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Abstract. Pulmonary valve disease affects a significant portion of the
global population and often occurs in conjunction with other heart dys-
functions. Emerging interventional methods enable percutaneous pul-
monary valve implantation, which constitute an alternative to open heart
surgery. As minimal invasive procedures become common practice, imag-
ing and non-invasive assessment techniques turn into key clinical tools.
In this paper, we propose a novel approach for intervention planning
as well as morphological and functional quantification of the pulmonary
trunk and valve. An abstraction of the anatomic structures is represented
through a four-dimensional, physiological model able to capture large
pathological variation. A hierarchical estimation, based on robust learn-
ing methods, is applied to identify the patient-specific model parameters
from volumetric CT scans. The algorithm involves detection of piecewise
affine parameters, fast centre-line computation and local surface delin-
eation. The estimated personalized model enables for efficient and precise
quantification of function and morphology. This ability may have impact
on the assessment and surgical interventions of the pulmonary valve and
trunk. Experiments performed on 50 cardiac computer tomography se-
quences demonstrated the average speed of 202 seconds and accuracy of
2.2mm for the proposed approach. An initial clinical validation yielded
a significant correlation between model-based and expert measurements.
To the best of our knowledge this is the first dynamic model of the pul-
monary trunk and right ventricle outflow track estimated from CT data.

1 Introduction

Valvular heart disease (VHD) is an important cardiac disorder that affects a large
number of patients and often requires operative intervention. In most cases, pul-
monary abnormality occurs in conjunction with other heart diseases and can
be caused by congenital defects and pulmonary hypertension endocarditis. Such
conditions require constant monitoring and a complex clinical workflow which
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includes: patient evaluation, percutaneous intervention planning, valve replace-
ment and repair and follow-up studies.

Until recently, the pulmonary valve replacement has been performed surgi-
cally on open heart [1], with all associated risks: high morbidity, incidence of
neurological damage, stroke and repeated valve replacement [2]. Minimal inva-
sive procedures for the pulmonary valve are less traumatic, reducing valve re-
placement risk [3]. Percutaneous pulmonary valve implantation (PPVI) [4] is a
new developed technique for transcatheter placement of a valve stent. The main
difficulties of PPVI are: the assessment of the pulmonary trunk and the right
ventricle outflow track (RVOT < 22mm) before treatment [4], the classification
of patients suitable for the procedure [5] and identification of the exact location
for anchoring the stent [6]. Hence, precise assessment of the morphology and
dynamics is crucial for the pre-procedural planning and successful intervention
of PPVI.

Cardiac CT imaging is often performed when high spatial resolution, soft tis-
sue contrast or dynamics is essential. The key advantage is the ability to acquire
multiple non-invasive and accurate scans required for evaluation. In standard
clinical settings these are the imaging techniques used to gain the information
about the shape of the RVOT and the pulmonary artery. The acquired data (4D
CT) is usually translated into sets of 2D planes for manual quantification and
visual evaluation due to the lack of appropriate methods and tools for processing
3D/4D information. Measurements are tedious to obtain and moreover known
to be affected by inaccuracies, as 2D alignment and sectioning is ambiguous and
might lead to misinterpretation and distensibility [4].

A dynamic personalized model is expected to enhance quantification accu-
racy and non-invasive visualization of the human pulmonary trunk and RVOT.
Recently, Schievano et. al. [5] proposed a patient specific 3D model manual ex-
tracted from MRI data. Although it may positively impact patient evaluation
and procedure planning, the modeling requires a long time, the accuracy is in-
fluenced by user experience, and does not include dynamics.

Within this paper we present a dynamic model of the pulmonary trunk au-
tomatically estimated from CT data. The segmentation task is performed by
fitting a 4D generic model to the patient specific image data. The proposed
workflow, from modeling to quantification, involves three stages. In the first
place, a generic model of the pulmonary artery is computed from a compre-
hensive training set (see Section 2). This is fitted to the available volumetric
scans using robust machine-learning methods in order to obtain a patient spe-
cific physiological model (Section 3). Finally, the morphology and function of
the artery is efficiently quantified from the personalized abstract representation
(Section 4.1).

Extensive experiments are performed on a data set of 50 CT patients (503
Volumes), which includes a diverse range of morphological and pathological vari-
ation and patients’ age. Results of the experiments demonstrated the average
accuracy of 2.2mm and speed of 202 seconds for the proposed approach on car-
diac CT data (Section 4.2). An initial clinical validation performed demonstrates



Fig. 1. Model representation
a significant correlation between model-based and manually performed expert
measurements.

2 Model Representation
In order to accurately represent morphology and dynamics, our model design
is consistent with the anatomy and physiology of the pulmonary trunk. The
architecture of the model is anatomically oriented and includes all clinical rel-
evant structures. Geometries are represented parametrically using non-uniform
rational B-Splines (NURBS)[7], which is standard mathematical formulation in
computation modeling.

