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Abstract: Medical images constitute a source of information essential for disease diagnosis, treatment 

and follow-up. In addition, due to its patient-specific nature, imaging information represents a critical 

component required for advancing precision medicine into clinical practice. This manuscript describes 

recently developed technologies for better handling of image information: photorealistic visualization of 

medical images with Cinematic Rendering, artificial agents for in-depth image understanding, support for 

minimally invasive procedures, and patient-specific computational models with enhanced predictive 

power. Throughout the manuscript we will analyze the capabilities of such technologies and extrapolate 

on their potential impact to advance the quality of medical care, while reducing its cost. 

 

Introduction 

Medical imaging has impacted the practice of medicine during the recent decades, contributing to greatly 

improved disease diagnosis, treatment and follow-up. Image-guided, minimally invasive procedures are 

becoming more and more common in hospitals, replacing conventional surgery and allowing faster 

recoveries with fewer post-procedure complications. We anticipate that this trend will continue, medical 

imaging playing an increasingly important role towards moving precision medicine into clinical practice. By 

being able to characterize anatomy, physiology and metabolism of the patient, medical imaging enables 

precise, personalized procedures and predictive, patient-specific therapy selection and delivery. 

In this paper we highlight a number of technologies that we will most likely contribute to the success of 

medical imaging for the years to come, helping medical care to advance, while reducing its cost. In 

Section 1 we discuss Cinematic Rendering, a 3D visualization technology that is capable of producing 

superb photorealistic images from traditional Computer Tomography (CT) or Magnetic Resonance (MR) 

volumes, thus potentially enhancing the conspicuity of pathologies. Section 2 addresses the topic of next 

generation image understanding, which contributes to faster and more reproducible image reading, 

benefiting from the recent advances in machine learning and artificial intelligence. Furthermore, in Section 

3 we discuss the real-time imaging needs in the Operating Room and focus on heart valve procedures, 

addressing both their planning and guidance. Finally, in Section 4 we present patient-specific 

computational models that contribute to advances in diagnosis, patient stratification, therapy selection 

and therapy optimization.  All images shown in the paper are images of real, living patients. 

1. Cinematic Rendering: Photorealistic Visualization of Medical Images 
 

Efficient clinical decisions and procedures require the rapid appreciation of the relevant information 

contained within medical images. Even though medical image viewing based on multi-planar 

reconstruction (MPR) is still dominant in diagnostic imaging, the significance of three-dimensional 

visualization of medical data is rising. This is due to the fact that these methods allow much faster 

understanding of spatial anatomical structures and have the potential to increase the sensitivity and 

specificity of medical images. Especially medical professionals who are not trained in planar image 

viewing as well as patients benefit from such visualizations.  
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Recent advances in computer graphics have made interactive physically-based volume visualization 

techniques possible. Such techniques reproduce complex illumination effects in computer-generated 

images by mimicking the real-world interaction of light with matter. The results are physically plausible 

images that are often easier for the human brain to interpret, since the brain is trained to interpret the 

slightest shading cues to reconstruct shape and depth information. Such shading cues are often missing 

from computer generated images based on more simple geometric calculations such as ray casting. 

We developed a physically-based volume rendering method called Cinematic Rendering [Engel 2016; 

Paladini 2015] which computes in real-time the interaction of visible photons with the scanned patient 

anatomy. The algorithm uses a Monte Carlo path tracing method to generate photorealistic or even 

hyper-realistic images by light transport simulation along hundreds or thousands of photons paths per 

pixel through the anatomy using a stochastic process (Figure 1)  

     

Figure 1: Cinematic Rendering. Left: Original computed tomography (CT) data; Right: Cinematic 

rendering of the same dataset. Data courtesy of Israelitisches Krankenhaus, Hamburg, Germany. 

 

In traditional volume ray casting, only emission and absorption of radiant energy along a straight ray is 

considered. Radiant energy 𝑞𝑒 is emitted at each point 𝑥′ along the ray up to a maximum distance D.  

