
1

Sequential Kernel Density Approximation and
Its Application to Real-Time Visual Tracking

Bohyung Han, Member, IEEE Dorin Comaniciu, Senior Member, IEEE Ying Zhu, Member, IEEE
and Larry S. Davis, Fellow, IEEE

Abstract— Visual features are commonly modeled with proba-
bility density functions in computer vision problems, but current
methods such as a mixture of Gaussians and kernel density
estimation suffer from either the lack of flexibility, by fixing
or limiting the number of Gaussian components in the mixture,
or large memory requirement, by maintaining a non-parametric
representation of the density. These problems are aggravated in
real-time computer vision applications since density functions
are required to be updated as new data becomes available. We
present a novel kernel density approximation technique based
on the mean-shift mode finding algorithm, and describe an
efficient method to sequentially propagate the density modes
over time. While the proposed density representation is memory
efficient, which is typical for mixture densities, it inherits the
flexibility of non-parametric methods by allowing the number of
components to be variable. The accuracy and compactness of the
sequential kernel density approximation technique is illustrated
by both simulations and experiments. Sequential kernel density
approximation is applied to on-line target appearance modeling
for visual tracking, and its performance is demonstrated on a
variety of videos.

Index Terms— kernel density approximation, mean-shift, mode
propagation, on-line target appearance modeling, object tracking,
real-time computer vision

I. INTRODUCTION

DENSITY estimation is broadly used to statistically model
visual features in computer vision applications. The un-

derlying probability density of the features can be described by
a parametric (e.g., Gaussian or mixture of Gaussians) or non-
parametric (e.g., histogram or kernel density-based) representa-
tion. However, these representations create a trade-off between the
flexibility of the model and its data summarization property. In
other words, parametric methods are simple and efficient, but have
difficulty representing multi-modal density functions effectively.
Also, they usually require a pre-defined parameter for the number
of components, so it is hard to use parametric density functions in
real-time applications, especially when there are a large number
of modes in the underlying density or the number of modes is
frequently changing. On the other hand, non-parametric models
are very flexible and can accommodate complex densities, but
require a large amount of memory for their implementation.

We present a new method to approximate a multi-modal density
function with a mixture of Gaussians — Kernel Density Approx-
imation (KDA), which was originally introduced in [15], [16].
Kernel density approximation is a flexible multi-modal density
representation method since every parameter for the Gaussian
mixture is determined automatically. This technique is applied to
a real-time computer vision problem — on-line target appearance
modeling for object tracking.

A. Related Work

A Gaussian distribution, which is the simplest density-based
modeling method, is frequently used for various computer vision
problems, such as background subtraction and object tracking
[14], [17], [24], [32]. However, this representation cannot handle
multi-modal density functions, so the accuracy of modeling is
severely limited.

Mixture models based on multiple components have been uti-
lized in numerous applications. In [22], a target appearance model
based on color is constructed by a mixture of Gaussians which
is replaced in each frame, and the same density representation is
employed for optical flow estimation by Jepson and Black [18]. A
recursive update of a Gaussian mixture model is proposed in [20],
[29] for background modeling, but these methods are not flexible
enough to model complex density functions since they typically
require the maximum number of components in the mixture in
advance. For object tracking, adaptive target appearance modeling
by a 3-component mixture is described in [19], where the mixture
density function is updated over time by an on-line EM algorithm.
However, it is generally difficult to add or remove components
in the existing adaptive mixture models in a principled way.
Therefore, most real-time applications rely on models with a fixed
number of mixtures [18], [19], [22] or apply ad-hoc strategies
to adapt the number of mixtures in time [20], [27], [29], where
the addition and deletion of a Gaussian component is highly
dependent on the pre-defined threshold values. There is a more
elaborated method to determine the number of components using
a layer model, but it also requires the maximum number of layers
as a parameter and the decision regarding the number of layers
is based on an additional complex process [30].

Kernel density estimation [12] is one of the most popular non-
parametric techniques to model densities, because it provides a
flexible framework to represent multi-modal densities. However,
its very high memory requirements and computational complexity
inhibit the use of this method in real-time applications, even
though there have been several attempts to reduce the compu-
tational cost [11], [33].

B. Our Approach

In contrast to previous approaches, we present a new strategy
for multi-modal density approximation and its on-line learning
that relies on modeling and propagation of density modes. The
modes (local maxima) of a density function represent regions with
higher local probability; hence, their preservation is important
to maintain a low density approximation error. We represent the
density as a weighted sum of Gaussians, whose number, weights,
means and covariances are automatically determined. The mode
locations are detected by a mode finding algorithm based on
the variable-bandwidth mean-shift, and Gaussian components are

Digital Object Indentifier 10.1109/TPAMI.2007.70771 0162-8828/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

created whose means are given by mode locations. Also, the
covariance of each Gaussian is derived by fitting the curvature
around its mode location. For sequential adaptation, the density
function can be updated at each time step to include new data
into the model. Starting from the previous components of the
density and the new component, we use the mean-shift algorithm
to detect new modes. This procedure is performed in linear time,
which we prove by amortized analysis [10]. Using this mode-
based representation, the memory requirements are low, similar
to all methods that use mixture densities, but we have a principled
way to create and delete Gaussian components at each time step.

The proposed algorithm is able to preserve mode locations
in underlying density functions and approximate well-separated
Gaussian mixtures very accurately. It is not a general density
approximation method, but is tuned for the types of densities
often encountered in computer vision applications. In on-line
computer vision applications, all the previous data is typically not
available at processing time, and the preservation and propagation
of major density modes is more important than an accurate
approximation of the entire density function. Our approach is
particularly appropriate for real-time computer vision applications
such as on-line target appearance modeling for visual tracking.

The paper is organized as follows. Section II discusses kernel
density approximation by mode detection based on the variable-
bandwidth mean-shift. Sequential kernel density approximation
using mode propagation is explained in section III. How this
technique can be applied to on-line target appearance modeling
for object tracking is described in section IV.

II. KERNEL DENSITY APPROXIMATION

This section explains how we approximate a density function
with a mixture of Gaussians. The mean-shift mode finding algo-
rithm [7]–[9] is presented, and a covariance estimation technique
based on curvature fitting is also discussed. After that, the
accuracy of the kernel density approximation is illustrated through
simulation.

