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Abstract—Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image
analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated
image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including
the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for
anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem
as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a
unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an
artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by
learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on
1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art
solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a
20-30% higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of
magnitude, achieving unmatched real-time performance on large 3D-CT scans.

Index Terms—Deep learning, deep reinforcement learning, medical image analysis, multi-scale, scale-space modeling,
three-dimensional (3D) object detection, real-time detection, intelligent localization.
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1 INTRODUCTION

THE detection of anatomical landmarks represents a pre-
requisite for medical image analysis. Many applications

for clinical support require the precise, automatic detection
of anatomical structures to initialize and constrain math-
ematical models for volumetric organ segmentation [1],
[2], [3], image-to-image registration [4], [5], structure track-
ing [6], [7], advanced bio-physical modeling and mechanical
simulations [8]. As such, enabling accurate and efficient
anatomical landmark detection can assist the physician with
automated measurements for a more effective and stream-
lined image reading. We focus on 3D-CT, an imaging tech-
nology widely used both interventionally and for diagnosis,
e.g., for disease screening, detection of brain hemorrhages,
bone fractures, etc. [9].

The current solutions for anatomical landmark detec-
tion are typically based on machine learning concepts,
which effectively exploit large annotated medical image
databases [1], [10], [11], [12]. For this purpose, the detec-
tion task is typically decoupled into two independent and
sequential stages: the learning of an appearance model and
the object search. In the first stage, an appearance model
is designed to capture the underlying image information
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and use it as evidence to identify the anatomical landmark.
To enable this, traditional machine learning systems rely on
precise feature engineering strategies, using human inge-
nuity to understand and model the image information [3],
[10], [12], [13], [14]. Instead, deep learning solutions propose
to learn the image features to better disentangle explana-
tory attributes of the observed data [15]. This enables the
learning models to better capture the complex anatomical
variation, ensuring an increased performance and better
generalization to unseen data [1], [16], [17], [18]. However, in
the second stage of the task, concerning the object search, the
aforementioned solutions rely on suboptimal search strate-
gies, e.g., exhaustive scanning [1], [3], [10], [18], one-shot
displacement estimation [12], [13], [14] or end-to-end image
mapping techniques [16], [17]. These strategies lead in many
cases to false-positive detection results and unreasonably
high computation times.

In this work, we propose a method which follows a
different paradigm, based on the reformulation of the de-
tection task as a behavioral problem for an artificial agent.
Using deep reinforcement learning [19] and scale-space
theory [20], we learn optimal search strategies for finding
anatomical structures, based on the image information at
multiple scales. A search strategy generates multi-scale nav-
igation trajectories, which evolve through the voxel-grid of
the image at different spatial resolutions, i.e., the scale-space
representation of the image [20], and converge to the sought
landmark location (see Figure 1).

This formulation exploits in a systematic and natural
way the different levels of abstractness encoded in the scale-
space representation of an image. The search starts at the
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Fig. 1. Schematic overview of the proposed machine learning-based
paradigm for anatomical landmark detection. The detection problem is
reformulated to learning a navigation strategy, which exploits the scale-
space representation of a given image. In other words, an artificial agent
learns how to search for an anatomical structure.

coarsest scale level with a global context and continues
across scales, capturing increased levels of details when
transitioning to finer scales [20]. Such details are used as
additional evidence to guide the search. We propose to use
independent search models on each level of the scale-space
in order to adapt the search to the most discriminative image
features, visible on that level. These search models are based
on the mechanism of deep reinforcement learning, which
we reformulated for the context of anatomical landmark
detection in previous work [21]. In this paper, we revisit
our formulation [21] and present the following additional
contributions:

• We extend the original solution using scale-space
theory to exploit multi-scale image representations
for a robust and efficient multi-scale object search in
3D-CT scans of arbitrary size in real time.

• We present a simple modification at the core of the
DRL system which enables faster and better training
(see second paragraph in section 3.2.2).

• We evaluated the performance of our method on de-
tecting 8 landmarks from different types of anatomy,
i.e., bone, non-rigid organs, vessel bifurcations, using
a set of 1487 3D-CT scans from 532 patients.

• We demonstrate the performance of our method
on an additional dataset of 506 3D-MR scout scans
acquired from 506 patients. In contrast to the 3D-CT
scans, the magnetic resonance images also show a
constrained angular variation in the axial plane.

• We provide a detailed comparison with 5 solutions
for landmark detection based on the probabilistic
boosting tree [3], extremely randomized trees [10]
and on deep learning systems [1], [18], [22] – show-
ing that our method outperforms these solutions in
terms of number of failures and accuracy.

• We provide a runtime analysis, demonstrating that
our method is 20 to 150 times faster compared to
these methods, reaching real-time detection speed.

• We include an empirical convergence analysis of our
algorithm and discuss the detection of outliers and
how to handle cases of missing objects.

• We include a detailed analysis from computer vision
perspective, discussing related methods and poten-
tial applications of our ideas in this field.

The remaining paper is organized as follows. In section 2
we review previous work on object localization and high-

light the limitations of existing technology. In section 3 we
present our solution for object detection using multi-scale
deep reinforcement learning. Experiments are presented
in section 4, and section 5 covers the conclusion of the paper.

