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Abstract

Learning-based methods have been widely used in de-
tecting landmarks or anatomical structures in various med-
ical imaging applications. The performance of discrimi-
native learning techniques has been demonstrated superior
to traditional low-level filtering in robustness and scalabil-
ity. Nevertheless, some structures and patterns are more
difficult to be defined by such methods and complicated and
ad-hoc methods still need to be used, e.g. a non-rigid and
highly deformable wire structure. In this paper, we propose
a novel scheme to train classifiers to detect the markers and
guide wire segment anchored by markers. The classifier uti-
lizes the markers as the end point and parameterizes the
wire in-between them. The probabilities of the markers and
the wire are integrated in a Bayesian framework. As a re-
sult, both the marker and the wire detection are improved
by such a unified approach. Promising results are demon-
strated by quantitative evaluation on 263 fluoroscopic se-
quences with 12495 frames. Our training scheme can fur-
ther be generalized to localize longer guidewire with higher
degrees of parameterization.

1. Introduction

Stent thrombosis and restenosis are associated with stent
under-expansion, which has been shown as a major risk fac-
tor for patients undergoing percutaneous coronary interven-
tion (PCI). During the intervention, a stent is deployed via a
balloon at the lesion spot inside the coronary artery. This
procedure is monitored by X-ray fluoroscopy where the
stent visibility is often low because the radiation dose is kept
at a minimal level and stents are only slightly radiopaque in
typical X-ray fluoroscopy. The low visibility of stent also
undermines the assessment of the stent implantation out-
come, which increases the risk of incomplete stent expan-
sion. While increasing signal to noise ratio by increasing ra-
diation doses or using stents with radiopaque coatings may

result in negative clinical effects, only a few alternative so-
lutions are available. The most reliable method to assess
stent expansion is to observe the stent via intravascular Ul-
trasounds (IVUS), in which an Ultrasound transducer is put
into the target coronary artery via a catheter. Nevertheless,
not only that it is an invasive procedure, but IVUS is too
expensive for most of current clinics in daily practice.

Figure 1. Left: a frame from a fluoroscopic sequence during stent
implantation. Right: stent enhancement through the marker-based
motion compensated registration from our algorithm.

Image processing techniques are proposed to improve
the image quality for better stent visibility. In [5], a layer
decomposition method is used to decompose the X-ray se-
quence into a sum of moving layers. In [7, 11, 16, 12],
a motion-compensated noise reduction via landmark-based
registration of multiple images is used. In [2], an elas-
tic registration is proposed to align images through the de-
formation of guidewire, which shows improvement over
marker based alignment. These existing methods utilize
conventional image processing techniques such as match
filtering or blob detection with automatic scale selection to
detect markers, which may have limited capability to cope
with large variations and cluttered background presented
in real applications. For example, for patients who had
previous interventions or surgery, the placed sternal wires,
stitches, stents, and other devices introduce locally similar
structures to the balloon markers, a significant number of
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false alarms in marker detection are often observed. Large
variations of marker appearance across time also make it
difficult for conventional detection algorithms to consis-
tently differentiate balloon markers, especially when the tar-
get markers are overlaid with other structures in the image
[2]. Conventional balloon marker detection is heavily de-
pendent upon temporal coherence to compensate detection
errors among individual image frames and may require user
interactions to achieve desired performance [12].

We propose a novel scheme to detect balloon marker pair
as well as the guidewire by a unified scheme using classi-
fiers learned from a large database containing more than ten
thousands real fluoroscopic frames during stent implanta-
tion. Figure 1 illustrates a fluoroscopic scene and the en-
hanced stent through motion compensated registration us-
ing the balloon markers. The learned classifiers have been
evaluated and tested on a database containing 263 real flu-
oroscopic sequences with 12495 frames. Data is collected
world wide including European and Asian sites and covers
a large variability. Figure 1 illustrates our marker-based
stent enhancement result.

