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Abstract. We present a content-based image retrieval sys-
tem that supports decision making in clinical pathology. The
image-guided decision support system locates, retrieves, and
displays cases which exhibit morphological profiles con-
sistent to the case in question. It uses an image database
containing 261 digitized specimens which belong to three
classes of lymphoproliferative disorders and a class of heal-
thy leukocytes. The reliability of the central module, the fast
color segmenter, makes possible unsupervised on-line anal-
ysis of the query image and extraction of the features of
interest: shape, area, and texture of the nucleus. The nuclear
shape is characterized through similarity invariant Fourier
descriptors, while the texture analysis is based on a mul-
tiresolution simultaneous autoregressive model. The system
performance was assessed through ten-fold cross-validated
classification and compared with that of a human expert. To
facilitate a natural man-machine interface, speech recogni-
tion and voice feedback are integrated. Client-server com-
munication is multithreaded, Internet-based, and provides ac-
cess to supporting clinical records and video databases.

Key words: Content-based retrieval – Decision support sys-
tem – Color segmentation – Information fusion – User in-
terfaces

1 Introduction

One of the most common procedures when patients are ad-
mitted into a hospital is the drawing of blood. The resulting
blood samples are routinely scanned by an automated com-
plete blood count (CBC) device. If the CBC flags a specimen
as suspicious because of an abnormal blood cell count for
example, a blood smear specimen is forwarded to a medical
technologist for review. Based upon a subjective, morpho-
logic inspection of the constituent cells, a determination is
made whether the cells are benign.

While the nuclear morphologic attributes can theoreti-
cally lead to a diagnosis, in practice, the clinical interpreta-
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tion is often ambiguous. The subtle visual differences exhib-
ited by some malignant lymphomas and chronic lymphocytic
leukemia give rise to a significant number of false negatives
(malignant cells classified as normal). If suspicious cells are
detected, subsequent morphological evaluation of specimens
by even experienced pathologists is often inconclusive. In
these cases, differential diagnosis can only be made after
supporting tests such as immunophenotyping by flow cy-
tometry.

The classification of mantle cell lymphoma (MCL), a
recently described disorder [2, 4], is of particular interest
among the indolent lymphomas. MCL is often misdiagnosed
as chronic lymphocytic leukemia (CLL) or follicular center
cell lymphoma (FCC) [5]. In addition, the survival of pa-
tients with MCL is much shorter than that of patients with
other low-grade lymphomas, and standard therapy for CLL
and FCC is ineffective with MCL. Therefore, timely and
accurate diagnosis of MCL has significant therapeutic and
prognostic implications. Extensive medical research is un-
derway to understand the significance of the differences in
the immunology and cell biology of these entities.

This paper describes animage-guided decision support
(IGDS) system designed to assist pathologists to discrimi-
nate among malignant lymphomas and chronic lymphocytic
leukemia directly from microscopic specimens. The task of
the system is to locate, retrieve and display cases with mor-
phological profiles consistent to the case in question, and to
suggest during each retrieval the most likely diagnosis based
on majority logic. The ground truth of the cases recorded
in the database is obtained a priori through immunopheno-
typing and is used to maximize the probability of correct
classification.

Recent literature in diagnostic hematopathology ascribes
much of the difficulty in rendering consistent diagnoses to
subjective impressions of observers and shows that when
morphologic cell classification is based upon computer-aided
analysis, the level of objectivity and reproducibility im-
proves [3]. However, only recently the potential of content-
based retrieval systems for medical applications was recog-
nized [31].

A survey of the state of the art of content-based im-
age retrieval is presented in [1]. Technologies that cap-
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ture, describe, and index the content of multimedia ob-
jects rely on methods from image analysis, pattern recog-
nition, and database theory. A new family of information
retrieval systems emerged, exploiting the richness of visual
information and covering a large spectrum of applications
[11, 13, 20, 23, 24]. These systems differ according to their
degree of generality (general purpose versus domain spe-
cific), level of feature abstraction (primitive features versus
logical features), overall dissimilarity measure used in re-
trieval ranking, database indexing procedure, level of user
intervention (with or without relevance feedback), and eval-
uation methodology.

In contrast to general-purpose retrieval engines which
use a subjective notion of similarity, the IGDS system is
applied to a very specific problem. It has a high degree of
content understanding [31] since elemental structures from
the input image are localized and delineated (e.g., the leu-
cocyte nucleus and cytoplasm). Being a system with a well-
defined goal, its performance can be quantitatively evaluated
and compared to the human expert results. The reason of
this comparison, however, is only to assess the usefulness
of the system. In a real analysis scenario, a lot of context
information difficult to quantize is taken into account for
the diagnosis and no technique can ever replace the pathol-
ogist and light microscopy. The IGDS system is designed
as a tool to help physicians and technicians during routine
screening and analysis. It is not inended to be an automatic
cell classifier.