2 BACKGROUND AND MOTIVATION

A variety of applications for medical image analysis can
benefit from the automatic and accurate detection of
anatomical landmarks. In the following, we present several
existing solutions for anatomical landmark detection and
highlight the main challenges.

2.1 Object Localization in 3D: Challenges

Scanning-based Systems represent the main category of
detection solutions, specifically in the context of 3D data.
In this case, object detection is formulated as a patch-wise
classification problem. A set H of discrete hypotheses h,
in the form of local volumetric boxes of image intensi-
ties, is extracted from any image I from the training set:
∀h ∈ H, h ∼ I. This set of hypotheses can be partitioned in
a subset of positive hypotheses H+ which are centered at
the landmark location, and negative hypotheses H− from
the rest of the image: H = H+ ∪ H−. A classifier is
trained on this set of hypotheses – essentially learning to
distinguish the appearance of the sought object from the rest
of the sampled anatomy. One can use traditional machine
learning models, e.g., extremely randomized trees [10] and
probabilistic boosting trees [23]; or deep learning, e.g., deep
convolutional neural networks [24] and sparse adaptive
deep neural networks [1]. For the final result, hypotheses
aggregation using Hough regression [10] or averaging [1],
[11], [24] can be applied. However, in the case of training
with a large number of high-resolution whole body 3D-
CT scans, the number of hypotheses used for training can
surpass the memory capabilities of current GPU-based sys-
tems. In addition, at testing time the classifier is used to
scan the entire space of hypotheses of a given image – a
set which grows exponentially with the dimensionality of
the image. In the case of a 200 × 200 × 200 volume, with
a hypothesis size of 15 × 15 × 15, the sampling complexity
reaches the order of billions. Moreover, this approach can
also be sensitive to false-positive classifier responses and
is thus often combined with different techniques, such as
cascade filtering [1], [25], filter-decomposition [18], simulta-
neous network propagation [22] or active scheduling [26],
[27], to enable effective training and detection in 3D data.

End-to-End Systems, also called image-to-image systems,
are inspired by the fully convolutional network (FCN) archi-
tectures and learn the mapping between original image and
segmentation multi-masks [28] or image codes highlight-
ing the locations of anatomical landmarks [16]. Recently,
Dai et al. [29] have proposed a region-based FCN approach
for efficient object detection. While these solutions enable
pixel/voxel-wise classification and support simultaneous
detection of multiple landmarks, the training is very com-
plex in terms of both memory management and processing
time. For example, a forward-propagation of a single CT
scan containing 200 × 200 × 200 voxels through a typical
FCN can surpass a memory footprint of 3-4 GB – severely
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limiting the size of the sampled batch of images during
training. Despite memory issues, these challenges are being
addressed within this rapidly advancing line of research.

Regression-based Systems exploit the anatomical context
around the landmark in order to learn relative displacement
vectors pointing at the landmark location. One can use
random regression forests [11], [12], [13], [14], [30], [31],
random-ferns [32], deep convolutional neural networks [33]
or modern spatial-transformer neural networks [34] to learn
the mapping. While such solutions significantly improve
the efficiency of scanning-based systems, they are typically
difficult to train and not robust to variations in the imaged
anatomical range.

Atlas-based Systems Atlas-based registration [35], as well
as multi-atlas-based registration methods [2], [36], can also
be applied to solve localization tasks. However, the appli-
cation to large 3D-CT scans poses significant computational
challenges with decreased model scalability. Potesil et al. [37]
addressed this limitation using graphical models with dense
parts-based matching.

2.2 Object Localization in 2D: Related Work

Similar concepts have been used to approach object local-
ization also for 2D data (e.g., color images or depth maps).
While the lower dimensionality represents a clear advantage
in terms of processing complexity, the lack of structure and
alignment in comparison to 3D medical data changes the
solution perspective. Modeling the intrinsic configuration
of object points that need to be detected is thus required.
In this context, shape model matching with random forest
voting [38] has been proposed. Deformable part models in
combination with latent SVMs for partially labeled data [39]
have achieved competitive results on the PASCAL chal-
lenge. Recently, region-based models using deep convolu-
tional neural networks have achieved state-of-the-art results
on the PASCAL VOC dataset [40]. Ren et al. [41] further
optimized the network architecture by selecting to share
the features between the region proposal and the detection
network, thereby reducing the computation time. Addi-
tional runtime improvements have been achieved by using
FCNs [29]. Deep learning solutions have also achieved state-
of-the-art results for the task of human pose estimation. Two
recent examples are the Convolutional Pose Machines [42]
for sequential prediction and the convolutional Stacked
Hourglass Networks [43].

3 METHOD

To address the challenges of interpreting 3D data in large
CT scans, we propose to reformulate anatomical object
detection as a behavioral problem for an intelligent artificial
agent that can teach itself how to search [21], [44]. With the
keyword intelligent we describe the capability of our system
to explore and learn the process of finding an object, as op-
posed to following predefined exhaustive search schemes.
To achieve this, we combine concepts of cognitive modeling
based on reinforcement learning with scale-space analysis
and deep learning.