A. Mean-Shift Mode Finding

Suppose that we are given a density function by weighted
kernel density estimation based on a Gaussian kernel. Denote by
xi (i = 1, . . . , n) a set of means of Gaussians in Rd and by Pi a
symmetric positive definite d×d covariance matrix associated with
the corresponding Gaussian. Let each Gaussian have a weight κi

with
∑n

i=1 κi = 1. The sample point density estimator computed
at point x is given by

f̂(x) =
1

(2π)d/2

n∑
i=1

κi

| Pi |1/2
exp

(
−

1

2
D

2 (x,xi,Pi)
)

(1)

where
D

2 (x,xi,Pi) ≡ (x − xi)
�
P

−1
i (x − xi) (2)

is the Mahalanobis distance from x to xi. The density at x is
obtained as the average of Gaussian densities centered at each
data point xi and having the covariance Pi.

In the underlying density function (1), the variable-bandwidth
mean-shift vector at location x is defined by

m(x) =

(
n∑

i=1

ωi(x)P−1
i

)−1 (
n∑

i=1

ωi(x)P−1
i xi

)
− x (3)

where the weights

ωi(x) =
κi | Pi |

−1/2 exp
(
− 1

2D2 (x,xi, Pi)
)

∑n
i=1 κi | Pi |−1/2 exp

(
− 1

2D2 (x,xi, Pi)
) (4)

satisfy
∑n

i=1 ωi(x) = 1.
It can be shown that by iteratively computing the mean-shift

vector (3) and translating the location x by m(x), a mode seeking
algorithm is obtained which converges to a stationary point of the
density in equation (1) [8]. There are three kinds of stationary
points in the density function: local maxima, local minima and
saddle points. We are interested in finding mode locations (local
maxima) to simplify the original density function; a formal check
for the maxima involves the computation of the Hessian matrix

Ĥ(x) =
1

(2π)d/2

n∑
i=1

κi

| Pi|1/2
exp

(
−

1

2
D

2 (x,xi, Pi)
)
×

P
−1
i

(
(xi − x

c)(xi − x
c)� − Pi

)
P

−1
i (5)

which should be negative definite (having all eigenvalues nega-
tive) at the mode location. If this condition is satisfied, all the
sample points that converge to that location should be merged
with a single Gaussian centered at the convergence location. Oth-
erwise, they should be left unchanged since density approximation
would create too high an error.

Figure 1 illustrates the convergence to the local maximum of
each sample by the mode-finding algorithm. In each figure, the
contour of a 2D density function constructed by kernel density
estimation with 100 Gaussian kernels — all weights are equal in
this example — is presented, and a white circle in Figure 1(a)
indicates the initial location of each sample. As illustrated in the
following figures, each sample converges to an associated mode
and four modes are finally detected at the 14th time step. The
mean-shift procedure is terminated when the size of the mean-
shift vector is less than ε — a negligibly small number.

(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 14

Fig. 1. Convergence by mode-finding algorithm

For density approximation, a Gaussian component is assigned
to each detected mode, where the mean of the Gaussian is equal
to the converged mode location and the weight of each Gaussian

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

is equal to the sum of the kernel weights of the data points that
converge to the mode.

B. Covariance Estimation

The mean and weight of each Gaussian for the approximated
density function are determined by mean-shift, and the covariance
for each Gaussian need to be estimated. The covariance matrix
associated with each mode P̃j is computed by curvature fitting
around the mode location using the Hessian matrix.

Suppose that the approximate density has m unique Gaussian
component at x̃j (j = 1, . . . , m) with associated weights κ̃j after
the mode finding procedure. The Hessian matrix Ĥ(x̃j) at a mode
x̃j of the original density function in equation (1) is given in
equation (5). Also, the Hessian matrix at the mean of a Gaussian
distribution centered at x̃j with weight κ̃j and covariance P̃j is
given by

H(x̃j) = −
κ̃j

(2π)d/2 | P̃j |1/2
P̃

−1
j . (6)

By equalizing these two expressions for the Hessian matrices
at the mode in the original density and the single Gaussian
distribution, we solve for the estimated covariance matrix P̃j .
Specifically, suppose that P̃j is decomposed by Singular Value
Decomposition (SVD) as P̃j = UΛU

�

and that the Hessian
matrix at x̃j in equation (5) is represented with a similar form,
Ĥ(x̃j) = VΓV

�

. Then, the following equation is obtained by
the equalization of two Hessian matrices.

VΓV
�

= −
κ̃j

(2π)d/2 | Λ |1/2
U

�

Λ
−1

U (7)

By assuming U = V
�

and from equation (7), we can compute
| −Γ | which is given by

| −Γ |= −
κ̃d

j

(2π)d
2/2

| Λ |−
d+2

2 , (8)

and Λ is derived from equation (7) and (8) as follows.

Λ = −
κ̃

2
d+2

j

| 2π(−Γ−1) |
1

d+2

Γ
−1 (9)

Therefore, the estimated covariance matrix is finally given by

P̃j = −
κ̃

2
d+2

j

| 2π(−Ĥ−1
j (x̃j)) |

1
d+2

Ĥ
−1
j (x̃j), (10)

and the approximated density is

f̃(x) =
1

(2π)d/2

m∑
i=1

κ̃i

| P̃i |1/2
exp

(
−

1

2
D

2 (
x, x̃i, P̃i

))
. (11)

where P̃i is given by equation (10) and m(� n) is the number
of detected modes.

C. Performance of Kernel Density Approximation

We next describe a set of simulations for testing the accuracy
of kernel density approximation. We consider situations in which
the underlying density is a mixture of Gaussian with an arbitrary
number of components. The density function is reconstructed by
by kernel density estimation (KDE), EM algorithm and our kernel
density approximation (KDA), and then the Mean Integrated

Squared Error (MISE) between the groundtruth and estimated
densities are compared.

In our experiments, three different density functions are tested
as specified in Table I and Figure 2; case 1 and 2 are relatively
well-separated Gaussian mixtures, and the density function in
case 3 involves non-symmetric modes and heavy-tailed regions.
Note that a Gaussian distribution is denoted by N(·), which
involves three parameters weight, mean, and covariance. The
same bandwidth is used in kernel density estimation and kernel
density approximation for each kernel, and the correct number of
Gaussian components is given to the EM algorithm. The average
MISE is computed based on 50 realizations for reliability.

As shown in Table I, kernel density approximation has com-
parable error with both kernel density estimation and EM. Since
kernel density approximation assigns a Gaussian kernel to each
detected mode and the covariance is estimated based on the
curvature around each mode, the accuracy degrades in areas
far from the mode locations. However, the density functions
simulated by kernel density approximation are represented with
only a small number of Gaussian components without any pre-
defined parameters, and the error is still comparable to kernel
density estimation and EM. On the other hand, the EM algorithm
is powerful when the number of Gaussian components is known,
but its performance is severely degraded by an incorrect setting
of the number of components and/or inappropriate parameter
initialization. Some examples of inaccurate density estimation
by the EM algorithm are illustrated in Figure 3, where the
reconstructed density functions incur high error mainly because
of bad initialization of parameters. As seen in the figure, this
problem is aggravated when the number of Gaussian components
is wrong, as in Figure 3(a) and (c).