 

The emitted radiant energy at each point is absorbed according to the Beer-Lambert law along the ray to 

the observer location with absorption coefficients 𝜎𝑎. 

Single scattering is usually modelled in traditional volume rendering using a surface shading model that 

considers local gradient information of the volume data (local illumination). While this integral can be 

easily solved numerically using a Riemann integral, the method neglects complex light paths with multiple 

scattering events and extinction of light (global illumination). 

In contrast, the Monte Carlo path tracing integration method solves the following multi-dimensional and 

non-continuous rendering equation: 

𝐿(𝑥,𝝎) = ∫ 𝑒−𝜏(𝑥,𝑥
′)𝑞𝑒

𝐷

0

(𝑥′)𝑑𝑥′ 

𝜏(𝑥, 𝑥′) = ∫ 𝜎𝑎(𝑡)𝑑𝑡
𝑥′

𝑥

 

(1) 

(2) 
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determines the radiant flux (radiance) L at distance x received from the direction 𝝎 along a ray. We have 

to integrate the radiance scattered into that direction from all possible directions 𝝎′ at all points along the 

ray up to a maximum distance D. The optical properties of a relevant tissue are defined using the phase 

function  𝑝(𝝎,𝝎′), which describes the fraction of light travelling along a direction 𝝎′ being scattering 

into the direction 𝝎. 𝐿𝑖(𝑥
′, 𝝎′) is the radiance arriving a distance 𝑥′ from direction 𝝎′. In practice, we 

model scattering in different tissue types using a Henyey-Greenstein phase function and compute 

shading of implicit surfaces using a BRDF (bidirectional reflectance distribution function). 

Radiance scattering into the direction 𝝎 is also absorbed and scattered out of the direction 𝝎. This is 

modelled using the optical depth 𝜏, with extinction coefficient 𝜎𝑡 = 𝜎𝑠 + 𝜎𝑎, defined as the sum of 

scattering (𝜎𝑠) and absorption (𝜎𝑎) coefficients: 

Note that, in contrast to out-scattering, absorption and in-scattering, emission was omitted in the 

rendering equation for simplicity. Since the rendering equation cannot be computed analytically, solving 

the integral numerically would involve sampling the function at many distances, each with many 

directions. Additionally, 𝐿𝑖 must be computed with the same rendering equation to allow multiple scatter 

events. Since this would be computationally too complex, the Monte Carlo method allows us to compute 

the radiance at random positions along the ray with light being in-scattered from random directions. By 

averaging many of such Monte Carlo samples into a single image we can progressively generate a 

smooth final result. By means of multiple sampling, the convergence of the method can be accelerated 

considerably.  

The medical data is illuminated using image-based lighting by high-dynamic range lighting environments, 

which can either be captured photographically or generated synthetically. Photographically captured 

lighting leads to a very natural appearance of the data when compared to images created using the 

traditional ray casting method. Such natural lighting in combination with the accurate simulation of photon 

scattering and absorption, leads to photorealistic images (see Figure 1) that resemble many shading 

effects that can be observed in nature, such as soft shadows, ambient occlusion, volumetric scattering 

and subsurface photon interaction. By modelling a virtual camera with variable aperture, focal length and 

exposure, additional effects such as depth-of-field and motion blur can be produced. Motion blur allows 

movies generated using our key frame animation engine to be smoother during fast camera movements 

while, similar to photography, depth-of-field effects allow to focus the attention of a viewer on a particular 

structures. 

Beyond photorealism the algorithm also permits to visualize invisible or hidden processes such as the 

propagation of electrical activation on the heart surface or metabolic processes in the body. Such 

hyper-realistic images are created by modelling visible light photon emission from voxels affected by 

electrical activation, increased metabolism indicated by Positron Emission Tomography (PET) or the 

detection of chemical compounds such as monosodium urate from a dual-energy CT scan (Figure 2). 