3.1 Deep Learning: An Overview
Established as a key technological innovation in the field of
machine learning, with significant improvements in results
for image parsing tasks [1], [28], [45], [46], deep learning
systems have replaced the traditional feature handcrafting
step with hierarchical, multi-layer models for automatic
feature learning [15], [47]. We use the deep convolutional
neural network (CNN) as an image feature extractor [48]
and universal non-linear function approximator [15]. The
network is parametrized by θ = [W, b], where W denotes
the inter-neural connection weights organized as (multi-
channel) filter kernels, and b defines the set of neuron bias
values. The architecture is inspired by the feed-forward type
of information processing observable in the early visual cor-
tex of animals [49]. Convolutional layers exploit local spatial
correlations of image voxels to learn translation-invariant
convolutional kernels, which capture discriminative image
features. Consider a multi-channel signal representation Mk

in layer k, i.e., a channel-wise concatenation of signal repre-
sentations Mk,c with c ∈ N. One can generate a signal rep-
resentation in layer k+ 1 as: Mk+1,l = φ (Mk ∗wk,l + bk,l),
where wk,l ∈ W represents a convolutional kernel with
the same number of channels as Mk, the value bk,l ∈ b
represents the bias, l denotes the channel index, and ∗
denotes a convolution operation. The function φ represents
the nonlinear activation function, which is applied point-
wise. We use rectified linear unit (ReLU) activations [45].
The final network layers are typically fully-connected. In
a supervised regression setup, given training data D =
[(X1, y1), . . . , (XN , yN )], i.e., N independent pairs of volu-
metric image observations with value assignments, one can
define the network response function as R( · ; θ), and use
Maximum Likelihood Estimation to estimate the optimal
network parameters (L denotes the likelihood):

θ̂ = arg max
θ

L (θ;D) = arg min
θ

N∑
i=1

(R(Xi; θ)− yi)2 . (1)

This optimization problem is typically solved with stochas-
tic gradient descent (SGD) combined with the backpropaga-
tion algorithm to compute the network gradients [50].

3.2 Deep Reinforcement Learning for Intelligent Search
Our approach for intelligent anatomical landmark detection
combines the representational power of modern CNN ar-
chitectures and cognitive modeling through reinforcement
learning (RL). Initially, the combination of these two ele-
ments was introduced in the literature under the name of
deep reinforcement learning (DRL), a technique used to train
artificial agents to master different ATARI games [19].

3.2.1 Anatomy Detection: A Behavior Learning Problem
We propose to reformulate anatomy detection as a cognitive
learning task for an artificial agent. Given a volumetric
image I : Z3 → R and the location of an anatomical
structure of interest ~pGT ∈ R3 within I, the task is to
learn a navigation strategy to ~pGT in image space, i.e., the
voxel grid of the scan. In other words, we seek voxel-based
navigation trajectories from any arbitrary starting point ~p0
to ~pk within image I, with the property that ‖~pk − ~pGT ‖ is
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Fig. 2. Schematic visualization of the decision-based search model in
state s. Six possible actions a, allow for voxel-wise movement in the
volumetric image space. In this synthetic example the optimal decision
with respect to the cumulative future reward is to go left, to state s′.
The dashed red line represents the optimal search-trajectory to the
anatomical landmark, while the circles represent neighboring voxels.

minimal [21]. Reinforcement learning allows us to model
this problem using a Markov Decision Process (MDP) [51]
M := (S,A, T ,R, γ), where:

• S represents a finite set of states, st ∈ S being the
state of the agent at time t. To encode the location of
the agent in the imaged volumetric space at time t,
we define st = I(~pt), which denotes an axis-aligned
box of image intensities extracted from I and cen-
tered at the voxel-position ~pt in image space.

• A represents a finite set of actions allowing the agent
to interact with the environment defined by I, where
at ∈ A is the action the agent performs at time t.
We propose a discrete voxel-wise navigation model
allowing the agent to move from any voxel position
~pt to an adjacent voxel position ~pt+1 in image space
(see Figure 2 for details).

• T : S ×A×S → [0; 1] is a stochastic transition func-
tion, where T s′s,a describes the probability of arriving
in state s′, after performing action a in state s.

• R : S×A×S → R is a scalar reward function which
drives the behavior of the agent, where Rs′s,a ∈ R
denotes the expected reward after a state transition.
For a state transition s→ s′ at time t from ~pt → ~pt+1,
we define Rs′s,a = ‖~pt − ~pGT ‖22 − ‖~pt+1 − ~pGT ‖22.
Intuitively this represents a distance-based feedback,
which is positive if the agent gets closer to the target
structure and negative otherwise.

• γ is the discount factor controlling the importance of
future versus immediate rewards.

Considering the proposed reward-scheme and an arbi-
trary trajectory T = [~p0, ~p1, . . . , ~pk] in image space, at any
time t̂ ∈ {0, . . . , k} the associated cumulative future dis-
counted reward is defined as: Rt̂ =

∑k
t=t̂ γ

t−t̂rt, where the
immediate reward at time t is denoted by rt. In RL theory
this is also considered a finite-horizon learning episode of
length k [51]. The target is to find optimal trajectories that
maximize the associated cumulative future reward (see Fig-
ure 2). To achieve this, we define the optimal action-value
function Q∗(·, ·), which encodes the maximum expected fu-

ture discounted reward when starting in state s, performing
action a, and acting optimally thereafter:

Q∗(s, a) = max
π

E [Rt|st = s, at = a, π] , (2)

where π is an action policy, in other words a probability
distribution over actions in any given state. The optimal
action-value function gives us the optimal action policy,
defining the optimal behavior of the agent in any state:

∀s ∈ S : π∗(s) = arg max
a∈A

Q∗(s, a). (3)

One important relation satisfied by the optimal action-value
function Q∗ is the Bellman optimality equation [52], which
represents a recursive formulation of Equation 2 :

Q∗(s, a) =
∑
s′

T s
′

s,a

(
Rs

′

s,a + γmax
a′

Q∗(s′, a′)

)
= Es′

(
r + γmax

a′
Q∗(s′, a′)

)
,

(4)

where s′ defines a possible state visited after s, a′ the corre-
sponding action and r = Rs

′

s,a represents a compact notation
for the current, immediate reward. Viewed as an operator
τ , the Bellman equation defines a contraction mapping.
In previous work [53] the following property was proven:
∀Q, limn→∞ τ (n)(Q) = Q∗, which gave rise to the model-
based policy iteration algorithm [51].

This standard approach is however not feasible in our
case, where the state space is defined by high-dimensional
image data. As such, we propose to use a model-free ap-
proach based on a non-linear parametrization of Q∗ with
a deep convolutional neural network. In the literature, this
is called a deep Q-network (DQN) [19], [53] and is used
as a non-linear approximator for the optimal action-value
function: Q(s, a; θ) ≈ Q∗(s, a), where θ = [W, b] are the pa-
rameters of the network. Similar to the temporal difference
Q-Learning algorithm [53], a deep Q-network can be trained
in a RL setup using an iterative approach to minimize
the mean squared error based on the Bellman optimality
equation (see Equation 4). At any training-iteration i, we
can approximate the optimal expected target value for the
action-value function using a set of reference parameters
θ̄(i) := θ(i

′), based on a previous training iteration i′ < i:

y = r + γmax
a′

Q(s′, a′; θ̄(i)). (5)

As such, we obtain a sequence of well-defined optimization
problems, driving the evolution of the network parameters.
The error function at each training step i is defined as:

θ̂(i) = arg min
θ(i)

Es,a,r,s′
[(
y −Q(s, a; θ(i))

)2]
. (6)

This is a supervised setup for DL ,which can be approached
as described in the beginning of this section. In our frame-
work, we periodically apply stochastic gradient descent
steps, approximating the gradient using random sampling:

∇θ(i) = Es,a,r,s′
[(
y −Q(s, a; θ(i))

)
∇θ(i)Q(s, a; θ(i))

]
.

(7)
Figure 3 shows an example of a learned trajectory defined
by the optimal action-value function Q∗. This highlights
the difference between our approach and the concept of
exhaustive hypotheses scanning.
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Fig. 3. Visualization of the differences between exhaustive scanning
and our proposed method, which learns the search-process. Solutions
based on exhaustive scanning, e.g., [1], [10], [18], typically test all
hypotheses extracted from the volumetric input and then apply a form
of aggregation/clustering of high-probability candidates to obtain a final
result. In contrast, our approach learns not only the appearance of
the anatomy but also the strategy of how to find a target anatomical
landmark. The search starts at a given point ~p0 and defines a 3D
trajectory in image space, visualized as a white curve, converging to
the sought anatomical landmark location (here the right kidney).

3.2.2 Learning to Search vs. Exhaustive Search
Learning the action-value function Q∗ enables the agent to
effectively search for objects in the image, as opposed to
scanning the volumetric space exhaustively (see Figure 3).
This learning process is based on an adequate exploration
of the environment, which we ensure through an off-policy
ε-greedy approach [19]. The variable ε ∈ [0, 1] controls
the randomness in the exploration. This means that during
training, actions are selected either uniformly at random
with probability ε, or deterministically using the current
policy with probability 1 − ε. In our experiments, we lin-
early anneal ε from 1.0 to 0.05. Another important strategy
to ensure the training stability is the decorrelation of the
training samples using the concept of experience replay [54].
During training, the agent maintains an active memory of
episodic trajectories M = [T1, T2, . . .], which is constantly
expanded and uniformly sampled to estimate the learning
gradient (see Equation 7).

To further accelerate the training, we propose to use
an adaptive episode length. Through empirical analysis we
observed that by gradually reducing the episode length
during training using linear decay, we improve the space
exploration by sampling increasing numbers of trajectories
that are stored in the active memory. This simple modifica-
tion not only increased the robustness of the trained policy,
but also reduced the training time on average by around
30%. This is due to the fact that as the policy improves
during training, sampled trajectories also converge faster
to the ground-truth, eliminating the need for long-horizon
episodes which can bias the stochastic sampling for the
gradient estimation. In our case the initial length of the
episode is 1000 and is gradually reduced to 50 steps.

Given this system definition, one can observe a major
limitation related to the modeling of the state space S , more

specifically to the size of the acquired state representation
s ∈ S , in the form of a box of image-intensities. Acquiring
a small-volume box, containing only local information, im-
proves the sampling efficiency, but also increases the com-
plexity of the learning task by disregarding global context.
Such context is required to learn an effective navigation
policy and avoid local optima. On the contrary, extracting
a very large box to represent the state poses significant
computational challenges in the 3D space. This trade-off in-
dicates the inability of our preliminary approach to properly
exploit the image information at different scales.

