, we would like to refer
readers to [10] for more details of MSL. As shown in the system diagram in
Fig. 2 , the aortic root is detected first. If no aortic root is detected, the input
volume is rejected. We then detect the aortic arch. Similarly, MSL is exploited
to train a separate detector for the aortic arch. For about half of the volumes
in our dataset, the aortic arch may be out of the field of view. If no aortic arch
is present, normally the descending aorta is also missing in the volume (see the
last two cases in Fig. 3).

The length of the ascending and descending aortas captured in a volume
varies significantly. It is difficult to detect them as whole objects. We propose
to use a tracking technique to deal with this variation. Since the intersection of
the ascending and descending aortas with an image slice is close to a circle, we
train a 2D circle detector using Haar wavelet features and the boosting learn-
ing algorithm [10] to detect aortic circles as primitive structures for tracking.
Starting from the aortic root, we detect an aortic circle on the next slice (toward
the patient’s head). The detector outputs multiple circle candidates around the
true position. We pick the one closest to the circle on the current slice. If the
aortic arch is detected in the volume, the tracking procedure stops on the slice
touching the aortic arch. Otherwise, it stops when no aortic circle is detected
or it reaches the top volume border. Tracking of the descending aorta is similar
except that it starts from the aortic arch and moves toward the patient’s toe. It
stops on the slice with no aortic circle detected.

Assembling all the aortic parts together (the tracked aortic circles, aortic
root, and aortic arch if it is present), we get an initial surface mesh of the aorta.
The initialization is close to the true aorta boundary, however, a circle does
not fit the boundary exactly. A learning based boundary detector is applied for
final boundary delineation. Specifically, a two-step iterative approach is used.
1) Use the learning-based boundary detector to adjust each mesh point along
the surface normal to the optimal position where the response of the boundary
detector is the largest. 2) Apply generic mesh smoothing [11] to get a smooth
surface. The above two steps repeat a few iterations to improve the boundary
delineation accuracy.

MSL [10] can efficiently detect an object as a whole. However, it cannot deal
with structural variations. Therefore, almost all previous work uses bottom-up
approaches [4–8] to track the aorta centerline to handle the variations. They are
neither automatic nor robust on noisy images. In comparison, we use MSL to
detect the aortic root and arch, and use bottom-up tracking to detect ascend-
ing/descending aortas that have large variations in length. Our system is a nice
combination of both approaches.

3 Aortic Valve Landmark Detection

Besides segmenting the aorta, we also detect eight aortic valve landmarks: three
aortic hinge points, three aortic commissure points, and left and right coronary



ostia since they are important in both surgery planning and providing visual
guidance during surgery [3]. Though it is possible to detect each landmark inde-
pendently, the detection results may be inconsistent in geometry. It also wastes
computation power by ignoring the strong geometric constraint among the land-
marks. We propose to use a hierarchical approach by first detecting a global
object comprised with all eight valve landmarks. From the position, orientation,
and scale of this global object, we can infer the rough position of individual land-
marks. Each landmark is then refined in a small region (e.g., a cube of 20 mm
centered on the initial position) under the guidance of its own specific landmark
detector.

Similar to the aortic root detection, we use marginal space learning (MSL) [10]
to efficiently detect the position, orientation, and scales of the global landmark
object. For a learning based method, we need to specify the ground truth of ob-
ject pose for each training volume, therefore, a learning algorithm can learn the
implicit relationship to infer the correct pose from an unseen volume. However,
there is no standard way to define the pose of the global object containing eight
landmarks. After detecting the global landmark object, we align the mean shape
(which is the average shape of the training set after global transformation has
been compensated) to the global pose to get an initial estimate of each individual
landmark’s position (see Eq. (2)). In this paper, we propose a method to search
for an optimal shape which can represent the whole shape population accurately,
therefore improving the initialization accuracy of the landmarks. Given a group
of shapes, M1,M2, . . . ,MN , we want to find an optimal shape m̄ to represent the
whole population such that it can minimize the residual errors after alignment,

m̄ = arg min
m

N∑
i=1

‖Ti(m)−Mi‖2
. (1)

The optimal shape m̄ is called the mean shape in this paper. Ti is the corre-
sponding transformation from the mean shape m̄ to each individual shape Mi.
This procedure is called generalized Procrustes analysis in statistical shape anal-
ysis [12].