TABLE I

ERROR OF KDE AND KDA TO THE GROUNDTRUTH

MISE (×10−5) case 1 case 2 case 3
Ekde 2.2691 0.9387 0.9765
Ekda 2.6024 2.1003 3.7344
Eem 6.0664 2.0302 2.4773

- case 1: N(0.15, 12, 5), N(0.1, 50, 4), N(0.35, 70, 8), N(0.25, 90, 16),
N(0.15, 119, 32)

- case 2: N(0.15, 25, 10), N(0.1, 37, 8), N(0.15, 65, 16), N(0.25, 77, 9),
N(0.15, 91, 30), N(0.2, 154, 15)

- case 3: N(0.28, 100), N(0.25, 30, 100), N(0.15, 60, 64), N(0.2, 100, 256),
N(0.2, 145, 576)

A multi-dimensional example, which includes both well-
separated Gaussian components as well as non-Gaussian areas, is
shown in Figure 4; again, kernel density approximation results in
reasonably accurate estimations with a small number of Gaussian
components.

Kernel density approximation is a framework to estimate a
density function with a mixture of Gaussians. Even though kernel
density approximation provides accurate estimation with a small
number of Gaussians and all relevant parameters are determined
automatically, the approximation error is relatively high in areas
where density modes are non-symmetric and/or there are heavy-
tailed areas. This is because only a single Gaussian is assigned
to each detected mode and the covariance for each Gaussian
is estimated based only on the curvature around the mode.
Kernel density approximation has one free parameter — kernel
bandwidth, as does kernel density estimation. Fortunately, there

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(a) Case 1

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b) Case 2

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(c) Case 3

Fig. 2. Comparison between KDE and KDA in 1D. (left) Original density function (middle) KDE (right) KDA For the approximation, 200 samples are
drawn from the original distribution

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(a) 4 components (b) 5 components (c) 6 components

Fig. 3. Examples of bad approximation by EM algorithm (case 3 in Table I)

are several approaches to determine the kernel bandwidth as
[1], [5]–[7] although no ideal solution for determining optimal
bandwidth is known yet.

III. SEQUENTIAL KERNEL DENSITY APPROXIMATION

In many real-time computer vision applications, all the data is
not initially available; instead, data is provided frame by frame.
Therefore, on-line density estimation is needed for real-time
processing. The procedure to update the density function is similar
to the on-line EM algorithm [19], [23], but our method determines
the number of Gaussian components in a more principled way at

each time step. In this section, we present a sequential version of
kernel density approximation.

A. Naive Quadratic Time Algorithm

Assume that at time t the underlying density is a mixture
of Gaussians having nt modes and that for each mode we
have allocated a Gaussian N(κi

t,x
i
t,P

i
t), i = 1, . . . , nt. For the

moment, select a learning rate α and assume that all incoming
data become part of the model. Let N(α,xnew

t+1 ,Pnew
t+1) be a new

measurement. With the integration of the new measurement, the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

0

20

40

60

0

20

40

60
0

0.002

0.004

0.006

0.008

0.01

0

20

40

60

0

20

40

60
0

0.002

0.004

0.006

0.008

0.01

0

20

40

60

0

20

40

60
0

0.002

0.004

0.006

0.008

0.01

(a) Original (b) KDE (b) KDA

Fig. 4. Comparison between KDE and KDA with 200 samples in 2D. (a) KDE (MISE = 1.6684 × 10
−6) (b) KDA (MISE = 3.0781 × 10

−6)

density at time t + 1 is initially written as

f̂t+1(x) =
(1 − α)

(2π)d/2

nt∑
i=1

κi
t

| Pi
t |

1/2
exp

(
−

1

2
D

2
(
xt,x

i
t,P

i
t

))

+
α

(2π)d/2 | Pnew

t+1 |1/2
exp

(
−

1

2
D

2 (
xt,x

new

t+1 ,P
new

t+1

))
(12)

Starting now from locations xnew
t+1 and xi

t with i = 1, . . . , nt, we
perform mean shift iterations and let x

newc

t+1 and x
ic

t , i = 1, . . . , nt

be the convergence locations. We select first the convergence
locations at which more than one xi

t or xnew
t+1 converged. Let y be

a point in this set and let xj , j = 1, . . . , m be the starting locations
for which the mean shift procedure converged to y. If the Hessian
Ĥ(y) = (∇∇

�)f̂t+1(y) is negative definite, we associate with
the mode y a Gaussian component by N(κy ,y,P(y)) where κy

is the sum of xj’s weights (j = 1, . . . , m) and the covariance
matrix P(y) is determined by the method in section II-B. At time
t+1 the Gaussian components located at xj , j = 1, . . . , m will be
substituted for by a new Gaussian N(κy ,y,P(y)). In other words,
those Gaussian components that converge to the same location
after adding a new Gaussian are replaced by a single Gaussian
component, so the number of components in the mixture does not
increase indefinitely through the sequential update of the density
function.

If the Hessian Ĥ(y) is not negative definite (i.e., the location y

is either a saddle point or a local minimum), all the components
associated with xj , j = 1, . . . , m are left unchanged to avoid
incurring too high an error.

For the convergence locations at which only one procedure
converged (except the convergence location for xnew

t+1), the weight,
mean and covariance of the associated Gaussian component are
also left unchanged.

B. Linear Time Algorithm for Sequential Approximation

The sequential kernel density approximation technique de-
scribed in the previous section takes O(n2

t) time in each step,
where nt is the number of modes at time step t. Now, we relax
the constraint that the number of Gaussian components is equal to
the number of modes in the density function, and improve the time
complexity to linear time. As a result, the number of Gaussian
components may be slightly more than the compact representation
introduced in section III-A, but the sequential kernel density
approximation is performed much faster asymptotically.

Recall equation (12). The previous algorithm runs the mean-
shift procedure for all of nt+1 components, and finds convergence

points for all of them. Then, it finds the mode associated with
the new data, and updates that mode.1 So, if we could efficiently
identify those modes that would merge with the new data, then
the execution time can be dramatically reduced. This technique
is explained next.