The user starts a typical IGDS session by loading the
query image and selecting a rectangular region of interest
(ROI) that contains cells which are either unidentifiable or
are known to be key to the diagnosis. The elemental struc-
tures from the ROI (e.g., cell nuclei and cytoplasm areas)
are then automatically delineated based on a fast color seg-
mentation algorithm. By choosing a cell nucleus, the user
initiates first the analysis of the nucleus attributes (shape,
texture, area, and color), then the search in a remote database
of digitized specimens. As a response, the system retrieves
and displays the images from the database that are the clos-
est matches to the query. The user can interactively review
the retrieved cases including the associated clinical records
and video clips.

Since the digitized specimens may have different statis-
tical properties, the robustness of the color segmenter is of
paramount importance. The employed segmenter is based
on a recently proposed nonparametric cluster analysis tech-
nique which can process 10 000 color vectors in fractions of
a second [7].

To access the database of digitized specimens, four vi-
sual attributes of the delineated cell nucleus are defined:
shape, texture, area, and color. Medical literature frequently
uses the first three of the above attributes to morpholog-
ically describe the appearance of malignant cells [2]. We
characterize the nuclear shape through similarity-invariant
Fourier descriptors [17]. Fourier invariants were recently
proved to be superior to methods based on autoregressive
models [15]. The uncertainty introduced by the segmenta-
tion process is taken into account to determine the number
of harmonics which reliably represent the shape. The texture
analysis is based on a multiresolution simultaneous autore-
gressive model (MRSAR) [21]. A 15-dimensional feature

vector and its covariance matrix are derived for each nu-
cleus in the database.

The overall dissimilarity metric between two nuclei is
defined as a linear combination of the normalized distances
corresponding to each visual attribute. The weights are ob-
tained off line by optimizing the probability of correct clas-
sification over the entire database. We found this metric to
provide better results than the joint rank criterion expressed
as the weighted sum of individual ranks.

The user interface of a retrieval system should provide
information exchange in ways familiar and comfortable to
the human [30]. A distinct feature of the IGDS system is its
bimodal human-computer interaction. Queries can be for-
mulated and refined and the retrievals can be browsed using
speech recognition or graphical input. Audio feedback is
provided by speech synthesis.

The paper is organized as follows. Experimental details
regarding the database of ground truth cases are given in
Sect. 2. Section 3 presents the architecture of the IGDS sys-
tem. In Sect. 4 the segmentation algorithm is discussed. The
shape descriptors are presented in Sect. 5. Section 6 de-
scribes the implementation of the texture analysis and also
discusses the color attribute. Section 7 shows how the overall
dissimilarity measure is defined and describes its optimiza-
tion. The retrieval performance assessment of the system
by cross-validation and comparison to human expert perfor-
mance on the same database are presented in Sect. 8. The
user interface of the system is outlined in Sect. 9.

2 Database of ground truth cases

To populate the current database, peripheral blood smears
from 30 lymphoproliferative cases at Robert Wood John-
son University Hospital were air-dried, fixed with methanol,
and stained with Wright Giemsa solution. One at a time,
the stained specimens were examined by a certified hemato-
pathologist using a Leica microscope, 40x/0.65 planachro-
matic objective while lymphoid cells and benign lympho-
cytes were identified and digitized. The imaging components
of the system consist of an Intel-based workstation, high-
resolution color video camera (Olympus OLY-750) and data
acquisition board (Coreco Occulus). Blood specimens were
immunophenotyped using a Coulter XL in order to indepen-
dently confirm the classification of each of the cells into one
of four categories: MCL, CLL, FCC, or normal (benign).

Immunophenotyping is the characterization of white
blood cells by determining the cell surface antigens they
bear. The cells are isolated and incubated with fluorescently
tagged antibodies directed against specific cell surface anti-
gens. Then, they pass through the flow cytometer past a laser
beam. When the cells meet the laser beam, they emit fluo-
rescent signals in proportion to the amount of the specific
cell surface antigen they have, and a computer calculates the
percentage of cells expressing each antigen.

The current image database consists of 66 MCL, 98 CLL,
38 FCC, and 59 benign cells. A typical image has about
450×350 true-color pixels. Individuals using the IGDS sys-
tem would need to either standardize the image acquisition
according to the above procedure or use the IGDS to gener-
ate their own “gold standard” database.
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Fig. 1. Architecture of the IGDS system

3 System architecture

The decision support system has a client-server platform-
independent architecture implemented in Java (Fig. 1). The
client part is intended to be used in small hospitals and lab-
oratories to access through the Internet the database at the
server site.