Initially, the pulmonary trunk is represented by five anatomical landmarks:
Trigone (Lt), RVOT (Lrvot), Main-Bifurcation (Lmb), Left-Bifurcation (Llb) and
Right-Bifurcation (Lrb). The Trigone defines the splitting point between the
right ventricle outflow track and the tricuspid valve plane. The RVOT land-
mark is located on the same plane as the Trigone, parallel to the tricuspid valve
plane. Main-Bifurcation defines the center of the trunk branching, while Left-
Bifurcation and Right-Bifurcation mark the branches’ end points (see Fig. 1(a)).

Constrained by the landmarks, the artery’s center lines form the second ab-
straction layer (see Fig. 1(b)). The Main Center Line is bounded by the RVOT
and Bifurcation. The Left and the Right Center Lines extend from the main
bifurcation landmark to the Left-Bifurcation and Right-Bifurcation landmark,
respectively.

The main pulmonary artery along with its bifurcations is modeled as para-
metric closed surface similar to a deformed cylinder. NURBS are used as the
parametric representation due to the compact mathematical formulation and
convenient properties. The topology and morphology of the arterial structure
is characterized and constrained by the previously defined landmarks and cen-
terlines. In order to obtain the physiological model of the pulmonary artery,
a cylindrical structure along with the center line has been computed (see Fig.
1(c)).

3 Model Estimation

The abstract parameters of the pulmonary trunk proposed in Section 2 are de-
termined for a specific patient from the available data (four dimensional CT).
A specific instance of the model is constrained in four-dimensional Euclidean
space by 5 landmarks, 3 centerlines (determined by 27 discrete points) and 3
surfaces (determined by 966 control points) cumulating into 5*T6 + 3*T*(9 +
6 T represents discrete time steps (10 for a regular 4D cardiac CT acquisitions)



322) parameters. The high dimensionality of the parameter space makes the di-
rect estimation in the original space a very difficult task. Therefore, we proposed
a four-step approach by first detecting a piecewise similarity transformation, fol-
lowed by landmark, center line and full dynamic model detection.

3.1 Similarity Transformation and Landmark Detection

For each landmark except the triagone, which is included into the RVOT box
θrvot), we define a corresponding bounding box, parameterized by an affine trans-
formation θ = (X,Y, Z, α, β, χ, Sx, Sy, Sz). Each box characterizes one anatom-
ical structure: RVOT plane is defined by θrvot with orientation given by the
center line’s tangent, θmb defines the main bifurcation plane with orientation or-
thogonal to the trunk, respectively θlb and θrb for the left and right bifurcation
plane.

As the object localization task is formulated as a classification problem, a
robust detector which uses 3D Haar and Steerable Features [8] is trained using
a PBT (Probabilistic Boosting Tree) [9]. In order to efficiently perform learning
in high dimension space, we marginalize the search space by means of MSL [10]
into subspaces which are gradually increased. Consequently, the parameter es-
timation problem is splitted into three steps where classifiers, parameterized by
the current subset of the affine values, are sequentially trained on the subspaces:
position, position-rotation and full affine transformation. A further speed im-
provement is achieved by using a pyramidal-based coarse-to-fine approach and
searching in low-resolution (3mm) volume.

The estimated parameters θi initialize the landmarks (Lt, Lrvot, Lmb, Llb, Lrb)
by its position and orientation and constrain the search domain Di by its scale.
A further accuracy improvement is achieved by learning a discriminative 2 Level
PBT classifier HL which learns the target distribution

p(Li|xl, yl, zl, I ) = Hi(xl, yl, zl|I ), (xl, yl, zl) ∈ Di, i = 1..5 (1)

in 1mm volume resolution, where p(Li|xl, yl, zl, I) is the probability of the pres-
ence of Li at location (xl, yl, zl).

3.2 Center Line Detection

In this step we initialize the center lines by previously detected landmarks.
The main center line which goes through the center of the pulmonary trunk
is bounded by the Lrvot and Lmb, whereas the left and right center lines are
constrained by the Llb and Lrb, respectively Lmb (see Section 2).

Automatic refinement of the center-line curves is achieved by applying a ro-
bust circle detector, which is trained using the PBT algorithm and Haar features.
In the learning phase positive and negative samples are generated in circular
form, following the annotated curves. In the detection stage, an incremental ap-
proach is used for searching 3D center points Qi on a series of parallel planes.
These are bounded by the corresponding landmarks, while their normal is given
by the initial center-line and updated after each detected center point.