1) Algorithm Description: Given the nt + 1 modes in the
t + 1st step, we first search for the convergence point cnew of
xnew

t+1 in the density f̂t+1(x) of equation (12). Now, we have to
determine which other modes converge to cnew and should be
merged with xnew

t+1 . The candidates that converge to cnew are
determined by mean-shift, and this procedure is repeated until no
additional candidate converges to cnew . The first candidate mode
is the convergence point xi

t (i = 1, . . . , nt) of xnew
t+1 in the density

function f̂ ′
t+1(x) = f̂t+1(x) − N(α, xnew

t+1 ,Pnew
t+1). Note that all

the candidates are one of the components in the previous density
function f̂t(x). The mean-shift procedure is performed for xi

t in
f̂t+1(x), and we check if the convergence point of xi

t is equal to
cnew . If they are not equal, we conclude that there are no further
merges with xnew

t+1 and create a Gaussian for the merged mode;
otherwise, we check the next candidate which is determined by
finding the next convergence point of xnew

t+1 in the density function
f̂ ′
t+1(x) = f̂ ′

t+1(x) − N(κi
t,x

i
t,P

i
t).

The covariance matrix and the weight of the merged mode
should be also updated as described in section III-A. The for-
mal description of this algorithm is given in Algorithm 1. In
Algorithm 1, MeanShiftModeFinding is the function to detect the
convergence location by the mean-shift algorithm from a point
(the second argument) in the density (the first argument).

2) Algorithm Analysis: The time complexity of this algorithm
is O(nmax) on average by amortized analysis, where nmax is
the maximum number of modes in all time steps; a sketch of the
proof is as follows.

Suppose that each new data element has 5nmax + 1 credits,
which is defined as the reserved number of operations for the
Gaussian component corresponding to the new data. For the
search for the convergence point (line 3 in Algorithm 1), at
most nmax +1 operations are performed and the new component
consumes nmax + 1 credits since the function MeanShiftMod-
eFinding takes linear time. 2nmax credits are required for two
mean-shift iterations when the new component fails to merge (the
last iteration of while loop). Also, we need 2nmax operations

1Rarely, some merges which do not include the new data may happen. It
hardly affects the accuracy of the density functions, but leads to a difference
in the number of components between the quadratic and the linear time
algorithm.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Algorithm 1 Linear-time sequential kernel density approximation

1: S = {xnew
t+1 }, κ = α

2: f̂ ′
t+1(x) = f̂t+1(x)

3: cnew = MeanShiftModeF inding(f̂t+1(x),xnew
t+1)

4: f̂ ′
t+1(x) = f̂ ′

t+1(x) − N(α, xnew
t+1 ,Pnew

t+1)

5: while 1 do
6: xi

t = MeanShiftModeF inding(f̂ ′
t+1(x),xnew

t+1)

7: c = MeanShiftModeF inding(f̂t+1(x),xi
t)

8: if cnew �= c then
9: break

10: end if
11: S = S ∪ {xi

t}, κ = κ + κi
t

12: f̂ ′
t+1(x) = f̂ ′

t+1(x) − N(κi
t,x

i
t,P

i
t)

13: end while
14: merge all the modes in the set S and create N(κ, c,Pc) where

Pc is derived by the same method in equation (10)

(line 6 and 7) whenever the new component is merged with the
currently existing mode, but the existing mode is responsible for
this cost. So, the remaining 2nmax credits are supposed to be
used when another mode is merged with it later. After losing all
credits, the mode finally disappears.

For K time steps, K new Gaussian components are entered
and sequential kernel density approximation is performed. There-
fore, the number of operations for all K time steps is at most
O(Knmax), and the average time complexity in each time step
is O(nmax). The derived complexity is bounded by O(nmax), but
practically it is faster than this since the number of modes in each
time step is less than nmax in most cases. The number of modes
is slightly more than the previous quadratic time algorithm, but
the improvement of time complexity is the dominating factor for
the overall speed of algorithm.

C. Performance of Sequential Algorithm

The linear time sequential kernel density approximation algo-
rithm, which we will refer to as the fast approximation algorithm,
is a variant of the quadratic time algorithm. The performance of
the fast approximation algorithm was tested through simulation,
and compared with the quadratic time algorithm as well as a
sequential version of kernel density estimation.

Starting from the initial density function, a new data element
is incorporated at each step, and Mean Integrated Squared Error
(MISE) with sequential kernel density estimation is employed
as a basis of comparison. The weighted Gaussian mixture —
N(0.15, 80, 152), N(0.4, 122, 102), and N(0.45, 122, 1002) —
is used as the initial density function, and the new data is
sampled from another Gaussian mixture — N(0.2, 52, 102),
N(0.5, 100, 102), and N(0.15, 175, 102) — plus a uniform distri-
bution in [0, 255] with weight 0.15. In this experiment, we expect
the initial density function to morph to the new density function
from which data samples are drawn.

As seen in Figure 5, the fast approximation algorithm accu-
rately simulates the sequential kernel density estimation; the final
density function has three major modes which closely correspond
to the Gaussian centers in the sampling function. The simulated
density function using the quadratic time algorithm is very similar
to that of the fast approximation algorithm in most steps, so it
is not presented separately in this figure. Note that the sequential

kernel density estimation has more than 300 Gaussian components
at the 300th time step, but the fast approximation algorithm has
only a small number of modes.

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(i) Fast approximation algorithm

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(ii) Sequential kernel density estimation

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(i) Fast approximation algorithm

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(ii) Sequential kernel density estimation

(a) t = 1 (b) t = 60

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(i) Fast approximation algorithm

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(ii) Sequential kernel density estimation

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(i) Fast approximation algorithm

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(ii) Sequential kernel density estimation

(c) t = 120 (d) t = 180

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(i) Fast approximation algorithm

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(ii) Sequential kernel density estimation

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(i) Fast approximation algorithm

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(ii) Sequential kernel density estimation

(e) t = 240 (f) t = 300

Fig. 5. Simulation of fast approximation algorithm and comparison with
sequential kernel density estimation. (a)-(f) Fast sequential kernel density
approximation (top) vs. sequential kernel density estimation (bottom).

Figure 6 shows that the MISE of the fast approximation
algorithm is comparable to the quadratic time algorithm (and in
repeated experiments, the new algorithm is often better) while
the increase of the number of modes using the fast algorithm is
moderate.

We also compared the density propagation by on-line EM algo-
rithm [19], [23]. The initial density function is exactly the same,
and a Gaussian mixture density function with three components
is updated by the on-line EM algorithm at every time step. Note
that the density function from which samples are drawn also
has three components except uniform distribution component. As
demonstrated in Figure 7, the Gaussian with the largest variance
is not adapted well by new data, and significant error is observed
around major modes. In this example, the on-line version of EM
algorithm is not able to remove a component for the high variance
distribution, nor to create a new component that is represented in
the data.

