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Abstract. Mitral valve (MV) regurgitation is an important cardiac dis-
order that affects 2-3% of the Western population. While valve repair is
commonly performed under open-heart surgery, an increasing number of
transcatheter MV repair (TMVR) strategies are being developed. To be
successful, TMVR requires extensive image guidance due to the complex-
ity of MV physiology and of the therapies, in particular during device
deployment. New trans-esophageal echocardiography (TEE) enable real-
time, full-volume imaging of the valve including 3D anatomy and 3D
color-Doppler flow. Such new transducers open a large range of appli-
cations for TMVR guidance, like the 3D assessment of the impact of a
therapy on the MV function. In this manuscript we propose an algorithm
towards the goal of live quantification of the MV anatomy. Leveraging the
recent advances in ultrasound hardware, and combining machine learning
approaches, predictive search strategies and efficient image-based track-
ing algorithms, we propose a novel method to automatically detect and
track the MV annulus over very long image sequences. The method was
tested on 12 4D TEE annotated sequences acquired in patients suffering
from a large variety of disease. These sequences have been rigidly trans-
formed to simulate probe motion. Obtained results showed a tracking
accuracy of 4.04mm mean error, while demonstrating robustness when
compared to purely image based methods. Our approach therefore paves
the way towards quantitative guidance of TMVR through live 3D valve
modeling.

1 Introduction

The mitral valve (MV), which ensures the unidirectional flow from the left atrium
(LA) to the left ventricle (LV), is often affected by heart failure or degenerative
diseases [5]. One particular MV pathology is MV regurgitation, where the valve
does not close properly and blood can flow back to the LA. Following the success
of transcatheter aortic valve repair, transcatheter mitral valve repair (TMVR)
strategies are being explored by the medical industry. MitraClip� is today an
established treatment, but approaches for minimally-invasive annuloplasty or
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complete valve repair are being developed [1]. The MV physiology brings im-
portant challenges to solve: MV anatomy is more complex than the aortic valve,
including papillaries, chordae, complex leaflets geometry and non-symmetrical
annulus. The pathologies are also more heterogeneous. For these reasons, ad-
vanced, quantitative 3D imaging is required during TMVR.

So far TMVR imaging guidance is mostly performed under 2D trans-esophageal
echocardiography (TEE), since high-temporal resolution and color flow quantifi-
cation are required for a complete monitoring of device deployment and its im-
pact on MV function. Recent breakthroughs in ultrasound hardware have made
possible to acquire non-stitched, full-volume 3D images at high frame-rates while
combining both anatomical images (B-mode) and color-flow Doppler [5]. Such
new probes pave the way to 3D TMVR guidance through MV physiology imag-
ing, which would make the current therapies easier to perform, but also opening
new therapeutic possibilities. One requirement is to have live and continuous 3D
MV modeling, quantification and tracking within the interventional setup.

Several approaches for MV modeling from 3D TEE have been proposed in the
past [4, 8, 10]. Yet, all of them still require from seconds to minutes to process a
single frame and are therefore not adapted for continuous, live 3D valve modeling.
At the same time, very efficient object tracking methods have been developed in
other fields. In [3] for instance, a graph-based approach was proposed to track
devices in 2D X-ray images. In [6], the authors propose a real-time tracking of
four MV annulus landmarks from 2D TEE. To the best of our knowledge, no
solution is able to track and model the complete MV annulus continuously in
live 3D TEE images.

This paper proposes an approach towards live, continuous 3D MV annulus
modeling from 3D TEE to support TMVR. Tracking a structure in live images
requires a fast but accurate algorithm (10-15 or more frame per seconds) that
does not drift over time. To cope with potentially large deformations due to
probe motion, a combination of machine-learning based detection algorithm and
fast optical flow tracking method is employed, which both leverage non-stitch,
full-volume 3D TEE imaging (Sec. 2). The method was tested on 12 synthetic
sequences (up to 46s-long) obtained by concatenating fully annotated 3D TEE
data acquired in patients, which are continuously deformed according to random
rigid deformations that mimicked probe motion (Sec. 3). Our approach achieved
a point-to-mesh accuracy of 4.04mm (3978 frames in total) at a frame-rate of
12.5fps. Sec. 4 concludes the manuscript.

2 Methods

The proposed approach combines two components that complement each other
in robustness and speed (Fig. 1): 1) a learning-based detector of MV loca-
tion, pose and size as well as landmarks and annulus, which is robust to image
alterations from transducer motion (image translation and rotation from probe
flexing) and artifacts; and 2) an optical-flow tracker, which is capable of run-
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Fig. 1. System Overview. A continuous stream of images (blue) is being processed
by two system components in parallel: a high frame rate optical flow tracker (orange),
which is periodically re-initialized by a robust learning-based annulus detector (green).

ning at high frame rates, implements a key-frame approach for drift control while
obtaining smooth and temporally-consistent motion estimates.