3.3 A Scale-space Theoretical Perspective
We propose to address this limitation by using scale-space
theory [20]. Given an arbitrary discrete image signal in 3D,
defined as: I : Z3 → R, the axiomatic formulation of the
continuous scale-space of this signal is:

L(x; t) =
∑
ξ∈Z3

T (ξ; t) I(x− ξ), (8)

where t ∈ R+ denotes the continuous scale level, x ∈ Z3,
L(x; 0) = I(x) and T defines a one-parameter family of
kernels, used to generate the scale-space by convolution.
The main property of a scale-space signal representation L,
also called the image scale-space, is the non-enhancement
of local extrema, which ensures the causality of structure
across scales [20, p. 103]. This means that local maxi-
mum/minimum points in the image signal at any scale level
t0, do not increase/decrease their value at any higher scale
t > t0. Based on this property, as well as the semi-group
structure of the family of kernels T , it has been shown that
within the class of linear transformations, the scale-space
representation L is differentiable, satisfying the differential
equation:

∂tL = AScSpL, (9)

whereAScSp is an infinitesimal scale-space generator, based
on discrete approximations of the Laplace operator [20]. In
this case, one can formulate the change in scale level t as
an effect of actions of the agent, e.g., by introducing a new
action to increase, decrease or maintain the scale level. In
RL theory this can also be formulated as a continuous action
that needs to be learned as a step ∆t ∈ R, which specifies
the change in scale level at each navigation step.

To achieve this, one can redefine the optimal action-value
function Q∗, by conditioning the state-representation s and
model parameters θ on the scale-space representation L and
the current scale level t:

Q∗(s, a | L, t) = Es′
(
r + γmax

a′
Q∗(s′, a′ | L, t′)

)
, (10)

where t′ ∈ R+ represents the scale level after executing
action a. This implies that the object search would occur
in continuous image scale-space, allowing the system to
exploit structures on different scales. However, since the
image dimensionality is preserved across scales, we are still
left with the task of effectively addressing the aforemen-
tioned trade-off: sampling efficiency versus global context.
In addition, recall that the scale-space parameter t ∈ R+

is continuous. Since the model parameters θ depend on
the scale, one would need to design a learning model that
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Fig. 4. Visualization of the detection pipeline for the right kidney.
The search starts on the coarsest scale level Ld(2). On each scale
Ld(k), k ≥ 0, the agent navigates until convergence. This convergence
point (see definition in section 3.4.1) is used as a starting point for
the subsequent scale level Ld(k − 1) (red dashed arrows indicate the
change of scale). The process continues analogously on the following
scale levels, with the convergence point on the finest scale marked
as the detection result. We visualize with white arrows the optimal 3D
search trajectories navigated at each scale. Along the trajectories we
visualize the sequence of states, represented as 3D boxes of image
context, centered at the location of the agent. The orange frame repre-
sents the constrained region sampled and explored during training on
each scale. On the coarsest scale, this region always covers the entire
3D volume, with decreasing range on finer scales.

could capture not only the variability in image space but
also the variability in scale-space. To avoid this complexity,
we propose a discrete approximation Ld of the continuous
scale-space L, defined as:

Ld(t) = Ψρ(σ(t− 1) ∗ Ld(t− 1)), (11)

where t ∈ N denotes the discrete scale level, ∗ denotes
a convolution, σ represents a scale-dependent Gaussian-
like smoothing function and Ψρ denotes a signal operator,
reducing the spatial resolution with factor ρ using down-
sampling [20]. Similarly to the continuous case, Ld(0) = I.
While down-sampling the signal can introduce aliasing ef-
fects, they do not affect the learning process, enabling the
system state to capture global context on coarse scale and
local context on fine scale with similar sampling complexity
(see Figure 4).

3.4 Learning Multi-Scale Search Strategies
Given this discrete scale-space definition, we design a navi-
gation model for each scale level: Θ = [θ0, θ1, . . . , θM−1],
where M is the number of different scales. While low-
level features could arguably be shared across scales to
determine a single multi-scale search model, we empirically
observed that training a different model on each scale yields
optimal results. The motivation for this is that different
scale levels are described by different image structures
that can be used as robust evidence for the search. Across
scales we clone all meta-parameters defining each model:
Q(·, ·; θt | Ld, t),∀t < M , including the range of the state-
representation, i.e., the size of the extracted box of image
intensities. The search starts at the coarsest scale levelM−1,
where the search-model Q(·, ·; θM−1 | Ld,M − 1) is trained
for convergence from any starting point in the image (we
define the convergence criterion in section 3.4.1). On this

Algorithm 1 Training Multi-Scale DRL for Detection
1: Given N training 3D-CT scans: I1, I2, . . . , IN
2: Define discrete scale-space: Ld(t)|0≤t<M
3: Initialize system memory: M(0, . . . ,M − 1) = [ ]
4: Initialize exploration factor: ε = 1.0
5: Initialize model parameters θt|0≤t<M randomly
6: while ε > 0.05 do
7: for all scale levels 0 ≤ t < M do
8: Select random image and starting-point
9: Sample ε-greedy path T with Q(·, ·; θt | Ld, t)

10: M(t)←M(t) ∪ [T ]
11: Train Q(·, ·; θt | Ld, t) according to Equation 12
12: end for
13: Decay ε - reduce randomness
14: end while
15: Output Θ =