The client I/O module loads the query image from a
local or remote microscope [8] and saves the retrieved in-
formation. A fusion agent capable of multimodal inputs in-
terprets the speech or graphical commands, calls the appro-
priate method, and gives voice feedback to the user based
on a TTS (text-to-speech) component.

The client processor contains the query formation tools,
performing the user-guided ROI selection, color segmenta-
tion and feature extraction. The query vector is submitted
to the server through a serializable object. The serialization
mechanism of Java provides an automatic framework for the
transport of object collections from one machine to another.
Based on the retrieved data, the client presenter commu-
nicates the suggested classification to the user, and allows
the browsing of cases of interest, including their associated
clinical records and video clips.

The IGDS server is composed of two parts: the re-
trieval and indexing modules. The retrieval process is multi-
threaded, simultaneous accesses to the database being autho-
rized. During feature matching, the query data and logical
information in the database are compared to derive a ranking
of the retrievals.

The database indexing is performed off line. A module
similar to the client processor is used for the analysis and
registration of the incoming cases, with ground truth estab-
lished through immunophenotyping. Then, the weights of
the dissimilarity measure are re-learned to account for the
new entries in the database.

4 Segmentation algorithm

The IGDS segmenter is based on nonparametric analysis of
theL∗u∗v∗ color vectors obtained from the input image. The
algorithm detects color clusters and delineates their borders

Fig. 2. Flowchart of the segmentation process

based on the gradient ascentmean shiftprocedure. It ran-
domly tessellates the space with search windows and moves
the windows till convergence at the nearest mode of the un-
derlying probability distribution. The nonparametric, robust
nature of the color histogram analysis allows accurate and
stable recovery of the main homogeneous regions in the im-
age. A short description of the segmentation is given below
and is illustrated by the flowchart in Fig. 2. For more details,
including proof of convergence of the mean shift procedure,
see [7].

First, the RGB input vectors are converted intoL∗u∗v∗
vectors following a nonlinear transformation. The rationale
of using theL∗u∗v∗ color space is that perceived color dif-
ferences in this space are measured by Euclidean distances
[32, Sect. 3.3.9].

A set ofm pointsx1 . . . xm called thesample setis then
randomly selected from the data. Distance and density con-
straints are imposed on the points retained in the sample set,
automatically fixing its cardinality. The distance between
any two neighbors should not be smaller thanh, the radius
of a searching sphereSh(x), and the sample points should
not lie in sparsely populated regions. A region is sparsely
populated whenever the number of points inside the sphere
is below a thresholdT1.

Next, the mean shift procedure is applied to each point
in the sample set. The mean shift vector at the pointx is
defined as [14, p. 534]

Mh(x) =
1
nx

∑
xi∈Sh(x)

xi − x , (1)

where nx is the number of data points contained in the
searching sphereSh(x). It can be shown that the vector
(Eq. 1) has the direction of the gradient density estimate
when this estimate is obtained with the Epanechnikov ker-
nel [7]

KE(x) =

{
1
2c

−1
d (d + 2)(1− xT x) if xT x < 1,

0 otherwise,
(2)

cd being the volume of the unit sphere in thed-dimensional
space. Pointing towards the direction of maximum increase
in the density, recursive computation of the mean shift vector
defines a path leading to the nearest mode of the density.

The m points of convergence resulted by applying the
mean shift to each point in the sample set are calledcluster
center candidates. Since a local plateau in the color space
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can prematurely stop the mean shift iterations, each cluster
center candidate is perturbed by a random vector of small
norm and the mean shift procedure is let to converge again.
The computation of the mean shift vectors is based on the
entire data set, therefore, the quality of the density gradient
estimate is not diminished by the use of sampling.

The candidates are then pruned to obtain the cluster cen-
tersy1 . . . yp, with p ≤ m. Any subset of cluster center can-
didates which are sufficiently close to each other (for any
given point in the subset, there is at least another point in
the subset at a distance less thanh), defines acluster cen-
ter. The cluster center is the mean of the candidates in the
subset.

The presence of a valley between each pair (yi, yj) of
cluster centers is tested next (see [7] for the testing proce-
dure). If no valley was found, the cluster center of lower
density (yi or yj) is removed from the set of cluster centers.

Cluster delineation has two stages. First, each sample
point is allocated to a cluster center based on the history of its
initial window. Then, each data point is classified according
to the majority of itsk-nearest sample points.

Finally, spatial constraints are enforced to validate ho-
mogeneous regions in the image. Small connected compo-
nents containing less thanT2 pixels are removed, and region
growing is performed to allocate the unclassified pixels.