𝐿(𝑥,𝝎) = ∫ 𝑒−𝜏(𝑥,𝑥
′)𝜎𝑆

𝐷

0

(𝑥′) [∫ 𝑝(𝝎,𝝎′)𝐿𝑖(𝑥
′, 𝝎′)𝑑𝝎′

Ω4𝜋

] 𝑑𝑥′ 

𝜏(𝑥, 𝑥′) = ∫ 𝜎𝑡(𝑡)𝑑𝑡
𝑥′

𝑥

 

(3) 

(4) 
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Figure 2: Gout visualization. Modelling photon emission from urate detection by a dual-energy CT 

scan. 

The combination of different imaging modalities in a single picture, such as PET, MR and CT as well as 

simulated and computed data provides important flexibility to show the spatial relation of anatomical 

structures and functional data (see Figure 3).  

 

Figure 3: Human brain visualization. Left: Cinematic Rendering of a Magnetic Resonance (MR) 

image of the brain acquired with a 7T scanner. Data courtesy of Max Planck Institute, Leipzig, 

Germany. Right: Cinematic Rendering of three anatomical MR slices, functional MR Imaging 

(fMRI), and fiber data computed from Diffusion Tensor Imaging (DTI) of the brain. The activation of 

the speech center captured by fMRI is modelled using light emission and results in the yellow 

glowing lighting effect on the anatomy. 

Another important application of Cinematic Rendering is the visualization of dynamic processes from 4D 

CT or MR scans in combination with time-dependent data from simulations. All such data sources can be 

combined frame-by-frame and played using an animation engine to create photorealistic movies which 

allow conveying an effective clinical message to the target audience. 

While diagnostics will certainly still rely on traditional planar reconstruction based visualization methods, 

we have strong indications that special diagnostic applications might benefit from the flexibility and 

expressiveness of the new Cinematic Rendering technology. For instance, a robust demand for such 

visualization methods can be seen for surgery planning and intraoperative imaging, where a good spatial 

understanding of the anatomy and processes in the human body is required (Figure 4). 
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Figure 4: Polytrauma visualization. Cinematic Rendering of a polytrauma patient with multiple 

spinal and costal fractures. CT image data courtesy of Vancouver General Hospital, Canada. 

Furthermore, the use of hyper-realistic imaging for anatomical education of medical students as well as 

the general public is obvious. And finally, such images are ideal for the efficient communication of 

findings, diagnoses and surgery results, either among medical professionals or to patients, potentially 

increasing trust in clinical decisions and procedures. 

2. Artificial Intelligence and Image Understanding 
 

Handling the complexity of medical images involves understanding thousands of anatomical classes and 

concepts, while numerous relationships are necessary to symbolically represent the phenotypic structure 

of the human body [FMA, 2012]. There are multiple dimensions along which this information can be 

structured, for example one can look at the human anatomy from a regional point of view (limbs, head), or 

constitutional point of view (lymphatic duct, skin) or system (nervous, cardiovascular, musculoskeletal). 

Such ontology-based or symbolic representation is a form that is understandable by humans and it is also 

navigable, parseable and interpretable by machine-based systems. 

Fast and robust anatomical concept extraction is a fundamental task in medical image analysis that 

supports the entire workflow from diagnosis, patient stratification, therapy planning, intervention and 

follow-up. Current state-of-the art solutions are based on machine learning, being enabled by the 

availability of large annotated medical databases and the increased computational capabilities [Zheng 

and Comaniciu, 2014]. Typical methods use example images of the anatomy of interest to learn a 

classifier that will be able to discriminate between inputs that contain the target anatomy or something 

else. Such classifiers can be used to automatically label images, detect landmarks or segment the target 

object (see Figure 5).  