1.1. Discriminative learning

Discriminative learning techniques have been proven ef-
fective in many medical imaging applications [4, 3, 17, 8]
as well as interventional applications [1, 15] with high ac-
curacy and efficiency. These methods have been quite suc-
cessful in detecting different landmarks or anatomical struc-
tures. Nevertheless, some patterns, such as the guidewire,
which is a non-rigid deformable curve, are difficult to be de-
fined by learning-based methods. In [1], classifiers are de-
signed to detect primitive features such as small segments of
a guidewire or connectivity between two segments to form
a longer curve. However, at the final stage, it relies on dy-
namic programming to connect all detected segments and
curves to form the entire guidewire. Inspired by the appli-
cation of balloon marker enhancement, we propose to detect
the guidewire in conjunction with two landmark points di-
rectly. In other words, the wire is obtained directly from the
output of the classifier. There are a number of advantages
of the proposed scheme:

1. Marker detection is prone to error due to false de-
tections. In interventions, there can be a lot of marker-like
patterns inside a scene. It is with high probability that the
ground truth marker is not among the top candidates. There-
fore, existing methods rely heavily on the coherence anal-
ysis along the temporal domain to remove false detections.
Nevertheless, false detections can still exist in a cluttered
scene with a lot of blob like structures.

In fact, the ground truth that the real marker pair can
differentiate from the remaining marker like candidates is
that there must be a wire connecting the real marker pair. If
we can utilize the fact that the true marker pair should be

connected by the guidewire, we can remove a great deal of
false detections even without temporal coherence.

2. The joint probability learned from the classifiers for
the marker and the guidewire are more robust than the indi-
vidual probability of marker detection. Integrating marker
and wire probabilities through fusion leads to more robust
detection results.

3. In case a guidewire is desired in order to perform a
non-rigid matching between frames, the guidewire is ob-
tained inherently from the classifier.

2. Methodolgy
While learning a balloon marker classifier results in more

robust marker detections than conventional methods, false
alarms can still be present if only the local context of a sin-
gle marker is considered. In order to obtain better results,
one possible way is to further train another classifier to com-
bine the joint local context of each marker pair to let the
classifier selects the best marker pair among all candidates.
One example of such approaches was proposed by Lu. et
al. [9]. Figure 2 illustrates this idea.

However, there are two limitations: 1. The stent between
the two markers can deform wildly and locate outside of
the joint context area. 2. The stent can locate in any major
coronary and with any types of background. The only se-
mantic ground truth is that both the markers must locate on
the guidewire. Learning the features from the entire joint
context area may easily lead to overfitting.

Figure 3. (A) The target detection model χ (B) Parameters of χ.

In order to overcome these limitations, we propose to
learn the guidewire directly. We design a classifier which
directly locates wire structures as shown in Fig. 3(A).
Specifically, we would like to model our target pattern as
a marker pair connected by a thin guidewire. Because
the balloon is covered by a stent inside the coronary and
there is a limitation of the length of the stent, the degree
of guidewire deformation is limited. This is based on the
observation from around 300 real fluoroscopic sequences
collected worldwide. As a result, we model the marker
guidewire combination as:

χ(O,M, δ), (1)

where O = (x1, y1) and M = (x2, y2) are the locations
of the two balloon marker, where x1 ≤ x2, and y1 ≤ y2 if
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Figure 2. (a) Ground truth balloon marker pair on one fluoroscopic image. (b) Marker detection results from a trained classifier. (c) A joint
context region from a pair of marker.

x1 = x2. δ is defined as the displacement along the normal
direction from the center C = (O+M)

2 to the guidewire.
Fig. 3(B) shows the model. Given an image I , our goal is
to train a classifier for P (O,M, δ|I). The model is then
trained in a fashion of marginal space learning [17], where
the possible marker locations are identified followed by the
possible guidewire locations. And the final probability is
calculated in a Bayesian formulation:

P (O,M, δ|I) = P (O,M |I)P (δ|O,M, I) (2)

2.1. Marker detection

We first illustrate how we obtain the possible marker lo-
cations P (O,M |I). Marker detection is formulated into
a typical object detection framework to solve a two-class
(object vs. background) classification problem. A box
progresses through an image to extract candidate samples.
Each sample is fed to the learned model/detector to be as-
signed with a likelihood score of being the target object.
From another perspective, marker detection is to search the
parameter space. For each individual marker, the location
parameter space has two parameters, x and y. In our detec-
tion scheme, the box based representation is used to include
both markers and their context. Given an image, an individ-
ual marker detector is applied. Clustered detection results
are consolidated into marker candidates.