The standard on-line EM algorithm does not update the number
of components in the mixture, so, according to our experiment,
the on-line EM algorithm is typically faster by two or three times
than sequential kernel density approximation depending on the
number of components in the mixture and the characteristics of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

0 50 100 150 200 250 300
0

2

4

6

8
x 10

−4

MISE by fast approximation algorithm

0 50 100 150 200 250 300
0

2

4

6

8
x 10

−4

MISE by quadratic approximation algorithm

0 50 100 150 200 250 300
0

5

10

15

Num. of components by fast approximation algorithm

0 50 100 150 200 250 300
0

5

10

15

Num. of components by quadratic approximation algorithm

(a) (b)

Fig. 6. Comparison of MISE and number of components in each step of
1D simulation between fast approximation algorithm (top) and quadratic time
algorithm (bottom). (a) MISE (b) Number of modes

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(i) On−line EM algorithm
0 50 100 150 200 250

0

0.01

0.02

0.03

0.04

(i) On−line EM algorithm

(a) t = 1 (b) t = 60

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(i) On−line EM algorithm
0 50 100 150 200 250

0

0.01

0.02

0.03

0.04

(i) On−line EM algorithm

(c) t = 120 (d) t = 180

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

(i) On−line EM algorithm
0 50 100 150 200 250

0

0.01

0.02

0.03

0.04

(i) On−line EM algorithm

(e) t = 240 (f) t = 300

Fig. 7. Simulation of on-line EM algorithm.

the underlying density function.2

Multi-dimensional simulations were also performed, and it is
observed that the major modes of density functions are preserved
well although there are relatively high errors in areas far from
these modes. Figures 8 and 9 present the simulation results, show-
ing the comparisons of MISE and number of modes, respectively.

To compare the speed of the linear and quadratic time al-
gorithms, the CPU time for the one-step sequential density
approximation procedure was measured for density functions
with different numbers of components. Since sequential density
estimation contains matrix operations, it is also worthwhile to
check the performance with respect to dimensionality. So, our
experiments are performed by varying the number of modes and
the dimensionality. We performed comparisons for two different
dimensionalities (2D and 6D), and the results are presented
in Figure 10. We observe that the running time of the fast
approximation algorithm is significantly less than the quadratic
time algorithm.

Finally, we performed 100-step sequential density estimations
in various dimensions, and computed the average CPU time and
MISE3. Figure 11 illustrates that the fast approximation algorithm
is faster and comparable in accuracy.

In the next section, we describe how to apply the sequential

2Unfortunately, one-to-one speed comparison is not straightforward due to
different update strategies for the number of components.

3The MISE is computed only at sample locations in this case to handle
high dimensional examples.

0
20

40
60

80
100

0

50

100
0

0.5

1

1.5

x 10
−3

0
20

40
60

80
100

0

50

100
0

0.5

1

1.5

x 10
−3

(a) t = 25

0
20

40
60

80
100

0

50

100
0

0.5

1

1.5

x 10
−3

0
20

40
60

80
100

0

50

100
0

0.5

1

1.5

x 10
−3

(b) t = 90

Fig. 8. Simulation of fast sequential kernel density approximation (left) and
comparison with sequential kernel density estimation (right)

0 20 40 60 80 100
0

0.5

1

1.5

2
x 10

−8

MISE by fast approximation algorithm

0 20 40 60 80 100
0

0.5

1

1.5

2
x 10

−8

MISE by quadratic approximation algorithm

0 20 40 60 80 100
0

5

10

Num. of components by fast approximation algorithm

0 20 40 60 80 100
0

5

10

Num. of components by quadratic approximation algorithm

(a) (b)

Fig. 9. Comparison of MISE and number of modes in each step of 2D
simulation between fast approximation algorithm (top) and quadratic time
algorithm (bottom). (a) MISE (b) Number of modes

kernel density approximation technique to on-line target appear-
ance modeling for visual tracking.

IV. ON-LINE TARGET APPEARANCE MODELING FOR OBJECT

TRACKING

Real-time object tracking is a challenging task. One of the
greatest challenges to creating robust trackers is the construction
of adaptive appearance models which can accommodate unstable
lighting condition, pose variations, scale changes, view-point
changes, and camera noise. Many tracking algorithms [2]–[4], [8],
[26] are based on a fixed target model, which makes it difficult to
apply them over long time intervals because of target appearance
changes.

Some efforts have been made to overcome these problems. In
[21], heuristics regarding the replacement of the target template
are suggested; Nummiaro et al. [25] update the model by taking
the weighted average of the current and new histograms. Recently,
Ross et al. [28] propose an adaptive tracking algorithm that
updates the models using an incremental update of eigenbasis.
Instead of using a template or a histogram for target model-
ing, parametric density representations have been used in many
tracking algorithms. A Gaussian distribution and its update by a
Kalman filter for target template is proposed in [24]; a Gaussian

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

1 3 5 7 9 11 13 15

Comparison in 2D

Num. of components

C
P

U
 ti

m
e

quadratic
linear

1 3 5 7 9 11 13 15
Num. of components

C
P

U
 ti

m
e

Comparison in 6D

quadratic
linear

(a) 2D (b) 6D

Fig. 10. CPU time of fast approximation algorithm and quadratic time
algorithm.

0 2 4 6 8 10
0

1

2

3

4

5

6

dimension

C
P

U
 ti

m
e

quadratic
linear

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

dimension

M
IS

E
 r

at
io

(a) CPU time (b) MISE ratio

Fig. 11. CPU time and MISE with respect to dimensionality in sequential
kernel density approximation. (MISE ratio is error ratio of fast approximation
algorithm to quadratic time algorithm.)

distribution is utilized to model the target template, and it is
updated by a Kalman filter. McKenna et al. [22] suggest using a
Gaussian mixture model computed by an EM algorithm, but their
method requires knowledge of the number of components, which
may be difficult to know in advance. number of modes changes
frequently. A more elaborate target model is described in [19],
where a 3-component mixture for the stable process, the outlier
data and the wandering term is designed to capture rapid temporal
variations in the model. However, the implementation of that
method also requires a fixed number of components. Additionally,
it cannot accommodate multiple stable components.

The most important issue in target model update is the balance
between adaptiveness to new observations and resistance to noise.
Since the target model can drift away by undesirable updates,
only target pixel observations should be integrated into the model.
From this point of view, a probability density function of visual
features is a good solution for target modeling, because frequently
observed data contribute the most significant part while outliers
can have limited effects on the integrity of the model.

In this section, we present a density based target modeling and
on-line model update algorithm to deal with changes in target
appearance, and compare its performance with other methods.

A. Target Modeling

We construct a model for each pixel in the target object with a
mixture of Gaussians, so the target model is represented as a set
of density functions. Our representation can include an arbitrary
number of Gaussian components in each density function, and
describes the underlying density accurately.