The two components, described in details in the following sections, are run in
parallel. On system initialization, the detector component starts and determines
valve presence in the ultrasound image. If the valve is found, the detector esti-
mates the MV annulus curve, which is transfered to the flow tracker component
for high frame-rate anatomy tracking. Subsequent images are being processed in
parallel, i.e. the optical flow tracker processes each new image, while the detector
runs in a separate thread to periodically re-detect valve presence and annulus,
which is then fed back into the tracker to achieve robustness to large motion and
ensure continuous control of tracking drift.

2.1 Mitral Valve Annulus Detector

The MV annulus detector is composed of a series of learning-based elements,
as illustrated in Fig. 2. Learning-based detectors Drigid of MV presence, loca-
tion, orientation and size, as well as detectors of annulus landmarks and curve
Dannulus, estimate model parameters φrigid(t) and φannulus(t) for an image I(t)
by maximizing the posterior probability p modeled by probabilistic boosting tree
(PBT) [9] classifiers, φ(t) = argmaxφp(φ|I(t)). PBT classifiers are trained with
Haar-like and steerable features from a manually generated database of ground
truth locations of MV annulus and landmarks.

On system initialization, Drigid is evaluated on the entire volume I(t0) using
efficient search along increasing dimensionality of the parameter space employing
the framework of marginal space learning (MSL) [11]. The search on the complete
volume is repeated for subsequent images I(t1...tn) until the MV is detected with
high confidence (p(φrigid(t)) ≥ 0.85) on at least three consecutive images. Then
the MV is assumed to be present within the volume and a region of interest (ROI)
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Fig. 2. Learning based hierarchical detector pipeline: on initialization the detector of
MV presence, location, orientation and scale (box detector) runs on the full volume
until at least three consecutive iterations were detected with high confidence estimates.
Assuming MV presence, an ROI is computed and used for reducing the computational
load. The ROI is updated at each iteration to account for probe motion.

Φrigid(t) is computed from the three last estimates to reduce the computational
demand for estimating valve location. For subsequent detector invocations t >
tn, Drigid is estimated by searching only within that ROI until the estimator
confidence drops, i.e. p(φrigid(t)) < 0.85, where the process is automatically
reinitialized, i.e. runs again on the full volume.

To be robust to potential transducer motion, at each detector invocation a
predictor Prigid estimates the valve location for the next time the detector is in-
voked and updates the ROI center accordingly. In this work, Prigid is empirically
defined as the average trajectory over the last six iterations:

Φrigid(t+ 1) = Prigid(φrigid) =

t∑
t−6

(φrigid(t)− φrigid(t− 1)) (1)

Following the estimation of the rigid paramaters φrigid, Dannulus detects
anatomically defined landmarks – namely the left and right trigones as well as the
postero-annular midpoint – by scanning respective classifiers over search ranges
within φrigid. Finally the annulus is initialized as a closed curve by fitting a
mean annulus shape composed of 58 points to the previously detected landmarks
using thin plate splines (TPS). Specially trained PBT classifiers are evaluated
by sampling the volume along planes that are transversal to the annulus curve at
each curve point. The resulting curve φannulus(t) is spatially constrained using
a point distribution shape model [2].

2.2 Optical Flow Key Frame Tracker

The optical flow key-frame tracker is a composite of two ordinary Lukas Kanade
optical flow trackers [7]: a sequential tracker Tseq, which tracks landmarks from
I(t− 1) to I(t) and a second non-sequential key-frame tracker Tkey, which reg-
isters the landmark defined on a past key frame I(tk < t) to the current frame
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I(t). The estimation results of both trackers are averaged to obtain the final es-
timate. In this way the tracker obtains smooth motion (via the frame by frame
component Tseq) while reducing drift across cardiac cycles (via the key frame
component Tkey). The tracker estimates higher order terms iteratively by creat-
ing a warped image I1(t− 1) out of the template image I0(t− 1) = I(t− 1) by
applying the previously estimated motion vector field u0 at locations x

I1(x, t− 1) = I0(x+ u0, t− 1)

M1u1 = b1

u0 := u0 + u1

with M1 and b1 computed from derivatives over space and time [7]. The scheme
is repeated over six iterations, which was experimentally determined as point of
convergence. In order to achieve high frame rates, the tracker runs directly on
the spherical coordinate representation of the ultrasound image (acoustic space).
Although the error is expected to increase with the distance to the transducer
array due to the anisotropic image sampling, that limitation does not hinder
our application as the mitral valve is typically located 50-70mm away from the
transducer array, where the voxel distance is typically 1.2mm in the spherical
coordinates representation of the image (assuming a typical angular resolution
of about 1.3 degrees).

As the runtime of the detectors D (0.18 sec) exceeds the processing time of
the optical flow trackers T (0.08 sec), both are run in parallel. The trackers are
reinitialized each time the detector completes processing, by setting the respec-
tive annulus detection result φannulus(tkey) and corresponding image I(tkey) as
key frame for Tkey, while Tseq restarts sequential tracking from the frame that
D has finished at. For instance, following Fig. 1, let D start processing at time
t2 and complete at time t5. The new key frame is set tkey = t2 and Tseq restarts
tracking by computing optical flow using I(t2), I(t6) and φannulus(t2). While
this means cardiac motion occurs in between t2 and t5, we observed that the
annulus motion within 0.18s is typically small.