Three parameters control the segmentation: the search-
ing sphere radiush, the thresholdT1 which imposes the
density constraint, and the thresholdT2 which determines
the minimum connected component size. With the default
parameter valuesh = 4, T1 = 50, andT2 = 1000, the system
is working satisfactorily for most images in the database.
The default settings are also used for the segmentation of all
images presented in this paper. Examples of nucleus delin-
eation performed by the segmentation module are given in
Fig. 3.

5 Similarity-invariant shape descriptors

The analysis of the shape of the delineated nucleus is based
on Fourier descriptors which are made invariant to changes
in location, orientation and scale, that is,similarity invari-
ant. Several representations are possible using an arc length
s parametrization of the chain-encoded contour. The cumu-
lative angular functionθ(s), the centroidal distanceR(s), and
the complex function of the coordinatesu(s) = x(s) + jy(s)
are examples of such representations.

We followed the approach of Kuhl and Giardina [17] and
expanded the functionsx(s) andy(s) separately to obtain the
elliptic Fourier descriptors(EFD). The EFDs corresponding
to thenth harmonic of a contour composed ofK points are
given by

an =
S

2n2π2

K∑
i=1

∆xi

∆si

[
cos

2nπsi

S
− cos

2nπsi−1

S

]
,

bn =
S

2n2π2

K∑
i=1

∆xi

∆si

[
sin

2nπsi

S
− sin

2nπsi−1

S

]
,

cn =
S

2n2π2

K∑
i=1

∆yi

∆si

[
cos

2nπsi

S
− cos

2nπsi−1

S

]
,

dn =
S

2n2π2

K∑
i=1

∆yi

∆si

[
sin

2nπsi

S
− sin

2nπsi−1

S

]
, (3)

where

si =
i∑

j=1

∆sj , S =
K∑
i=1

∆si , (4)

∆si =
√

(∆xi)2 + (∆yi)2 , (5)

∆xi = (xi − xi−1) , ∆yi = (yi − yi−1) , (6)

∆xi and∆yi representing the changes in thex andy projec-
tions of the chain code as theith contour point is traversed.

By contrast to the use of the cumulative angular func-
tion where the truncation of the Fourier series can yield
open curves, the curve reconstructed from the EFDs is al-
ways closed [25]. The EFDs have a straightforward geomet-
ric interpretation, the closed contour being represented as a
composition in proper phase relationship of ellipses, called
harmonic loci. The larger the number of ellipses involved,
the more accurate the representation becomes.

Rotation invariance is obtained by compensating for the
arbitrary position of the starting point on the contour and for
the arbitrary orientation of the contour. Hence, two rotations
are necessary to achieve the invariance. When the first har-
monic locus is an ellipse, the rotations are defined relative
to the semi-major axis of the locus, and produce two related
representations of the curve[
a(1)

n b(1)
n

c(1)
n d(1)

n

]
=

[
cosψ1 sinψ1
sinψ1 cosψ1

] [
an bn
cn dn

]

×
[

cosnθ1 − sinnθ1
sinnθ1 cosnθ1

]
(7)

and[
a(2)

n b(2)
n

c(2)
n d(2)

n

]
= (−1)n+1

[
a(1)

n b(1)
n

c(1)
n d(1)

n

]
. (8)

Expressions for the axial rotationψ1 and starting point dis-
placementθ1 relative to the first semi-major axis are derived
in [17].

If the first harmonic locus is circular, the rotations are
made with respect to the line defined by the centroid of the
contour and the point on the contour most distant from the
centroid. Since the most distant point can be nonunique,k
related representations can result, corresponding tok sets of
Fourier coefficients[
a(p)

n b(p)
n

c(p)
n d(p)

n

]
=

[
cosψp sinψp

sinψp cosψp

] [
an bn
cn dn

]

×
[

cosnθp − sinnθp

sinnθp cosnθp

]
, (9)

with p = 1, . . . , k, where the axial rotationψp and starting
point displacementθp are defined relative to thepth most
distant point.

Other Fourier-based methods for shape representation
achieve rotation invariance by discarding the phase infor-
mation of all coefficients [15, 20]. However, this can lead to
misleading classifications, since the phase plays an important
role in the contour representation. Note that a recently pro-
posed set of Fourier invariants based on the discrete Fourier
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Fig. 3. Segmentation of the nucleus
of various cells. The cells in each
row belong to the same class: CLL,
FCC, MCL, and Normal, respec-
tively

transform, also considers as reference the semi-major axis of
the first harmonic locus to compensate for different rotations
and starting points [29].