For example, in the context of object detection, the classifier is scanned over all possible values of the 

parameter space (say translation 𝑇, rotation 𝑅 and scale 𝑆) to find the high probability regions that will 

correspond to object location. This is done by using a classifier that will approximate the probability 

𝑝(𝑇, 𝑅, 𝑆|𝐼) for an image 𝐼, where the classifier is trained with object image features for one class and non-

object image features for the other class. At runtime the object is determined by regions of the parameter 

space < �̂�, �̂�, �̂� > with high probability: argmax𝑇,𝑅,𝑆 𝑝( 𝑇, 𝑅, 𝑆|𝐼) = < �̂�, �̂�, �̂� >. 
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Figure 5: Identifying and segmenting anatomical structures in a whole body CT scan (only partial 

views are shown). Tens of anatomical landmarks are being identified and multiple organs such as 

heart, lungs, liver, kidneys, spleen, prostate and bladder are segmented and quantified [Seifert 

2009] 

In the past years, we have developed technologies such as Marginal Space Learning (MSL) [Zheng and 

Comaniciu, 2014] for automated and efficient scanning of medical images. The MSL method consists in 

learning image-based classifiers in high probability marginal spaces of the object parameterization. A set 

of classifiers are trained in stages: first in the translation hypotheses space Ω𝑇(𝐼), where I is the image, 

next the augmented translation-orientation hypotheses space Ω𝑇,𝑅(𝐼) and finally in the translation-

orientation-scale hypotheses space Ω𝑇,𝑅,𝑆(𝐼). The spaces are constructed by augmenting the high 

probability hypotheses with all the possible discrete values of the next parameter space such as: 

argmax𝑇 𝑝(Ω𝑇|𝐼) = Ω�̂�   
𝐴𝑢𝑔𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠
→                          Ω�̂�,𝑅 . 

argmax𝑇,𝑅 𝑝(Ω�̂�,𝑅|𝐼) = Ω�̂�,�̂�     
𝐴𝑢𝑔𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑠𝑐𝑎𝑙𝑒𝑠
→                       Ω�̂�,�̂�,𝑆 . 

argmax𝑇,𝑅,𝑆 𝑝(Ω�̂�,�̂�,𝑆|𝐼) = Ω�̂�,�̂�,�̂�. 

The MSL technique is generic and can be extended to any type of parameterized spaces. We used MSL 

to automatically determine hundreds of landmarks, segment, track and quantify all main organs, delineate 

and index the vascular tree, brain structures and the skeleton. 

Recent advances in machine learning and artificial intelligence have created end-to-end learning 

architectures where all stages of the processing are jointly optimized. For example, representation 

learning with Deep Neural Networks (DNN) enables automatic extraction of representative image features 

without the need of feature engineering [Zheng 2015]. DNN allow learning complex patterns from very 

large heterogeneous image databases. We have recently introduced Marginal Space Deep Learning 

(MSDL) [Ghesu 2016a] that combines the strength of automated feature design of DNN with efficient 

learning in marginal spaces. In MSDL (Figure 6) the classifier is trained directly on parameterized image 

patches and used to estimate the probability distribution: ℛ(Ω(𝐼); 𝑤, 𝑏) ≈ 𝑝(Ω(𝐼)|𝐼) where ℛ is a deep 

neural network response function parameterized by the weights 𝑤 and biases 𝑏 of each layer. In addition, 

more efficient scanning of DL networks is achieved through network approximation (sparsification) 

techniques by minimizing the residual ‖ℛ(Ω(𝐼); 𝑤, 𝑏) − ℛ(Ω(𝐼); 𝑤𝑠, 𝑏𝑠)‖, where ws and bs are the weight 

and bias of the approximated sparse network ℛ(Ω(𝐼); 𝑤𝑠, 𝑏𝑠). As a result, ℛ(Ω(𝐼);𝑤𝑠 , 𝑏𝑠) has much fewer 

(5) 
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parameters and/or access much less data from the image making possible scanning for parameterized 

objects in 3D or 4D images. With MSDL, we have shown significant performance improvements in terms 

of both accuracy and speed on aortic valve detection in volumetric ultrasound and landmark detection in 

CT scans [Ghesu 2016a]. 