[
θ̂0, θ̂1, . . . , θ̂M−1

]
- estimated models

scale level the field-of-view of the agent is very large,
acquiring sufficient global context to ensure an effective
navigation. Upon convergence, the scale level is changed to
M −2 and the search continued from the convergence point
at level M − 1. The process is repeated on the following
scales until convergence on the finest scale. Note that on
all scales, except the coarsest level M − 1, the exploration
range can be constrained, given the convergent behavior on
coarser scales. These search-ranges are robustly determined
during training (see Figure 4). Based on the definition of the
discrete scale-space Ld and the independence of the search
models across scales, we can rewrite Equation 6 and train
on each scale level 0 ≤ t < M according to:

θ̂
(i)
t = arg min

θ
(i)
t

Es,a,r,s′
[(
y −Q

(
s, a; θ

(i)
t | Ld, t

))2]
,

(12)
with i ∈ N denoting the training iteration. The reference
estimate y is determined similarly as in the single-scale
solution, using a set of model parameters θ̄(i)t := θ

(i′)
t from

a previous training iteration i′ < i:

y = r + γmax
a′

Q
(
s′, a′; θ̄

(i)
t | Ld, t

)
. (13)

Algorithm 1 describes the training steps for our system.

3.4.1 Empirical Convergence Criterion
Given a test volume I, a discrete scale-space definition
Ld and a set of trained multi-scale search models Θ, two
important questions arise: At which location in the image
does the search process start? When does the agent know
that it has found the object of interest?

The starting point ~p0 is defined based on the expected
relative position ~r of the anatomical landmark, which is
computed on the training set. Given N training images
I1, I2, . . . , IN , we define ~r ∈ [0, 1]3 as ∀d ∈ {1, 2, 3}, ~r(d) =
1
N

∑N
k=1

gtruth[Ik]d
size[Ik]d

, where size[Ik]d ∈ N denotes the im-
age size, i.e., the number of voxels in dimension d, and
gtruth[Ik]d ∈ R+ denotes the coordinate of the ground-
truth landmark annotation in dimension d. Based on ~r, we
define the starting point as ~p0 = size[I] � ~r, where the
operator � denotes an element-wise multiplication. Please
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note that the choice of the starting point is a question
of algorithm design, and is not a limitation. As we will
explain later in the experiments section, most of the scans
are focused on the thorax and abdomen. Using the above
definition, the starting point is expected to be close to the
landmark location on such cases, considerably reducing the
expected detection time. We also demonstrate that similar
performance can be achieved by starting in the center of the
scan (see Appendix C).

The question of trajectory convergence is implicitly re-
lated to the convergence properties of the system. However,
the literature shows that there are no theoretical guarantees
of global convergence when using a non-linear policy ap-
proximator, such as a deep neural network [19], [47]. In prac-
tice, several heuristic techniques such as memory replay,
delayed updates or random-exploration ensure training sta-
bility and convergence. In this context, we formulate our
trajectory convergence criterion as follows: given a search-
trajectory T = [~p0, ~p1, . . .] , ∃k, k′ ∈ N, with k′ > k ≥ 0
such that ~pk = ~pk′ with l = k′ − k minimal. In other words
trajectories converge on small, oscillatory-like cycles. Once
such a cycle is identified at detection time, we stop the
search and yield ~pk as detection result. We observed that
this stopping criterion is robust in practice, that trajectories
do not converge on long cycles. We provide an empirical
analysis showing that the probability of converging on large
cycles is exponentially small (see Appendix A).

3.4.2 Object Not in the Scan Range?

In order to reliably use a machine in a clinical scenario to
detect structures and derive automatic measurements that
support the radiologist in reading 3D-CT scans, one needs
to consider all the different types of such scans, e.g., cardiac,
thoracic and abdominal scans, CT scans of the legs and
pelvis or head-neck scans. In this general setting, an im-
portant question becomes whether the system is capable of
recognizing the absence of an anatomical landmark from the
captured field-of-view, i.e., the scanned region of the body.
In practice, one cannot exclusively rely on meta-information
about the scan acquisition to find an answer. Depending on
the type of investigation, the medical technical radiology
assistant (MTRA) can decide to either increase or decrease
the field-of-view when acquiring the scan. To the best of
our knowledge, previous solutions for object detection [1],
[10], [16], [33] do not consider this scenario. For example,
scanning solutions can impose a fixed threshold on the
hypothesis probability, and use it as a decision criterion. In
our experience, this heuristic is not always accurate.

Our formulation of generic object detection as a search
problem represents a principled step towards addressing
this challenge. Given an image I, and a structure of interest
located outside the field-of-view, i.e., the image space, one
can recognize the absence of this structure by following nav-
igation trajectories, which attempt to leave the image space
in the direction where the structure was supposed to be
located, had the scan captured the whole body. By training
the system on differently cropped images, we empirically
observed this consistent behavior (see Figure 5). Empirical
results are included in section 4 .

3D CT-Scan 
Thorax 

Left Kidney 
not captured 
in the scan 

x 

Search 
Interrupted 

Example slices of CT scans 
that do not capture the left kidney 

Fig. 5. Visualization of the search-path followed to find the left kidney
in a thorax CT scan, which does not capture the left kidney (marked by
an x). The trajectory leaves the image space, signaling that the organ
is missing from the field-of-view. On the right we show several slices of
other CT scans from the test set, which do not capture the left kidney.
The image on the left is a slice from a CT scan of the legs. On the upper
right we show a slice of a thorax CT scan, acquired for lung cancer
screening. The lower right slice is from a cardiac CT scan with contrast.