Scale invariance is obtained by normalizing each Fourier
coefficient by the magnitude of the semi-major axis, when
the first harmonic locus is elliptic, and by the magnitude
of the radius, when the first harmonic locus is circular. To
obtain translation invariance, the bias terms are removed
from the Fourier series.

5.1 Accuracy of shape representation

The number of harmonics which reliably represent the shape
of the nucleus is closely related to the uncertainty intro-
duced by prior processing stages. The segmentation process
is global and any change in the region of interest selected by
the user may have effect on the nucleus delineation. Also,
due to its probabilistic nature (i.e., random tessellation of
the color space), the segmentation produces slightly differ-
ent results when repeatedly applied to the same image.

Figure 4 shows at the bottom the result of superimposing
the contours obtained by segmenting 25 times the image
from the top. The darker a pixel in the contour image, the
more stable is the contour passing through that pixel. One
can see that the least stable regions are between the two
cells. The stability of the delineated contour was shown to
be a good measure of the confidence in segmentation [6].

To estimate the influence of this uncertainty on the
Fourier coefficients, experiments with several images were
conducted and the normalized variance (variance over the
squared mean) of each coefficient was computed. For a given
image, a user delineated 25 times the ROI (a leukocyte). The
region was then segmented and the first 16 harmonics (64 co-

Fig. 4. Example of segmentation stability. A region of interest from the
image (top) has been segmented 25 times and the resulting contours were
superimposed (bottom). The regions between two cells are the least stable

efficients) were determined for the nucleus. Typical results,
the normalized variances of the Fourier coefficients of the
nucleus from two images are presented in Fig. 5. It can be
concluded that the segmentation is sufficiently stable for the
use of the first 10 harmonics (40 coefficients). Consequently,
we compare a query contour with a reference contour in the
database by computing the Euclidean distance between the
corresponding 40-dimensional vectors of Fourier invariants

D1 =
√(

fquery− freference
)> (

fquery− freference
)
. (10)
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Fig. 5.Normalized variances of the first 64
Fourier coefficients corresponding to two
images (see text for details)

Fig. 6. Examples of texture (80× 80 pixels) from inside the
nuclear border. The gray level dynamic range was enlarged
to improve reproduction quality

6 Texture, area, and color metrics

Other attributes of interest are the texture of the nucleus,
area of the nucleus, as well as the color associated with it
by the segmentation process.

6.1 Texture

We describe the nuclear texture based on the MRSAR
model [21] which assumes that the image data is randomly
structured. For the current database, the MRSAR model pro-
vides an accurate description of the nuclear texture. The im-
age data inside the nuclear border (Fig. 6) is indeed relatively
unstructured, characterized by random patterns and with no
presence of periodicity or directionality.

Note that being a representation of the chromatin den-
sity, the nuclear texture may present in certain clinical phases
organized patterns. These cases would require a more com-
plex treatment of the texture, such as the Wold-based texture
model presented in [18]. According to the Wold formula-
tion, an image (regarded as a homogeneous random field)
is decomposed into mutually orthogonal subfields having
perceptual properties that can be described as periodicity,
directionality, and randomness.

The MRSAR model that we use characterizes only the
random subfield of the Wold representation. It is a second-
order noncausal model described by five parameters at each
resolution level. A symmetric MRSAR is applied to theL∗
component of theL∗u∗v∗ image data. The pixel valueL∗(x)
at a certain locationx is assumed to linearly depend on the

neighboring pixel valuesL∗(y) and a zero-mean additive
independent Gaussian noise termε(x):

L∗(x) = µ +
∑
y∈V

θ(y)L∗(y) + ε(x) . (11)

In Eq. 11,µ is the bias dependent on the mean value ofL∗,
V is the set of neighbors of pixel at locationx, and θ(y)
with y ∈ V are the model parameters.

Figure 7 shows how are the neighbors defined for a win-
dow size of 5×5, 7×7, and 9×9. The model being symmet-
ric, we haveθ(y) = θ(−y), hence, for a given neighborhood,
four parameters are estimated through least squares. Thus,
the model parameters and the estimation error define a 5-
dimensional feature vector. The procedure is repeated for
the three chosen window sizes and the vectors are concate-
nated.

In [18, 27], it was shown that the MRSAR features com-
puted with 5×5, 7×7, and 9×9 neighborhoods provide the
best overall retrieval performance over the entire Brodatz
database. While the textures inside the nuclei are different
from the Brodatz ones, the same neighborhoods are used
here to form a 15-dimensional multiresolution feature vec-
tor.