Fig. 2. Piecewise mean model placement

A least-square approach is used to fit a parametric NURBS curve C to the
discrete set of detected center points Qi. The LSE problem is solved by mini-
mizing an objective function (Eq.2) with respect to the control points P k

E =
N−1∑
i=1

|Qi − C(ūi)|2, C(u)︸ ︷︷ ︸
u∈[0,1]

=
∑n

k=0Nk,d(u)wkP k∑n
k=0Nk,d(u)wk

(2)

3.3 Dynamic Model Detection

The full surface model is initialized by projecting a mean shape, averaged over
the whole annotations from the training set, into the patient specific anatomy.
The projection is achieved using a piecewise affine transformation defined from
the detected landmarks and center-lines.

A set of center-points Ci are equidistantly sampled along the detected center-
lines. At each location, we construct a local coordinate system, using the center-
line’s tangent and projected RVOT-Triagone to define the orientation. The con-
trol points P k are associated to one of the local coordinate systems, based on
their Euclidean distance to the local origin. Using a coordinate system transfor-
mation we map the mean-shape control points P k to the corresponding image
location (see Fig. 2).

The transformed mean model provides accurate global fitting into the pa-
tient’s specific anatomy. However, further local processing for precise object de-
lineation is required. A boundary detector, trained by PBT in combination with
steerable features, tests a set of hypotheses along the surface normal and moves
the shape towards position with highest boundary probability. Spatially smooth
surface is obtained by projecting the detected surface into the corresponding
shape subspace [11].

Temporal consistency of the dynamic model is enhanced similar as in [12].
One-step-forward prediction approach is applied to estimate the motion prior
using motion manifold learning, which gives an appropriate initialisation for the
boundary detectors. Optical flow is fused with tracking by detection to achieve
temporal consistency.

4 Results

4.1 Results on Pulmonary Trunk Model Estimation

The performance of the proposed approaches is evaluated on 50 4D CT (503 vol-
umes) studies, associate with a manual annotation considered to be the ground



Table 1. Detection accuracy

Mean Error(mm) Median(mm) Std.Dev(mm)

Bounding box 6.5 7.1 2.7

Landmarks 3.9 4.5 2.1

Center Line 4.5 4.6 1.9

Boundary 2.2 1.1 2.1

truth. Included data of patients with various ages (from 5 months infant to 65
years old adult) lead to significant differences in morphology and pathology of
the pulmonary trunk. CT data is acquired using different protocols, resulting in
volume sizes between 153x153x80 and 512x512x350 and voxel resolutions from
0.28mm to 2.0mm.

The accuracy of our detection framework is evaluated by using a three-fold
cross validation. Table 1 summarizes the results from the cross-validation for the
full model fitting. The detection error for the landmarks and the bounding box
is measured from the Euclidean distance between the ground truth and detected
landmarks, respectively bounding box corners. The point-to-mesh and point-
to-curve measurement error was used for the boundary and the center lines
detectors, respectively. As expected, the error constantly decreases with each
estimation stage. We obtain an average precision of 2.2 mm and computation
time of 202 sec on a standard 2.0GHz Dual Core PC.

4.2 Results on Clinical Evaluation

The accuracy of the automatic quantification of the pulmonary trunk is demon-
strated by comparing a set of morphological and dynamic based measurements
derived from the model to expert measurements and literature reported values.

Schievano et.al. [5] has proposed a set of measurements: max (RVOT) di-
ameter, min diameter and diameter at the main bifurcation region from which
the exact location for anchoring the valve stent is defined [6]. PPVI intervention
is avoided by patients with RVOT diameter > 22mm due to device limitation
[1, 4, 5]. Hence, the accuracy of the measurements is crucial for the success of
the PPVI. The evaluation results of the proposed model-based quantification
method are compared with results from the literature [13] and from experts (see
Table 2).

4.3 Results on Model Based Patient Selection Suitable for PPVI

The morphology of the pulmonary trunk is a major determinant of suitability for
PPVI [5]. Intervention in unsuitable patients exposes patients to unnecessary in-
vasive catherization. A valve stent placed in such patients has a high probability
of proximal device dislodgment. Schievano et.al. [5] proposed the classification
of various morphologies in five groups: pyramidal shape (type I), constant diam-
eter (type II), inverted pyramidal shape (type III), wide centrally but narrowed
proximally and distally (type IV), and narrowed centrally but wide proximally
and distally (type V). Patients from type I are considered to be unsuitable for



Table 2. Model-based quantification error with respect to literature(upper table) and
expert measurements(lower table).

(mm) Observed Literature

Bifurcation Diameter 30.2 ±1.6 30.7 ±3.6

(mm) Mean Err. Std. Dev.

Min Diameter 1.99 0.64

Max Diameter 4.06 2.09

Bifurcation Diameter 1.04 0.65

Fig. 3. Left: examples of 3D models for each morphological type. Right: Model-based
patient classification: patient unsuitable (light cyan cluster) / suitable (light violet
cluster) for PPVI intervention.