3 Experiments and Results

For our experiments, the detectors were implemented using CUDA version 3.2
and executed on a test machine using an nVidia Quadro K2100M graphics card,
an Intel Core i7-4800MQ 2.70GHz processor and 16GB of RAM.

3.1 Dataset

The detector components were trained on 800 3D+t TEE volume sequences. To
allow quantitative and thorough evaluation, the algorithm was fed with ever-
looping recorded data from a separate set of 12 3D+t TEE volume sequences.
The sets were manually annotated by an expert by manually fitting MV annulus
ground truth models into the image data.
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Fig. 3. Detection results for Mitral Valve annulus with 1.25mm mean error; yellow -
ground truth, red: detector output

To test the method in operating room (OR) like conditions, the data were
manipulated with rigid transformations that simulated probe motion based on
the degrees of freedom that are typically observed during a clinical exam, i.e.
transducer rotation along roll and yaw angles by 15 degrees (rotating and flex-
ing) as well as shifts of 60mm collinear with the probe shaft (displacement along
esophagus). The resulting sequences, obtained by looping, altering and concate-
nating an original sequence 26 times, ranged between 182 and 728 frames with
frame rate between 5 to 32 fps, covering a total duration of 33 to 46 seconds. The
volumes covered fields of view between 83◦×81◦×77mm to 91◦×90◦×141mm,
typically covering both valves or mitral valve as well left and right ventricles. In
total the resulting testing set comprised 3978 annotated 3D frames.

3.2 Quantitative Evaluation

For a quantitative analysis of the method, we evaluated the overall accuracy
as well as tracking drift over time. Fig. 3 shows an example of ground truth
annulus curve and obtained estimation result. As an accuracy metric the dis-
tance was computed from each point of the estimated MV annulus curve to
the respective ground truth curve and vice versa, and finally averaged over the
curve. Table 1 reports the overall accuracy of the proposed approach as well as
detector and tracker components independently. The accuracy of the proposed
approach ranges within the accuracy of the detector, the tracking components
are subject to higher errors, due to drift. While the detector components ran
with constant error and followed the probe motion, the trackers were subject
to error accumulation over time, particularly in the presence of probe motion.
This fact is particularly highlighted in Fig. 4, where the error distribution for the
same categories showed significant amounts of outliers for the tracker only based
approaches as a consequence of drift and changes in image appearance over time.
On the other hand the detector ran at an average frame rate of 5.5fps, hence was
not able to keep up with the imaging capabilities of state-of-the-art 4D imaging
hardware. In contrast the tracker components operated at an average frame rate
of 12.5fps, which is near interactive. Combining the two techniques, our approach
was hence able to operate at high frame rates (12.5fps), while obtaining the same
level of robustness as the detector, being robust to noise and probe motion.
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Fig. 4. Average error distributions over the testing set illustrated by error histograms
for the proposed approach as well as isolated components. While the detector compo-
nent operates with bounded error, the tracker components Tseq and Tkey are subject
to drift as can be seen by the higher number of error samples in histogram bins above
6mm error. Through the combination of all techniques, the proposed approach obtains
the similar robustness as the detector while achieving the same frame rates an optical
flow tracker

Table 1. Overall MV Annulus estimation accuracy reported in terms of mean ± std
dev over the complete testing set.

Proposed approach Detector only Tseq + Tkey Tseq only

4.04±1.06 mm 3.37±0.69 mm 6.57±2.04 mm 5.28±1.19 mm

Finally we evaluated the average accuracy of the acoustic space tracking
vs. Cartesian space tracking (same algorithm, but on Cartesian grids), partic-
ularly knowing that the tracking error could increase with the distance to the
transducer array due to the non-linear acoustic sampling space. Both techniques
exhibited similar performances with average errors of 4.36±2.2mm (Cartesian
space tracking) vs. 4.13±1.43 (acoustic space tracking).

4 Conclusion

This paper presented an approach for robust tracking of MV annulus from 3D+t
TEE volumetric data at high frame rates. It combines robust machine learn-
ing methods with image based tracking, hence enabling for robust live tracking
within an interventional setting, where ultrasound imaging is subject to constant
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changes of the field of view and motion. The approach was tested on a set of 3978
3D image frames generated out of 12 volume sequences of patient data, which
included simulated probe motion to test the method in an operating room like
setting. Reaching high frame rates and robustness, our approach enables real-
time quantitative assessment of therapies and their impact on MV function, and
could thus benefit emerging therapies such as TMVR.
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Balzer, J., Kelm, M., Weese, J.: Analysis of mitral valve motion in 4d trans-
esophageal echocardiography for transcatheter aortic valve implantation. In: Sta-
tistical Atlases and Computational Models of the Heart-Imaging and Modelling
Challenges, pp. 168–176. Springer (2015)

11. Zheng, Y., Georgescu, B., Ling, H., Zhou, S.K., Scheuering, M., Comaniciu, D.:
Constrained marginal space learning for efficient 3d anatomical structure detection
in medical images. In: 2009 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida,
USA. pp. 194–201 (2009), http://dx.doi.org/10.1109/CVPRW.2009.5206807