To estimate the model parameters, 21× 21 overlapping
windows moving every two pixels in both horizontal and
vertical directions are used and for each window a multires-
olution feature vector is obtained. The mean vectort and
the covariance matrixΣ over all windows inside a given
cell nucleus are the MRSAR features associated with that
nucleus.
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Fig. 7. The set of neighborsV used by the MRSAR model with window
size 5× 5, 7× 7, and 9× 9

Thus, the texture dissimilarity has to be measured by the
distance between two multivariate distributions with known
mean vectors and covariance matrices. We use the Maha-
lanobis distance between the MRSAR feature vectors to ex-
press this dissimilarity

D2 =
√(

tquery− treference
)>
Σ−1

reference

×
√(

tquery− treference
)
, (12)

whereΣ−1
referencerepresents the inverse of the covariance ma-

trix of treference. For each entry in the database,Σ−1
referenceis

obtained and stored off line for each indexed nucleus. Note
that for the current database, the use ofΣreference for Ma-
halanobis computation resulted in better classification than
that obtained withΣquery.

By taking into account not only the separation induced
by different mean vectors but also the separation given by the
difference in covariance matrices, the Bhattacharyya distance
[14, p. 99] is theoretically better than the measure (Eq. 12).
Its limited use for database search is due to the on-line ma-
trix inversion required by the direct-distance computation.
However, we recently showed [9] that the Bhattacharyya
distance can be computed efficiently when most of the en-
ergy in the feature space is restricted to a low-dimensional
subspace. The improved representation is to be implemented
into the IGDS system.

By using the Mahalanobis distance, the assumption we
make is that the covariance of the queryΣquery and the co-
variances of the references from the databaseΣreferenceare
rather similar. For multivariate Gaussian data, the Maha-
lanobis distance (Eq. 12) becomes in this case equivalent to
the Bhattacharyya distance.

6.2 Area

All the digitized specimens in the database having the same
magnification, the nuclear area is computed as the number
of pixels inside the delineated nucleus. The dissimilarity be-
tween two nuclei in terms of their areas is expressed as

D3 =
√(

aquery− areference
)2
. (13)
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Fig. 8. The color vectors of all nuclei in the database and those correspond-
ing to the CLL, FCC, and MCL classes, respectively. Note that the color
vectors are not clustered according to their class

6.3 Color

The nuclear color is specified as a 3D vector in theL∗u∗v∗
space and is determined by the segmentation as the center of
the associated color cluster. Since the colors of the nuclei in
the database do not cluster as a function of the cell class (see
Fig. 8), we handle color as a potential query attribute only.
Therefore, the current implementation of the system uses the
color attribute for nucleus separation from the background,
but not for distinguishing among different cells.

7 Overall dissimilarity metric

The derivation of a dissimilarity metric which optimally
combines the information carried by all the visual attributes
of significance is a rather difficult problem [26]. A Bayesian
solution is proposed in [19] where combinatorial search tech-
niques are employed to minimize a classification metric, the
cross-entropy. The method determines the most useful fea-
tures for image classification, implicitly assuming that these
features will perform well during retrieval. In [18], the in-
dividual ranks corresponding to each attribute derived from
the query image are computed first, then the joint rank is
obtained as the sum of the individual ranks weighted by
posterior probabilities. The final similarity ordering of the
database is formed by sorting images in the ascending order
of their joint rank values. Various other information fusion
techniques were proposed such as the intra- and inter-feature
normalization [23], positive and negative relevance feedback
[22], and PicHunter strategy [10] which employs a learned
probabilistic model of human behavior to make better use
of the feedback it obtains.

Recall that the current system uses 261 images corre-
sponding to four cell categories whose ground truth was
obtained through immunophenotyping. The suggested clas-
sification of the query image is based on the votingkNN
rule [14, p. 305] among the classes of the closestk matches.
That is,

ki = max{k1, . . . , k4} → X ∈ ωi , (14)
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Fig. 9. Plot of the objective surface (resolution is 0.02 on each dimension).
The downhill simplex converged in this case to the global maximum

whereki is the number of neighbors from the classωi (i =
1, . . . ,4) among thekNNs, andk1+. . .+k4 = k. In addition to
the four original cell classes, thekNN rule may also produce
a NO DECISION class, in the case when the value ofi
verifying (Eq. 14) is not unique.

The system performance is measured by theconfusion
matrix R defined as having as elementrj,i the empirical
probability of classification in classj when the query im-
age belonged to classi, P (j|i). The criterion that should be
maximized is the sum of conditional probabilities of correct
decision

J =
4∑

j=1

P (j|j) . (15)

According to the Bayesian rule [16], an optimal deci-
sion is based on the ensemble statistics of all the extracted
features. The shape, texture, and area, however, are visual
attributes of different nature, being described respectively
by a 40-dimensional vector, a 15-dimensional cluster, and a
scalar. This heterogeneity of data makes it difficult to model
its statistics. Hence, two suboptimal solutions for the dis-
similarity metric are defined and tested below.