PPVI due to the narrow artery and high probability of device migration. Hence,
the main challenge lies in discriminating anatomies of type I from other classes.

Similar as in [14] we propose a robust shape-based patient selection for PPVI.
Shape features extracted from the estimated pulmonary trunk (see Section 2)
are used to learn a discriminative distance function using the Random Forest
in the product space. This is applied to classify subjects into two classes: PPVI
suitable and PPVI unsuitable.

The results of our method are illustrated in Fig. 3. The accuracy of the model
based classification is validated by leave-one-out cross-validation. We observed
correct classification in 91% of the 50 cases. The proposed method has the po-
tential to significantly improve accuracy and reproducibility of patient selection
for PPVI.

5 Discussion
This paper proposes a novel dynamic model for morphological and functional
quantification of the pulmonary trunk and RVOT for PPVI intervention. Inte-
grating all the relevant data obtained during a CT scan in a holistic fashion, the
physiology of the patient’s anatomy is accurately represented. An efficient and
robust learning-based algorithm was proposed to compute a patient specific pul-
monary model from the available image data (CT). The estimated model can be
utilized to extract morphological information, direct measurements of the pul-
monary trunk and the pulmonary dynamics over the cardiac cycle. Automatic
model-based dynamic measurements improve the patient evaluation and selec-
tion as well as the planning of the interventional procedure. Shape-based mor-



phology type assessment in combination with RVOT size computation provides
precise selection of proper morphology appropriate for percutaneous implantable
pulmonary valves and avoids unnecessary patient catheterization.

References

1. Boudjemline MD, Y., Agnoletti MD, G., Bonnet MD, D., Sidi MD, D., Bonhoef-
fer MD, P.: Percutaneous pulmonary valve replacement in a large right ventricular
outflow tract: An experimental study. American College of Cardiology 43 (2004)
1082–1087

2. Parr, J., Kirklin, J., Blackstone, E.: The early risk of re-replacement of aortic
valves. The Annals of Thoracic Surgery 23(4) (April 1977) 319–322

3. Carnaghan, H.: Percutaneous pulmonary valve implantation and the future of
replacement. Science and Technology 20(1) (2006) 319–322

4. Schievano, S., Migliavacca, F., Coats, S., Khambadkone, L., Carminati, M., Wil-
son, N., Deanfield, J., Bonhoeffer, P., Taylor, A.: Percutaneous pulmonary valve
implantation based on rapid prototyping of right ventricular outflow tract and
pulmonary trunk from mr data. Radiology 242(2) (February 2007) 490–49

5. Schievano, S., Coats, L., Migliavacca, F., Norman, W., Frigiola, A., Deanfield, J.,
Bonhoeffer, P., Taylor, A.: Variations in right ventricular outflow tract morphol-
ogy following repair of congenital heart disease: Implications for percutaneous pul-
monary valve implantation. Journal of Cardiovascular Magnetic Resonance 9(4)
(2007) 687–95

6. Bonhoeffer, P., Boudjemline, S.A., Qureshi, Y., Bidois, J.L., Iserin, L., Acar, P.,
Merckx, J., Kachaner, J., Sidi, D.: Percutaneous insertion of the pulmonary valve.
Journal of the American College of Cardiology 39(10) (May 2002) 1664–1669

7. Piegl, L., Tiller, W.: The NURBS book. Springer-Verlag, London, UK (1995)
8. Zheng, Y., Barbu, A., et al.: Fast automatic heart chamber segmentation from 3d

ct data using marginal space learning and steerable features. ICCV (2007)
9. Tu, Z.: Probabilistic boosting-tree: Learning discriminativemethods for classifica-

tion, recognition, and clustering. In: ICCV 2005. (2005) 1589–1596
10. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber

heart modeling and automatic segmentation for 3-d cardiac ct volumes using
marginal space learning and steerable features. Medical Imaging, IEEE Trans-
actions on 27(11) (Nov. 2008) 1668–1681

11. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their
training and application. Computer Vision and Image Understanding 61(1) (1995)
38–59

12. Yang, L., Georgescu, B., Zheng, Y., Meer, P., Comaniciu, D.: 3d ultrasound track-
ing of the left ventricle using one-step forward prediction and data fusion of col-
laborative trackers. In: CVPR. (2008)

13. Nollen, G., Schijndel, K., Timmermans, J., Groenink, M., Barentsz, J., Wall, E.,
Stoker, J., Mulder, B.: Pulmonary artery root dilatation in marfan syndrome:
quantitative assessment of an unknown criterion. Heart 87(5) (2002) 470–471

14. Ionasec, I.I., Tsymbal, A., Vitanovski, D., Georgescu, B., Zhou, S., Navab, N., Co-
maniciu, D.: Shape-based diagnosis of the aortic valve. In: SPIE Medical Imaging,
Orlando, USA (February 2009)