We use probabilistic boosting trees (PBT) [13] as our
learning machine to construct the detectors. The detector is
a tree-based structure with which the posterior probabilities
of the presence of the marker are calculated from given im-
age data. Therefore, each marker detector not only provides
a binary decision for a given sample, but also a confidence
value (score) associated with the decision. The nodes in the
tree are constructed by a nonlinear combination of simple
classifiers using boosting techniques [14, 13].

Each detector selects a set of discriminative features
that are used to distinguish the positive (target) from neg-
atives (background) from a large pool of features. Different
parameter space utilizes different features computed from
image data. For individual marker detectors, we choose
Haar wavelet-like features as shown in Figure 4, which
are efficiently calculated using integral image-based tech-
niques [14]. Figure 2(B) shows an example of detected
markers on a fluoroscopic image.

Figure 4. Haar wavelet-like feature type examples

We apply a boostrapping strategy to effectively remove
the false alarms. We have two stages for individual marker
detection. The first stage is trained with target markers
against randomly selected background samples. The sec-
ond stage is trained with the target markers against the false
alarms obtained from the first stage detector. The first stage
is used to quickly remove negatives and the second one is
aimed at pruning out more confusing (difficult) cases. This
two-stage approach results in a more robust and efficient
solution.

2.2. Guidewire detection

From the marker detection, a list of high probability
candidates are extracted. The task is then to select a pair
of markers which are most likely to be the target balloon
marker pair, i.e, we need to find P (δ|O,M, I).
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2.2.1 Training

For the guidewire, we model it as a 2D cubic spline curve
with three control points, that is, the first control point at O,
and the last control point at M . The location of the second
control point is obtained through the parameter δ as defined
in Fig. 3(B).

Given the marker candidates in image I , we obtain
P (O,M |I) from every two candidates. One positive and
thousands of negatives samples can then be generated for
training. The positive sample is the spline curve which lo-
cates on the ground truth guidewire (white solid curve in
Fig. 5), and negative samples from either the splines other
than the ground truth markers or all possible spline curves
from marker pair which is not the ground truth pair (red
dashed curve in Fig. 5.

In order to search the spline parameter, we discretize the
hypothesis space of δ by a ratio defined by the Euclidean
distance between the two markers, d = ||O −M ||L2 . As a
consequence, the hypothesis space of δ becomes:

Hδ = {−r,−r+4δ,−r+2×4δ, ..., 0, ..., r−4δ, r}, (3)

where r = 0.36 × d is learned from our training database.
4δ = 0.15mm is the search step size, which should
be small enough to capture the groundtruth guidewire at
subpixel levels. In order to calculate features along the
guidewire, we sample n points along the wire with equal
arc length interval, including the two markers. Fig. 6 illus-
trates two sampling examples for the same O, and M . The
left one has larger n, and smaller r and4δ . In our training
settings, n is set to 41.

The features we used for training include steerable fea-
tures [17] extracted at the n sampling points along the wire
model, which contain a number of gradient-derived vari-
ants, such as magnitude and angle with respect to certain
pre-defined orientations w.r.t. the marker pair orientation.
Computations of such features is efficient as it does not re-
quire image rotation and re-scaling. In addition, magnitude
and orientation output of steerable filters [6] are included in
the feature pool as well. This is because the steerable filter,
as a ridge filter, can capture the guide wire pretty well in
general.