7.1 Weighted sum of distances

A relative simple solution is to express the dissimilarity as
a linear combination of the distances corresponding to each
query attribute. Thus, for three attributes,

D =
3∑

i=1

wiDi , (16)

wherewi represents the relevance of thei-th attribute and∑3
i=1wi = 1.
The best weightswi are derived off line by employing

the downhill simplex method [28, p. 408] with the objective
function J (Eq. 15). A simplex inN dimensions consists
of N + 1 totally connected vertices. For example, in two di-
mensions, the simplex is a triangle, and in three dimensions,
it is a tetrahedron. The optimization is based on a series of
steps which reflect, expand, and contract the simplex such
that it converges to a maximum of the objective function. As

Fig. 10. The 16 initial simplexes used for the initialization of the optimiza-
tion procedure

Table 1. Best weights and the value of optimization criterion corresponding
to the global maximum

Shape Texture Area J

0.1140 0.5771 0.3089 3.4207

an advantage, the downhill simplex requires only function
evaluations and not computation of derivatives.

To obtain the same order of magnitude for the individ-
ual distances in Eq. 16, they were normalized to the standard
deviation calculated relative to the center of each class, ex-
ceptingD2 which is a Mahalanobis distance and therefore
has intrinsic normalization. The normalization ensures a nu-
merically stable optimization procedure.

In Fig. 9, the objective surface as a function of the two
independent weights is shown. Since the downhill simplex
guarantees a local maximum only, we run the optimiza-
tion 16 times with different initializations. A regular tes-
sellation of the right-angled triangle defined by the values
of w1 andw2 generated the 16 initial simplexes (Fig. 10).
For convergence, about 40 iterations were needed for each
trial. In Table 1, the best set of weights, obtained by run-
ning the optimization with seven retrievals over the entire
database is shown. It corresponds to the highest obtained
value (J = 3.4207) of the objective function (Eq. 15).

7.2 Weighted sum of ranks

A second solution to derive the closest matches in the
database is to compute first the individual ranks correspond-
ing to each attribute and obtain the joint rank as a weighted
sum of individual ranks:

O =
3∑

i=1

wiOi . (17)

Using the same tessellation as before, the downhill sim-
plex was employed to find the best weights. This solution,
however, yielded an objective function whose maximum
(J = 3.3015) is smaller than the one obtained by weighting
distances. Hence, only the first solution will be considered
further.
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Table 2. Ten-fold cross-validated confusion matrix corresponding to the
first seven retrievals

CLL FCC MCL NRML NO DEC
CLL .8389 .0200 .0711 .0700 .0000
FCC .0250 .9000 .0000 .0500 .0250
MCL .1357 .0143 .8333 .0000 .0167
NRML .1333 .1200 .0000 .7300 .0167

Table 3. Confusion matrices describing the performance of three human
experts

CLL FCC MCL NRML NO DEC
CLL .5647 .0352 .2117 .1764 .0117
FCC .0285 .9428 .0000 .0285 .0000
MCL .1538 .0769 .5538 .1692 .0461
NRML .1228 .0000 .1053 .7543 .0175

CLL FCC MCL NRML NO DEC
CLL .4000 .0588 .1647 .3765 .0000
FCC .0000 1.000 .0000 .0000 .0000
MCL .0769 .0923 .5538 .1692 .0923
NRML .0000 .0877 .1053 .7719 .0351

CLL FCC MCL NRML NO DEC
CLL .4941 .0235 .2118 .2000 .0471
FCC .0000 .8857 .0857 .0286 .0000
MCL .4308 .0154 .3077 .0308 .2154
NRML .2000 .0364 .1455 .3455 .2727

8 Performance evaluation and comparisons

Ten-fold cross-validated classification [12, p. 238] was im-
plemented to provide a more realistic estimation of the sys-
tem performance. The data set was randomized and split
into ten approximately equal test sets, each containing about
9 CLL, 3 FCC, 6 MCL, and 5 Normal cases. For theq-th
test set, its complement was used to obtain the best weights
through the downhill simplex method described above. The
confusion matrixRq of the resulting classifier was then com-
puted over theq-th test set for seven retrievals. The elements
of the cross-validated confusion matrix (shown in Table 2)
were defined as

Pcv(j|i) =
1

10

10∑
q=1

Pq(j|i) , (18)

for i = 1 . . .4, andj = 1 . . .5.
As it can be seen, the system performance is satisfactory,

especially when related to the current difficulties in differ-
entiating among lymphoproliferative disorders based solely
on morphological criteria [4].