  

Figure 6: Marginal Space Deep Learning. Left: Learning in increasingly dimensional spaces 

focused on high probability regions with deep neural sparse networks. Right: Example of aortic-

valve detection in volumetric ultrasound. 

With the goal to add more intelligence into image analysis, our recent work has focused on artificial 

intelligence agents that can be trained using Deep Reinforcement Learning (DRL) techniques to 

simultaneously model both the object appearance and the object search strategy as a unified behavior 

[Ghesu 2016b]. The idea is to train an agent that can navigate within an image to find an anatomy of 

interest. In other words, the agent learns automatically optimal paths that converge to the target object, 

thus eliminating the need for exhaustive search [Ghesu 2016b].  

A typical Reinforcement Learning (RL) technique is modeled as a Markov Decision Process (MDP) 

defined on the tuple (𝒮, 𝒜, Tr, r, ), where 𝒮 represents a finite set of agent states, 𝒜 represents a finite 

set of actions that the agent can perform to interact with the environment, Tr: 𝒮 x 𝒜 x 𝒮 → [0,1] is a 

stochastic transition function between two states by performing a specific action, r: 𝒮 x 𝒜 x 𝒮 → ℝ is the 

scalar reward expected after a state transition and 𝛾 is a future rewards discount factor. One target in RL 

is to find an optimal of the action-value function 𝑄∗(𝑠, 𝑎): 𝒮 x 𝒜 → ℝ that corresponds to the maximum 

expected future rewards when performing action 𝑎 in state 𝑠: 𝑄∗(𝑠, 𝑎) = max𝜋 𝐸[𝑟𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] where 

𝜋 represent an action policy that determines the behavior of the agent. For object detection, such an 

agent can be trained by having 𝒮 as the current estimates of the object parameters given the image (e.g. 

spatial coordinates), 𝒜 the discrete steps of parameter changes and a reward system that is related to 

how close the agent gets to the target by performing the actions. Given the model definition, a DNN can 

be trained to approximate the optimal action-value function 𝑄∗ directly from the image values 

parameterized by the current state or object parameters. The optimal action-value function implicitly 

defines the optimal policy 𝜋∗ which guides the agent in finding the target object. This paradigm, where the 

agent simultaneously learns an object model and how to use the model, can be extended to a wide 

variety of image parsing actions (Figure 7). 
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Figure 7: Artificial agent for landmark detection. Left: Interaction of an artificial agent with the 

environment for detecting anatomical landmarks: Current state is defined by the image window 

and the agent performs the optimal action according to the learned behavior, which results in a 

new state and reward feedback. Right: 2D and 3D paths for detecting anatomical landmarks (in 

blue: starting point of the agent, red: target). 

Combining these types of learning techniques and classifiers with ontology based representation allows 

for semantic navigation of all the available patient data [Seifert 2011]. In particular, expanding end-to-end 

learning systems to include medical knowledge with powerful learning-based representation and 

reasoning systems will allow building hierarchical representations dynamically based on the current task. 

This will facilitate comprehensive automated analysis and reporting based on integrated imaging and non-

imaging information, past reports and embedded medical knowledge. For instance, these methods will 

also enable integrated analysis of patient history with support for semantic search and case comparison 

by finding similar cases and treatments with related clinical knowledge and guidelines. Finally, the method 

facilitates knowledge sharing and population analytics. Such information empowers the radiologist 

towards increased efficiency and reduced uncertainty. 

3. Support for Minimally-Invasive Procedures 
 

Progress in medical imaging technologies and image analysis are making increasingly complex minimally 

invasive procedures possible. Techniques like heart valve repair or replacement can now be performed 

percutaneously, a relevant example being Transcatheter Aortic Valve Replacement (TAVR). Effective 

execution of minimally invasive procedures strongly relies on medical imaging.  