4 EXPERIMENTS

For the experimental evaluation and comparison, we se-
lected 5 reference methods: scanning with probabilistic
boosting trees [3] (PBT), extremely randomized trees with
Hough regression [10] (ExtRTrees), the Overfeat method
adapted from public source-code to 3D data [22], 3D
deep learning with filter decomposition [18] (3D-DL) and
scanning with cascaded sparse-adaptive deep neural net-
works [1] (SADNN). All these methods were implemented
and evaluated on detecting several anatomical landmarks.

4.1 Dataset
The dataset contains 1487 3D-CT volumes from 532 patients,
covering a wide range of scan types with different field-of-
views, e.g., cardiac CT scans (with contrast), thoracic scans,
abdominal scans, CT scans of the legs and pelvis or CT scans
of the head and neck. A large subset of these scans is focused
on the thoracic and abdominal region and around 20% cover
the whole body. In practice, whole body scans are acquired
only rarely, most often to support the fast assessment of
injuries in cases of polytrauma patients [9]. In general,
different types of CT scans are associated with different
diagnostic routines, e.g., head CT scans can be used for di-
agnosis of brain hemorrhages, brain tumors and aneurysms,
lower-limb CT scans for detecting complex bone fractures
and tumors in the legs, CT scans of the thorax, abdomen
and pelvis for cancer screening, etc. [9]. As such, most of the
scans capture challenging anatomical malformations, i.e.,
large tumors or anomalies. In the preprocessing stage, all
volumes were resampled to an isotropic resolution of 2 mm
for the finest scale level in the scale-space representation.
For our scale-space we used 3 additional levels at isotropic
spatial resolutions of 4 mm, 8 mm and 16 mm. We clipped
the voxel values to the useful 0-800 HU interval and then
normalized this interval to unit-range, i.e., [0, 1].

We selected a set of 8 anatomical landmark points, cover-
ing different types of structures, including bone, non-rigid
organ, vessel bifurcation and respiratory tract bifurcation.
These are the center of the left and right kidneys, the front
corner of the left and right hip bones, the bronchial bifurca-
tion, as well as three vessel bifurcations between the aortic
arch and the left subclavian artery, the left common carotid
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Fig. 6. Visualization of all anatomical landmarks used for evaluation.
On the left we visualize a section of a whole body 3D-CT scan in-
cluding neck, thorax, abdomen and pelvis. On the right we highlight
the different anatomical structures and mark the individual landmark
points: bronchial bifurcation (1), bifurcation of left subclavian artery (2),
bifurcation of left common carotid artery and left subclavian artery (3),
bifurcation of left common carotid artery and brachiocephalic artery (4),
center of right kidney (5), center of left kidney (6), front corner of right
hip-bone (7), front corner of left hip-bone (8).

artery and the brachiocephalic artery (see Figure 6). This
set of landmarks was selected to test the robustness of the
solutions to the type/contrast of the anatomical structure,
as well as their ability to cope with large variation of non-
rigid organs and the confusion of nearby vessel bifurca-
tions with similar appearance. Ground-truth annotations
were provided by radiologists. Vessel bifurcation and bone
landmarks are anatomically defined very precisely, allowing
for very accurate annotations at original resolution. For
bone landmarks the average inter-observer variability was
reported in the literature at 1 mm, while the intra-observer
variability was 0.9 mm [55] (using three expert annotators).
This precision level is in agreement with the findings of the
study of Chien P.C. et al. [56]. In contrast, the variation in the
annotation of the kidney center is higher, proportional to the
size of the structure. Also for such landmarks, the inter-user
variability is in general low in 3D-CT [37].

The validation setup is based on a random split of the
annotated volumes in approximately 80% training and 20%
unseen testing examples for each landmark. The split was
performed at patient level, meaning that all scans of a given
patient are either in the training set or the test set. The
total numbers of ground-truth annotations per landmark
are: 1438 (center of left kidney), 1432 (center of right kidney),
552 (front corner of left hip-bone), 1054 (front corner of right
hip-bone), 1046 (bronchial bifurcations), 1028 (bifurcation
of left subclavian artery), 1048 (bifurcation of left common
carotid artery and left subclavian artery), 1048 (bifurcation
of left common carotid artery and brachiocephalic artery).

4.2 System Training
We used a scale-space of 3 scale levels at 4 mm (fine) -
8 mm - 16 mm (coarse) isotropic spatial resolutions for

TABLE 1
Values of all meta-parameters required to train our system.