The advantages of such classifier design include: 1.
It exploits the marginal space learning scheme to reduce
search from the large full space (marker position, wire pa-
rameters). 2. The wire search stage can be regarded as
another bootstrapping of the marker detection, which fur-
ther improves the marker detection accuracy. 3. A unified
probability is obtained. 4. Following the detected markers,
the guidewire is automatically localized. This is beneficial
when non-rigid matching is preferred and the wire structure
is needed.

Figure 5. Positive and negative examples in training data genera-
tion. Boxes represents marker candidates. The brighter the color,
the higher the probability is. The solid (white) curve is a positive
wire example. The dash (red) curves are negative wire examples.

2.3. Detection

The individual marker detection with the bootstrapping
strategy is applied. Multiple marker pair candidates are
formed by the top individual marker candidates. Then for
each marker pair candidate, the guidewire classifier is ap-
plied to search in the hypothesis space Hδ . The marker pair
with the best P (O,M |I)×P (δ|O,M, I) is used as the final
marker detection results.

3. Stent enhancement
In this section, we present the motion compensated stent

enhancement results based on our marker-guidewire detec-
tion. As we will illustrate in the next section, with the
marker guidewire detection framework, more than 90% of
the time the markers are correctly detected. With this high
confidence, a heuristic temporal coherence analysis is effec-
tively applied to remove the outliers and generate the stent
enhancement image. Our temporal coherence analysis con-
sists of the following steps:

1. Apply the marker pair and guidewire detection on ev-
ery frame of the sequence, assume Pi(χ) is the probability
at frame i.

2. Calculate a consistency score of each frame i as:

Ci =
1

N − 1
× Σi,j,i 6=jexp(

−d(i, j)2

σ2
), (4)

where N is the total number of frames, i, j is the index of
two individual frames, and d(i, j) = dα(i, j)+dβ(i, j) with
the following definitions:

dα(i, j) = ||Oi −Oj ||L2 + ||Mi −Mj ||L2 , (5)
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Figure 6. Two different sampling examples due to different r,4δ ,
and n for the same O, and M .

is the sum of distance of the two detected markers on frame
i and frame j.

dβ(i, j) = ||||Oi −Mi||L2 − ||Oj −Mj ||L2 ||L1 , (6)

is the length difference between the detected balloon marker
pair Oi,Mi at frame i and the detected balloon marker pair
Oj ,Mj at frame j.

3. Calculate the reference frame f as argmaxiPi × Ci.
4. From frame f , moving forward and backward to

frame k (k = f − 1, f + 1, f − 2, f + 2, ....) to remove
detected pair if d(f, k) > τ . τ is a threshold set manually.

4. Experimental results
We collected 263 clinical fluoroscopic sequences during

stent implantation containing 12495 frames, which served

as our database for training and evaluation. A sequence has
from 10 to 188 frames and each frame contains a pair of
balloon markers. Data was acquired from clinics in both
Europe and Asia, which covers a wide variety of different
stents, balloon markers, angulations, patients, and clinical
settings. For each individual frame, we manually annotate
the marker positions and the guidewire in between the two
markers. The guidewire is annotated by control points of a
2D spline curve.

All image frames are normalized onto the resolution of
0.308mm/pixel. A 4-fold cross-validation scheme was ap-
plied for evaluation. That is, the entire dataset was ran-
domly partitioned into four quarters, where no frames from
the same sequence appear in different quarters. For each
fold evaluation, three quarters were combined for training
and the remaining one quarter was used as unseen data for
testing. This procedure was repeated four times so that
each frame has been used once for testing. For each frame,
the average Euclidean distance of the detected marker pair
from their groundtruth positions was calculated. We eval-
uated the individual marker detection scheme and the fu-
sion scheme of marker and wire. For each detected wire
along with its two end markers, 41 points were resampled
with equal arc length so that a point-to-point distance was
computed against the annotated control points. The aver-
age distance for all 41 points was used to measure the wire
localization precision. Table 1 and Fig. 7 show the marker
detection results. Detection examples are provided in Fig. 8.
Wire segment localization accuracies are summarized in Ta-
ble 2.