First, the devices need to be selected to fit patient’s anatomy. To that end, quantitative imaging is used to 

accurately measure the anatomy under consideration. For instance, the size of TAVR devices is 

determined from the dimensions of the aortic root. This is usually performed on CT data, but for patients 

suffering from kidney failure, novel, full-volume, real-time 3D TEE (trans-esophageal echocardiography) 

now enables the quantification of heart valves and blood flow without contrast agent. Fully exploiting this 

new imaging modality, we recently developed an advanced machine learning technology to estimate a 

personalized model of the heart valves (Figure 8). In brief, the algorithm, based on Marginal Space 

Learning, first detects the region of interest (ROI) where the valve is located. Within that ROI, key 

anatomical landmarks are detected and a parameterized triangulated surface is fitted to model the 

patient’s valve. The detectors of each stage of the algorithm are trained from a large database of 

annotated images. The method is generic, and has been applied to other imaging modalities, like CT 

[Ionasec 2010]. 
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Figure 8: Real-time 3D TEE and 3D Doppler. New TEE imaging allows full-volume, real-time 

visualization of cardiac anatomy (B-mode) and blood flow (color Doppler). For the first time, the 

clinician can visualize jointly the valve anatomy and potential insufficiency. 

Second, the operator needs image guidance to effectively deliver the device. Angiography is the modality 

of choice in the hybrid OR as it allows the visualization of catheters in real-time. However, soft tissues are 

hard to distinguish in these images. Advanced navigation concepts based on augmented reality have thus 

been investigated to enhance the angiography images with overlay of the targeted organ. 3D 

preoperative images are registered to the 2D scene (often facilitated by the injection of contrast) using 

pattern matching, multi-organ registration or multi-view reconstruction. Supported by imaging 

technologies, new minimally invasive procedures are emerging, like the recent transcatheter mitral valve 

replacement repairs techniques, which in turns require unprecedented levels of registration accuracy and 

robustness to cope with moving devices and image artifacts. 

The future will likely go towards real-time 3D guidance, as hybrid solutions combining angiography and 

3D TEE are becoming available. Through TEE probe pose estimation in the 3D space from angiography 

images, real-time ultrasound images can be automatically registered to the angiography space. User-

defined landmarks, anatomical models or the ultrasound images directly can then be overlaid to the 

angiography image to guide the cardiologist towards the target (Figure 9). To reach the accuracy and 

speed requirements for real-time intervention guidance, we recently introduced a 3D TEE probe pose 

estimation based on deep learning [Miao 2016], yielding high accuracy at a frame-rate of 15fps.  
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Figure 9: 3D TEE – Angiography fusion. Left: Real-time overlay on angiography image of the valve 

model estimated from 3D TEE image acquired at the same time (see Figure 8); Right: Real-time 

overlay of the 3D Doppler generated by the 3D TEE probe. 

4. Decision Support through Patient Specific Computational Models 
 

While increasingly robust and accurate quantification methods are being available, new solutions based 

on computational models of human physiology are being investigated to extract more physiological 

information from the images and facilitate patient-specific planning through predictive algorithms.  

A first example is Fractional Flow Reserve (FFR), the current gold standard parameter that characterizes 

coronary stenosis severity. In standard of care, FFR is measured invasively using pressure catheters. 