The results of three human experts that classified the
digitized specimens from the same database are presented in
Table 3. The experts were shown one digitized specimen at
a time on a high-resolution screen with no other distractor
displayed.

By comparing Table 2 and Table 3, we observe that the
human performance is slightly better for FCC and Normal
cases, but it is worse for the CLL and MCL cases, both in
terms of probabilities of correct decision (the marked diag-
onals) and probabilities of false negatives (the NRML col-
umn). The correlation between the human and machine re-
sults is also noteworthy. The classification of the FCC cells
proved to be the easiest task, while the CLL and MCL cells
resulted in similar levels of difficulty.

We note here that in a real classification scenario, the
human expert uses a lot of context information including
both patient data and additional data inferred from the dig-
itized specimens. We therefore stress thedecision support
function of the IGDS system. The system is not intended to
provide automatic identification of the disorder, but to assist
the pathologist to improve its own analysis. The patholo-
gist combines the objective classification suggested by the
system with the context information to obtain a robust diag-
nostic decision.

9 User interface

A display capture of the user interface is shown in Fig. 11.
The query image with the ROI is top-left, the delineated
nucleus of the cell and the normalized shape of the nucleus
recovered from 40 Fourier invariants are top-middle, and the
eight retrieved images are at the bottom.

The user can modify the color resolution and spatial reso-
lution of the segmentation, which are defined as the inverses
of the segmentation parametersh andT2, respectively. Ac-
cess to the resolution parameters is only for experiments and
maintenance, in normal operations of the system they are set
by default. While the segmentation produces reliable results
for almost all the images in the database, the system pro-
vides a user-handled contour correction tool based on cubic
splines. It is also possible to select different query attributes,
browse the retrievals, select a different scale for visualiza-
tion, and display specific clinical data and video clips.

The design of the interface provides natural communi-
cation with the search engine. Most input commands can
be formulated by voice or graphical input. Currently, the
system employs a Microsoft speech recognizer engine with
finite-state grammar. The use of a small, task-specific vo-
cabulary results in very high recognition rate. The recogni-
tion is speaker-independent. Typical voice commands are:
Open Image ##, Save Image ##, Segment the Image, Search
the Database, Show 2 (4, 8) Retrievals, Show First (Next,
Previous) Retrievals, Show Video, Clinical Data #. Exam-
ples of voice feedback are: Image ## Opened, Segmentation
Completed, Analyzing Texture, Database Search Completed,
Suggested Class: CLL (FCC, MCL, Normal).

10 Conclusion

We presented an image-understanding-based system that
supports decision making in clinical pathology. Preliminary
assessment of the IGDS system showed satisfactory perfor-
mance. In addition, the retrieval is fast (sequential searching
and ranking of the logical database takes about 50 ms on a
Pentium II, 266 MHz), allowing the extension of the current
database to thousands of images with no noticeable increase
in the delay at the end user. The retrieval delay depends
mostly on the bandwidth available for the client-server com-
munication.

The focus of the research reported in this paper is primar-
ily to reduce the number of false negatives during routine
specimen screening by medical technologists. To realize a
similar reduction in false negatives without the IGDS sys-
tem, one would need to immunophenotype every specimen
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Fig. 11.User interface of the IGDS sys-
tem

that is flagged by the complete blood count device. We be-
lieve that such a policy would be more expensive than using
the IGDS system.

We carefully selected this problem domain because of
its clinical relevance and because the actual diagnosis can
be independently and objectively determined through flow
cytometry. Having an experimental framework where the
ground truth is unambiguously established, we were able
to formulate and validate a simple cellular model for ex-
pert system research in cytopathology. The establishment of
new guidelines for visually characterizing lymphoprolifera-
tive disorders represents another goal of the IGDS-related
research.

At present, the system features including the bimodal
human-computer interaction are being evaluated in real re-
trieval scenarios at the Department of Pathology, UMDNJ-
RWJ Medical School. A larger database is to be indexed, to
perform a statistically more significant analysis of the sys-
tem. Other query attributes are examined such as the ratio
of the nuclear area over the cytoplasm area of the cell. A
second operational mode of the system that would allow the
automatic scanning and analysis of the entire microscopic
specimen is also investigated.

Future information regarding the IGDS system can be
found at http://www.caip.rutgers.edu/˜comanici/jretrieval.html

Finally, we note that all the computational modules of
the system are general and context independent (nonparamet-
ric segmentation, Fourier analysis, multiscale autoregressive
modeling, multidimensional optimization). Therefore, with a

certain degree of tuning, other 2D application domains can
be easily considered.
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