Using pixel-wise color density modeling has the advantage of
describing the details of a target region, but does not capture any

spatial aspects of an object’s appearance. So, we also incorporate
rectangular features into our target model. These features are
obtained by averaging the intensities of neighbors (e.g., 3× 3 or
5× 5) in each color channel (r, g, b) and are computed efficiently
with integral images [31]. Since rectangular features encode
the spatial information around a pixel, they ameliorate some
problems caused by non-rigid motions of objects and pixel mis-
registrations. The performance of such features have previously
been investigated in object tracking [13] and detection [31].

Initially, at time 0, the density function for each pixel (i, j)

within a selected target region has a single Gaussian component
N(1, x0(i, j),P0(i, j)) whose mean x0(i, j) is the combination
of color at (i, j) and average color of its neighborhood. In each
time step t, the new data xt(i, j) at the pixel location (i, j) is
denoted as

xt(i, j) = (r, g, b, r̄, ḡ, b̄) (13)

where (r̄, ḡ, b̄) denotes the average intensity of the neighborhood
centered at (i, j) for each color channel. Note that xt(i, j) would
be a 2D vector composed of intensity and average intensity for
gray scale images.

Whenever a new observation is integrated into the current
density, the density function is updated as explained in Section
III-B. As time progresses, highly weighted Gaussian components
are constructed around frequently observed data, and several
minor modes may also develop. Using exponential updating,
old information is removed gradually if no further observations
are nearby. So, the representation maintains a history of feature
observations for any given pixel.

B. Update in Scale

The target model so constructed is robust to changes of feature
values, but is not intended to handle scale change. Tracking may
fail in sequences containing large scale changes of target objects,
since the observations are severely affected by drastic up- or
down-sampling.

The scale in each frame is determined in tracking algorithm,
and we update the size of the target model at every β% scale
change as follows: the pixel location in the new target window is
projected into the old target window, and the density function is
computed by a weighted sum of neighborhood density functions
as

f̂
�
x(i, j) =

∑
(u,v)∈A(i,j)

w(u, v)f̂x(u, v) (14)

where A(i, j) is a set of pixels adjacent to (i, j)’s projection onto
the old target window, f̂x(u, v) is an estimated density function
for feature vector x at (u, v), and w(u, v) is the normalized weight
associated with each density function f̂x(u, v). The new density
function f̂�

x(i, j) is also a mixture of Gaussians, and the kernel
density approximation technique presented in section II is applied
to reduce the number of components for a compact representation.

The modeling error in scale change is fairly small because
of the spatial coherence of the target. Also, since the rectangular
features for adjacent pixels are based on highly overlapping areas,
they are robust to updates in scale. This appearance model update
in scale is simple, but performs well in experiments; the strategy
plays an important role in the examples displaying significant
scale change.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

C. Maximum Likelihood Parameter Optimization

Any general tracking algorithm can be utilized with our target
appearance modeling method; we adopted a simple gradient-based
method in our experiments.

Let M(x;p) denote the parameterized motion of location x,
where p = (vx, vy, s) is a vector for translation and scale. Denote
by d(M(x;p)) the observation at the image of x under motion p.
Now, the tracking problem involves finding the optimal parameter
using the maximum likelihood method.

pt = arg max
p

∑
(i,j)∈R

p(d(M(x(i,j);p))|pt−1, A
(i,j)
t) (15)

where (i, j) is the relative location in the target region R, and
A

(i,j)
t the current appearance model at (i, j). The local gradient

of likelihood in the parameter space is computed, and the optimal
parameter is obtained by iteratively moving in the gradient-ascent
direction until convergence. Once the optimal location and scale
of the target is found, the target model is updated by the method
described in Section IV-A if the current target and model template
size changes by less than β%; otherwise the update in scale
presented in Section IV-B should be performed, additionally.

D. Experiments

Various sequences are tested to illustrate our on-line appearance
modeling technique. New data is integrated with the weight of
α = 0.05. Also, the target model is updated in scale at every β =

10% change of size, and a slightly higher learning rate α = 0.1 is
used at this time. For the rectangular features, 5×5 neighborhood
pixels are used.

The learning rate is critical to overall performance. It would
be ideal to adjust the learning rate based on the confidence of
observations and the prediction of target appearance changes.
However, this is a very difficult problem by itself, so we use fixed
values, which are determined empirically. The tracking results
presented are unaffected by minor changes to the learning rate
— 3∼5% (without scale update) and 5∼10% (with scale update).
This is because our sequential kernel density approximation
algorithm is effectively adapts to the consistent data and is
resistant to noise. Also, the kernel bandwidth for new data is
fixed for the entire sequence in the following examples, since
the overall tracking performance is almost the same for a large
range of kernel bandwidth according to both [11] and our own
experiments.

Figure 12 shows the results on a tank sequence, in which the
target has low contrast and changes its orientation during tracking.
Our tracking algorithm succeeds in tracking for the entire 940
frames even with transient severe noise levels due to dust (e.g.,
Figure 12 (b) and (d)).

The results on a person sequence are presented next. In this
sequence, a human face is tracked with a large change of face
orientation and lighting conditions; the results are shown in Figure
13. Figure 13 (e) illustrates how the appearance of the face
changes over time, where the color of each pixel is determined by
weighted mean of a Gaussian mixture associated with the pixel.4

Figure 13 (f) shows the average intensity of the target region over
time, and it suggests that brightness changes significantly during
tracking and it is difficult to track accurately without adaptive
appearance modeling.

4The rectangular features are not used in the visualization.

(a) t = 1 (b) t = 590

(c) t = 940 (d) Target appearance changes

Fig. 12. Tracking result of tank sequence

In Figure 14, the tracking results for the head of a football
player are presented. In this sequence, the target object moves
fast in high clutter and is blurred frequently. Also, the changes
in orientation and texture of the head make tracking difficult,
so the density function for the target model must be able to
accommodate those variations for accurate tracking. As shown
in Figure 14 (f), the average number of components per pixel
(solid line) is moderate but the variation (dotted line) is high,
which suggests that a density function with a fixed number of
components may produce a high tracking error since some pixels
require a large number of components for accurate modeling.

In Figure 15, a gray scale image sequence involving a large
scale change is presented, and our appearance model update
strategy adapts to this well.

In the last sequence, the appearance of the car changes
frequently because of the shadow and its red lights. Also, a
person passes in front of the car and the image is severely
shaken several times by camera movement. Figure 16 shows
that our on-line density-based modeling is successful in this
sequence in spite of occlusion and appearance change. Figure 17
illustrates internal information of tracker for the frame at t = 18.
Figure 17(a) presents the local similarity map centered at the
target location at the previous time step (white triangle), where the
highest likelihood location (black triangle) means the new target
location.5 On the other hand, target window, target appearance
model and pixel likelihood map are depicted in Figure 17(b). In
the pixel likelihood map, the bright pixels indicate high likelihood.
As shown in the figure, the occluded area has very low similarity
with the target appearance model and low likelihood, so has very
limited effect in finding the optimal location.