During the past years, we have developed non-invasive, image-based FFR methods (cFFRCFD) based on 

CT images and reduced-order computational fluid dynamics (CFD) models, making it possible to calculate 

FFR at the bed-side [Sharma 2012] with excellent performance. Furthermore, with the advances in 

machine learning, we have demonstrated that it is now possible to calculate FFR non-invasively in 

seconds on a standard workstation. Based on deep learning, the new approach consists in learning the 

CFD model directly from anatomical features [Itu 2016]. First, a database of 12,000 coronary geometries 

with more than 1,000,000 coronary segments was computed, with randomly positioned stenosis. Second, 

a reduced-order CFD model was used on all 12,000 geometries to calculate the resulting FFR. Both heart 

and systemic circulation models were included for proper boundary conditions. Third, a deep-network 

(cFFRML) was trained to predict the FFR value given geometric features computed upstream, at and 

downstream the stenosis. Tested on 127 unseen lesions from 87 patients, cFFRML could be calculated in 

2.4 seconds in average, with a correlation coefficient of 0.9994 (p<0.001) and no bias with respect to 

cFFRCFD. Compared to the invasive FFR value, cFFRML sensitivity was 81.6%, specificity 83.9% and 

accuracy 83.2%, achieving similar performance as other non-invasive FFR methods (Figure 10).  
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Figure 10. Testing deep learning based FFR. Left: cFFRCFD computed using reduced order CFD 
model; Right: cFFRML values. The deep learning approach could capture the FFR values 

accurately, while reducing the calculations to seconds. 

Similarly, we have developed machine learning techniques to estimate a patient-specific model of cardiac 

electrophysiology (EP) for cardiac resynchronization therapy (CRT) planning [Zettinig 2014, Kayvanpour 

2015]. In particular, in [Neumann 2016], we introduce an intelligent agent trained following RL concepts to 

to estimate cardiac electrical conductivities directly from 12-lead ECG. Following the notations introduced 

in Section 2, we defined the RL Markov Decision Process (𝒮, 𝒜, Tr, r, ) as follows. The states s  𝒮 are 

discretized objective values (absolute difference between target and current QRS duration and electrical 

axis). The actions a  𝒜 are to increment and decrement the left endocardial, right endocardial, and 

myocardial conduction velocity (six actions in total). In a first stage, the agent learns through random 

exploratory simulations the state transition probabilities Tr, which encode how the model behaves when 

the electrical conductivities changes. Given this knowledge, the best personalization strategy is learned 

through RL. The reward r is defined such that at every step t, starting from a state st, the agent receives a 

negative reward for all actions at  𝒜 except for the one at* that leads it to the parameters for which the 

EP model best matches the observed ECG. Finally, the parameter  was set to 0.9 or higher to favor long-

term rewards (and thus global optimum). Tested on 83 consecutive patients, the artificial agent could 

achieve similar goodness of fit as a hand-crafted, state-of-the-art optimization method [Neumann 2016], 

while being 2.5 times faster. 

Such personalized models can be used for patient-specific therapy planning. For instance, a user could 

use the model to virtually test different CRT pacing protocols [Kayvanpour 2015]. She would virtually 

place the CRT leads, program the virtual device, and update the model to visualize the impact of the CRT 

pacing on cardiac function (Figure 11), thus increasing the confidence on the therapy and the best 

strategy to apply to the patient under consideration. 
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Figure 11. Personalized CRT planning. Effect of ventricular pacing on cardiac electrophysiology 
as calculated by an individualized computational model of heart function 

5. Conclusion 
 

In this paper we discussed recent technologies that will most likely make an important impact on medical 

imaging. Techniques like Cinematic Rendering will help increasing the sensitivity and specificity of 

images, by enhancing the pathology conspicuity. Advanced image understanding will streamline the 

image measurements and image interpretation, by increasing the speed of reading, while introducing 

more reproducibility in the system. The new heart valve technologies, based for instance on 3D 

TEE/Doppler, will help a more precise characterization of the patient’s anatomy in the OR, while the 3D 

TEE – Angiography Fusion will support better guidance. Finally, patient specific computational modeling 

opens the door to a new generation of decision support systems that help clinical decision making not 

only by integrating and analyzing data from different sources, but also by modeling both the anatomy and 

function of the patient, thus exhibiting enhanced predictive power.  
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