Previously, the generalized Procrustes analysis is only performed under the
similarity transformation (i.e., T is a similarity transformation). MSL can esti-
mate anisotropic scales quite efficiently. With more deformation compensated,
the mean shape is more accurate to represent the whole shape population. There-
fore, in our approach T represents translation (T = [X, Y, Z]′), rotation (rep-
resented as a rotation matrix R), and anisotropic scaling (Sx, Sy, Sz). The
transformation of a 3D point P is

T (P ) = R

Sx 0 0
0 Sy 0
0 0 Sz

P + T. (2)

To the best of our knowledge, there are no closed-form solutions for estimating
the anisotropic similarity transformation. We propose an iterative algorithm. We



Fig. 3. Automatic aorta segmentation on a few example volumes. Left: Good contrast,
however, with severe valve regurgitation. Left Middle: Fair image quality. Right
Middle: Contrast agent is almost washed out due to bad timing. Right: Streak arti-
facts generated by the catheters.

first estimate the similarity transformation (translation, rotation, and isotropic
scaling), which has closed-form solutions [12]. After compensating the similarity
transformation, we estimate the three anisotropic scaling parameters (Sx, Sy,
Sz), for which we derive a closed-form solution. With a module solving the
anisotropic similarity transformation between two shapes, we can plug it into
the generalized Procrustes analysis method to search for the optimal mean shape
m̄. Besides the optimal mean shape, the transformation Ti of the mean shape to
each example shape Mi is also calculated as a by-product, which provides the
pose ground truth that MSL can learn to estimate.

4 Experiments

A dataset of 192 C-arm CT volumes from 152 patients were collected from
two clinical sites to evaluate our method. The size of each slice in a volume is
256 × 256 or 512 × 512 pixels. A volume contains around 200-300 slices. The
image resolution is isotropic and varies from volume to volume in the range of
[0.70, 0.84] mm.

A four-fold cross-validation is performed to evaluate our algorithm. The aorta
segmentation accuracy is measured using the symmetric point-to-mesh distance
Ep2m [10]. The mean segmentation error of the aorta is 1.1 mm, with a standard
deviation of 0.41 mm. We cannot compare our error with those reported in the
literature directly because they used different datasets captured from different
imaging modalities. Roughly, our accuracy is comparable to (or better than) the
state-of-the-art, e.g., 1.55 mm mean error reported in [4] on 21 MR datasets
and 1.4 mm mean error reported in [7] on 23 CT datasets. Fig. 3 shows aorta
segmentation results on a few volumes. The first example shows a volume with
good image quality. However, due to severe valve regurgitation the contrast
leaks into the left ventricle. The third example shows a case with bad image
acquisition timing where the contrast agent has almost been washed out. Severe
streak artifacts generated by catheters are clearly visible in the last volume.

In the following experiment, we evaluate the valve landmark detection accu-
racy. There are a total of 28 volumes with extremely poor image quality that
the landmarks cannot be identified even by an expert (though the aorta can be
successfully segmented from these volumes). So these images are excluded. A



Fig. 4. The aortic valve landmark detection results on two example datasets with red
dots for the hinge points, yellow for the commissure points, blue for the left coronary
ostium, and green for the right coronary ostium. Each row shows three orthogonal cuts
of a volume.

Table 1. Aortic valve landmark detection errors based on a four-fold cross-validation on
164 volumes. The mean, standard deviation (STD), and median of the errors (measured
in millimeters) are reported.

Aortic Hinges Coronary Ostia Aortic Commissures
Mean STD Median Mean STD Median Mean STD Median

After Global Pose Estimation 5.40 2.51 4.83 5.81 2.45 5.18 5.43 2.26 5.20
After Local Refinement 2.41 1.50 1.90 2.74 2.43 1.77 3.46 1.78 3.11

four-fold cross-validation is performed on the remaining 164 volumes for aortic
valve landmark detection. The landmark detection accuracy is measured using
the Euclidean distance from the detected landmark to the ground truth. Ta-
ble 1 shows the detection errors. After global landmark object pose estimation,
we can get a good initial estimate of the landmark position. The mean errors
range from 5.40 to 5.81 mm for different landmarks. After local refinement for
each landmark, the error is further reduced. For example, the mean error for
the aortic hinges reduces from 5.40 mm to 2.41 mm. Fig. 4 shows the detected
valve landmarks in two typical volumes. Our approach is computationally effi-
cient, taking about 1.4 seconds to process a volume on a computer with 3.2 GHz
duo-core processors and 3 GB memory. It is at least 10 times faster than the
previous methods [5, 7].



5 Conclusion

In this paper, we presented a fully automatic aorta segmentation and valve land-
mark detection system in C-arm CT with applications to transcatheter aortic
valve implantation (TAVI). The initial clinical trial demonstrated the usefulness
of our system in the TAVI workflow, e.g., providing a proper angulation to avoid
large tilting of a prosthetic valve after deployment [3]. Our approach is generic,
therefore can be extended easily to other imaging modalities by simple retrain-
ing, without any manual parameter tuning. A similar system has been built on
cardiac CT datasets to use conventional CT for surgery planning.
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