Table 1. Marker detection accuracies by a 4-fold cross validation.
(a) Marker detection rank-1 accuracy, i.e., the percentage of cor-
rect detections, where a correct marker detection for each frame
is defined as the two marker candidates with the highest probabili-
ties are within 3 pixels from the ground truth. (b) Marker detection
precision. Average distance of the two detected marker candidates
with the highest probabilities from ground truth positions. Dis-
tances are in unit of pixels.

(a)

Rank-1
Marker only 83%

Fusion of markers and wire 90%

(b)

Mean Std Median
Marker only 15.1 38.2 0.50

Fusion of markers and wire 8.9 33.6 0.47

When evaluating on the 263 real fluoroscopic sequences,
each of which contains between 10 and 188 frames. The
stent enhancement is successful in 259 sequences (98.5%
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Figure 8. Examples of automatic detection of the marker+wire (bottom) in comparison to marker only (top). Marker detection results are
shown as the center of the yellow boxes, while the white wire shows the detected wire by a spline generated from the three control points.
A close-up at the bottom-right corner of each image is provided for better visualization.

Figure 7. Percentile evaluation results of 4-fold cross-validation.
Each curve shows the percentage of cases whose distance of the
automatic detection results from ground truth is less than an error
distance threshold. Note that the horizontal axis is in log domain.

accuracy).

A successful enhancement is defined by the following
two criteria: 1. The algorithm selects at least 80% of the
total frames or at least 30 frames from the input sequence.
From the 263 sequences, the mean and median percentages
of number of frames used for each sequence are 91% and
93%. And in practice, the stent is clearly enhanced if there
are 30 frames that have consistent detection results. 2. The
balloon marker pair is located correctly on all the selected
frames. If any one of the two criteria is not met, the se-
quence is regarded as a failure case.

Table 2. Wire evaluation results of 4-fold cross validation. The
average distance for all 41 control points on the automatically de-
tected wire segment against their counterpart in the ground truth
was calculated. Distances are in unit of millimeters. Two scenar-
ios are presented: I. All images are included; II. only images with
final marker detection results are within 3 pixels from the ground
truth, which corresponds to 90% accuracy in Table 1.

Mean Std Median
I 3.0184 10.3488 0.2556
II 0.44 0.6375 0.231

Using the same criteria and the same temporal coherence
analysis, we obtain 60.8% and 87.8% accuracy if we apply
conventional image processing method for blob-detection,
or if we apply only the trained marker detection without the
guidewire. Figure 9 shows examples of our stent enhance-
ment results. The image is filtered by a multi-scale image
enhancement algorithm during marker-based registration to
remove halo artifacts. This is beyond the scope of this pa-
per and interesting reader may refer to [10] for more de-
tail. Detection on single frame takes about 0.05 seconds. In
practice, it takes ∼5 seconds to detect marker pairs on all
the frames on a scene with 100 frames.

5. Conclusion
We have proposed a novel method to detect a non-

rigid deformable guidewire segment, and a joint marker-
guidewire segmentation fusion scheme under a Bayesian
formulation. We utilize the markers to constrain the search
of the guidewire parameter space. Quantitative evaluation
and cross-validation have been conducted to show signifi-
cant improvement over marker-only based detection. Ap-
plications such as stent enhancement are greatly improved
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Figure 9. Four examples of the stent enhancement results. The
image is one frame from the original sequence. Inside the box is
our motion compensated stent enhancement result.

with such design. The same scheme can be generalized to
locate longer guidewire or catheter with higher order pa-
rameterizations, which is among our future work. For ex-
ample, a guidewire normally consists of the guiding catheter
tip, the wire body, and the guidewire tip. Location of guid-
ing catheter tip and the guidewire tip can be treated as the
marker pair, which can be detected by trained classifiers.
Another example is that during IVUS pullback, the guiding
catheter tip and the IVUS transducer can be located together
with the IVUS catheter. Figure 10 illustrates these two ex-
amples.

Figure 10. The proposed methodology can be generalized by re-
placing the balloon markers with other landmarks such as the guid-
ing catheter tip, IVUS transducer, guidewire tip, etc.
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