Two different appearance modeling methods are implemented
for comparison; one is fixed modeling with a Gaussian distribu-
tion and the other is modeling by a Gaussian mixture with three
components which is update by an on-line EM algorithm. For
each algorithm, two different feature sets — color only and color
with rectangular features for each pixel — are employed. Using

5The optimal target size does not change in this frame, so the scale for
current target size is selected for visualization.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

(a) t = 1 (b) t = 36

(c) t = 150 (d) t = 205

0 50 100 150 200
60

70

80

90

100

110

120

Frame

A
V

G
. i

nt
en

si
ty

(e) Target appearance changes (f) Intensity changes

Fig. 13. Tracking results of person sequence

(a) t = 1 (b) t = 22

(c) t = 47 (d) t = 67

10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10
Mean and variance of number of components

Frame

mean
variance

(e) Target appearance changes (f) Num. of components

Fig. 14. Tracking result of football sequence

(a) t = 1 (b) t = 270

(c) t = 500 (d) Target appearance changes

Fig. 15. Tracking result of car1 sequence

(a) t = 1 (b) t = 18

(c) t = 192 (d) Target appearance changes

Fig. 16. Tracking result of car2 sequence

the same gradient-based tracking, six different cases including
two for our algorithm are tested, and the results are summarized
in table II. The numbers in the table indicate the rough frame
numbers where tracking fails. Also, some examples of failures are
illustrated in Figure 18. As table II illustrates, our on-line density
approximation shows good performance compared with other
parametric techniques. The only algorithm able to successfully
track through both sequences was our method, using both pixel-
wise and rectangular features.

V. CONCLUSION

We described kernel density approximation and its sequential
update strategy in which the density function is represented with
a mixture of Gaussians. This representation is advantageous over
conventional parametric or non-parametric techniques since every
parameter for a Gaussian mixture — number, means, covariances
and weights for each Gaussian component — is automatically

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

0

5

10

15

0

5

10

15
0

1

2

3

4

5

6

x 10
−11

(a) (b)

Fig. 17. Supplementary data for the frame at t = 18 of car2 sequence. (a)
local similarity map (b) target window (top), appearance model (lower left)
and pixel similarity (lower right)

TABLE II

COMPARISON OF TRACKING RESULTS

Modeling method person football
(205 frames) (80 frames)

Fixed Ca fail (110) fail (20)
Gaussian C+Rb fail (110) fail (20)
Gaussian C succeed fail (55)
mixture C+R succeed fail (25)

Our C succeed fail (70)
method C+R succeed succeed

acolor feature
bcolor rectangular feature

determined. The sequential update procedure has linear time com-
plexity, and the sequential kernel density approximation technique
can be incorporated in many real-time applications with low
computational cost. The use of the new framework was illustrated
in on-line target appearance modeling for object tracking. The
performance of kernel density approximation was illustrated by
various simulations and experiments with synthetic examples and
natural videos.

ACKNOWLEDGEMENT

This research was funded in part by the U.S. Government’s
VACE program. The first author thanks Yoo-Ah Kim in the
University of Connecticut for the valuable comments.

REFERENCES

[1] I. Abramson, “On bandwidth variation in kernel estimates - a square root
law,” The Annals of Statistics, vol. 10, no. 4, pp. 1217–1223, 1982.

[2] M. J. Black and A. Jepson, “Eigentracking: Robust matching and tracking
of articulated objects using a view-based representation,” in Proc. Euro-
pean Conf. on Computer Vision, Cambridge, UK, 1996, pp. 610–619.

[3] T. Cham and J. Rehg, “A multiple hypothesis approach to figure tracking,”
in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Fort
Collins, CO, volume II, 1999, pp. 239–219.

[4] H. Chen and T. Liu, “Trust-region methods for real-time tracking,” in
Proc. 8th Intl. Conf. on Computer Vision, Vancouver, Canada, volume II,
2001, pp. 717–722.

[5] W. Cleveland, “Robust locally weighted regression and smoothing scat-
terplots,” J. Amer. Statist. Assn., vol. 74, pp. 829–836, 1979.

[6] W. Cleveland and C. Loader, “Smoothing by local regression: Principles
and methods,” Statistical Theory and Computational Aspects of Smooth-
ing, pp. 10–49, 1996.

[7] D. Comaniciu, “An algorithm for data-driven bandwidth selection,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 25, no. 2, pp. 281–288, 2003.

[8] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid
objects using mean shift,” in Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, Hilton Head, SC, volume II, June 2000, pp. 142–
149.

Fig. 18. Examples of tracking failure. Tracking for person sequence with
the fixed Gaussian modeling (C+R, t = 120) (left) and for football sequence
with the 3-component mixture modeling (C, t = 59) (right)

[9] D. Comaniciu, V. Ramesh, and P. Meer, “The variable bandwidth mean
shift and data-driven scale selection,” in Proc. 8th Intl. Conf. on Computer
Vision, Vancouver, Canada, volume I, July 2001, pp. 438–445.

[10] T. Cormen, C. Leiserson, and R. Rivest, Introduction to algorithms. MIT
Press and McGraw-Hill, 1990.

[11] A. Elgammal, R. Duraiswami, and L. Davis, “Probability tracking in
joint feature-spatial spaces,” in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, Madison, Wisconsin, June 2003.

[12] A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis, “Background
and foreground modeling using nonparametric kernel density estimation
for visual surveillance,” Proceedings of IEEE, vol. 90, pp. 1151–1163,
2002.

[13] P. Fieguth and D. Teropoulos, “Color-based tracking of heads and other
mobile objects at video frame rates,” in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, San Juan, Puerto Rico, 1997, pp. 21–27.

[14] B. Frey, “Filling in scenes by propagating probabilities through layers
into appearance models,” in Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, Hilton Head, SC, volume I, 2000, pp. 185–192.

[15] B. Han, D. Comaniciu, and L. Davis, “Sequential kernel density
approximation through mode propagation: Applications to background
modeling,” in Asian Conference on Computer Vision Jeju Island, Korea,
2004.

[16] B. Han and L. Davis, “On-line density-based appearance modeling for
object tracking,” in Proc. 10th Intl. Conf. on Computer Vision, Beijing,
China, 2005.

[17] I. Haritaoglu, D. Harwood, and L. Davis, “W4: Real-time surveillance
of people and their activities,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 22, no. 8, pp. 809–830, 2000.

[18] A. Jepson and M. Black, “Mixture models for optical flow computation,”
in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, New
York, 1993, pp. 760–761.

[19] A. Jepson, D. Fleet, and T. El-Maraghi, “Robust online appearance
models for visual tracking,” in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, Hawaii, volume I, 2001, pp. 415–422.

[20] D. Lee, “Effective gaussian mixture learning for video background
subtraction,” IEEE Trans. Pattern Anal. Machine Intell., vol. 27, no. 5,
pp. 827–832, 2005.

[21] I. Matthews, T. Ishikawa, and S. Baker, “The template update problem,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 26, no. 6, pp. 810–815,
2004.

[22] S. McKenna, Y. Raja, and S. Gong, “Tracking colour objects using
adaptive mixture models,” Image and Vision Computing Journal, vol. 17,
pp. 223–229, 1999.

[23] R. Neal and G. Hinton, “A view of the EM algorithm that justifies
incremental, sparse, and other variants,” in Learning in Graphical Models,
M.I. Jordan, ed., 1998, pp. 355–368.

[24] H. T. Nguyen, M. Worring, and R. van den Boomgaard, “Occlusion
robust adaptive template tracking,” in Proc. 8th Intl. Conf. on Computer
Vision, Vancouver, Canada, October 2001.

[25] K. Nummiaro, E. Koller-Meier, and L. V. Gool, “An adaptive color-based
particle filter,” Image and Vision Computing, vol. 21, no. 1, pp. 99–110,
2003.

[26] P. Perez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based probabilis-
tic tracking,” in Proc. European Conf. on Computer Vision, Copenhagen,
Denmark, volume I, 2002, pp. 661–675.

[27] C. Priebe and D. Marchette, “Adaptive mixture density estimation,”
Pattern Recog., vol. 26, no. 5, pp. 771–785, 1993.

[28] D. Ross, J. Lim, and M. Yang, “Adaptive probabilistic visual tracking
with incremental subspace update,” in Proc. European Conf. on Computer
Vision, Prague, Czech, volume II, May 2004, pp. 470–482.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

[29] C. Stauffer and W. Grimson, “Learning patterns of activity using real-
time tracking,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 8,
pp. 747–757, 2000.

[30] O. Tuzel, F. Porikli, and P. Meer, “A bayesian approach to background
modeling,” in Proc. Intl. Workshop on Machine Vision for Intelligent
Vehicles in conjunction with CVPR, San Diego, CA, 2005.

[31] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, Kauai, Hawaii, 2001, pp. 511–518.

[32] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-
time tracking of the human body,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 19, pp. 780–785, 1997.

[33] C. Yang, R. Duraiswami, N. Gumerov, and L. Davis, “Improved fast
gauss transform and efficient kernel density estimation,” in Proc. 9th Intl.
Conf. on Computer Vision, Nice, France, volume I, 2003, pp. 464–471.

Bohyung Han received B.S. and M.S. degree from
Department of Computer Engineering in Seoul Na-
tional University, Seoul, Korea, in 1997 and 2000,
respectively. Also he received the Ph.D. degree in
Department of Computer Science from the Univer-
sity of Maryland – College Park, MD, in 2005.

He was a senior research engineer in Samsung
Electronics R&D Center in Irvine, CA from 2006 to
2007, and now a research scientist in the University
of California at Irvine.

His research interests include statistical analysis
in computer vision, object detection and tracking, sensor fusion, machine
learning, image processing, multimedia and bioinformatics. He is a member
of the IEEE.

Dorin Comaniciu Dorin Comaniciu received the
Ph.D. degrees in electrical engineering from the
Polytechnic University of Bucharest in 1995 and
from Rutgers University in 1999.

Since 1999, he has been with Siemens Corporate
Research in Princeton, first as a member of technical
staff, then as a senior member of technical staff
and manager of the Statistical Methods for Vision
Systems Program. He is currently the head of the
Integrated Data Systems Department. His research
interests include robust methods for computer vision,

motion estimation, nonparametric analysis, robust information fusion, medical
imaging, biomedical informatics, content-based access to visual data, and
integrated information modeling. He holds 18 US patents and has co-authored
more than 120 papers, conference papers, and book chapters in the area of
visual information processing. For his work in object tracking, he has received
the Best Paper Award at the 2000 IEEE Conference on Computer Vision and
Pattern Recognition. For his innovations in the areas of medical imaging and
intelligent vehicles, he has received the 2004 Siemens Inventor of the Year
Award, the highest technical recognition of Siemens AG worldwide.

He serves as an Associate Editor of IEEE Transactions on Pattern Analysis
and Machine Intelligence and was an Associate Editor of Pattern Analysis and
Applications between 2002 and 2004. He leads the scientific direction of one
of the largest European projects in biomedical informatics, Health-e-Child.
He is a senior member of the IEEE.

Ying Zhu received the Ph.D. degree from Princeton
University, Princeton, NJ, in 2003.

Since 2003, she has been with the Real-Time
Vision and Modeling Department of Siemens Cor-
porate Research, Inc., Princeton. Her research inter-
ests include statistical methods for computer vision,
real-time object detection, tracking and recognition,
statistical learning, sensor fusion, and image pro-
cessing. With Siemens Corporate Research, she has
developed vision-based object detection and tracking
techniques for driver assistance and video surveil-

lance applications.
Dr. Zhu was the Co-organizer of the first International Workshop on

Machine Vision for Intelligent Vehicles (MVIV’05) in conjunction with the
IEEE International Conference on Computer Vision and Pattern Recognition
in 2005. She is a member of the IEEE.

Larry S. Davis received his B.A. from Colgate
University in 1970 and his M. S. and Ph. D. in
Computer Science from the University of Maryland
in 1974 and 1976 respectively. From 1977-1981 he
was an Assistant Professor in the Department of
Computer Science at the University of Texas, Austin.
He returned to the University of Maryland as an As-
sociate Professor in 1981. From 1985-1994 he was
the Director of the University of Maryland Institute
for Advanced Computer Studies. He is currently a
Professor in the Institute and the Computer Science

Department, as well as Chair of the Computer Science Department. He was
named a Fellow of the IEEE in 1997.

Prof. Davis is known for his research in computer vision and high
performance computing. He has published over 100 papers in journals and
has supervised over 20 Ph.D. students. He is an Associate Editor of the
International Journal of Computer Vision and an area editor for Computer
Models for Image Processing: Image Understanding. He has served as
program or general chair for most of the field’s major conferences and
workshops, including the 5th International Conference on Computer Vision,
the 2004 Computer Vision and Pattern Recognition Conference, and the 11th
International Conference on Computer Vision.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