Description Value

Training rounds 500
Episode length (linear decay) 1000→ 50
State size 25×25×25 vox.
Max. search range ±10 voxels
Optimal scale-space factor 2
Initial/Final exploration ε = 100% / 5%
Exploration decay 200,000
Network update frequency 14
Replay memory size / batch size 100,000 / 256
Reference-freeze interval 10,000
Min. required memory size 10,000
Discount factor 0.9
Optimization method RMS-prop [19]
Learning rate 0.0005
RMS-decay/epsilon 0.95 / 0.01
Nesterov momentum 0
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Fig. 7. Visualization of the mean squared error in the Bellman equation
on each scale level during training of the right hip-bone landmark. The
plot also visualizes the progression of the ε variable during training – this
value controls the randomness in the exploration and decays from 1 to
0.05. Note that ε does not measure an error.

the detection of each kidney and include one additional
scale level at 2 mm isotropic spatial resolution for the
remaining landmarks. We empirically observed that using
a finest resolution of 4 mm in this case, yields optimal
results both in terms of speed and accuracy. In order to
cope with the intensive memory requirements, the SADNN
and Overfeat methods were trained on all landmarks using
a finest resolution of 4 mm. All other methods, including
ours, were trained on a finest isotropic resolution of 4 mm
for the kidneys and 2 mm for the remaining landmarks.

We optimized all meta-parameters on the example of one
arbitrary landmark – here the front corner of the right hip-
bone. Using a patient-based split in training (70%), valida-
tion (10%) and testing (20%) sets, we selected the optimal
algorithm meta-parameters and the network architecture
using a systematic search. Shared on each scale (except
the search-range on coarsest scale), the meta-parameters
are specified in Table 1. The CNN used to encode the
search policy per scale is defined as: conv-layer (32 kernels:
4×4×4, ReLU), pooling (2×2×2), conv-layer (46 kernels:
3×3×3), pooling (2×2×2) and four fully-connected lay-
ers (512×256×128×6 units, ReLU). Our implementation is
based on the Theano library [57]. The training time per
landmark averaged to 4 hours on an Nvidia Titan X GPU.
We trained all models in a 16-GPU cluster in around 3 hours.
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The training criterion was the Bellman error [53], which
measures the quality of the policy on each scale level.
Figure 7 shows the evolution of the Bellman error during
training for the front corner of the right hip-bone. Overlayed
in the same plot is the randomness of the exploration
denoted by the variable ε. Please note that the target is a
low Bellman-error with minimal exploration randomness,
i.e., near-deterministic on-policy search. Choosing the ran-
domness decay-rate too high causes the system to fail to
train, while a too low decay-rate can lead to overfitting.

4.3 3D Landmark Detection in CT-Scans
Given a trained multi-scale set of search-models for one
landmark on M different scales Θ = [θ̂0, θ̂1, . . . , θ̂M−1], the
search process starts on the coarsest scale M − 1 from the
expected location of the landmark, computed on the training
set. Using the search model θ̂M−1, the search is executed
on the corresponding scale until reaching the convergence
point (recall from section 3 the formal definition of con-
vergence point). The process is repeated analogously on all
following scalesM−2, . . . , 0, using at each scale t as starting
point the convergence point from scale t+ 1.

To assess the success rate of each algorithm from an
anatomical validity perspective, we imposed hard thresh-
olds which were set to 30 mm for the center of each kidney
and 10 mm for the remaining landmarks. Any detection
above this limit was considered an outlier. Using this failure
criterion, we first computed a failure percentage rate for all
algorithms. Within the set of failed cases, we show the
median and maximum error to give a sense of the error
magnitude. For the remaining detections, we computed
regular statistics (mean, median and standard deviation) to
measure the accuracy. Table 2 shows all these metrics for all
algorithms and each considered landmark.

Our method achieves 0% failure rate on all considered
landmarks, improving the average accuracy of the reference
methods by 20-30% (see error distribution in Figure 9).
Through the multi-scale search our solution mimics a nat-
ural focusing mechanism, starting from global context to
low-level image details on the finest scale. This helps to gain
robustness to interpreting structures with similar anatomical
appearance and thereby considerably reduce the number
of miss-detections. Please note that in the implementation
of the method of Donner et al. [10], we did not apply the
MRF graph-matching step for hypothesis selection, which
exploits the spatial relationship between the landmarks.
This was not possible in our case of incomplete data, where
several landmarks might be missing from the field-of-view.
Instead, we applied an averaging scheme.

For a deeper insight into the performance of additional
existing solutions in comparison to our method, please
see Table 3. Please note that we did not implement these
methods, but simply show their performance, as reported in
the literature. The comparison in Table 3 demonstrates that
our method not only achieves the highest voxel-accuracy,
but also the quickest detection time for the use-case of
3D-CT. More importantly, these results are obtained on
the largest dataset reported in the literature, consisting of
1487 CT scans from 532 patients. We also measured the
performance of our method on an additional dataset of 506
3D-MR scans from 506 patients (see Appendix C).

TABLE 3
Table showing a general comparison against different solutions for
anatomical landmark detection in large high-resolution scans. The

criteria are the average detection-accuracy and runtime (on CPU), as
well as the size of the evaluation set, i.e., the number of scans/patiens,

and the type of data (CT or MR, i.e., magnetic resonance).

Solution Dataset Size
(Data/Patients)

Accuracy
(mm)

Speed
(seconds)

Zhan et al. [27] 18/18 CT 4.72 4
Fenchel et al. [35] 31/31 MR 22.4 20
Criminisi et al. [12] 100/– CT 17.60 1
Pauly et al. [32] 33/33 MR 14.95 0.8
Cuingnet et al. [11] 233/89 CT 10.5 2.8
Donner et al. [10] 20/20 CT 5.25 120
Criminisi et al. [31] 400/– CT 13.50 4
Chu et al. [30] 10/10 CT 1.90 1 30
Potesil et al. [37] 83/83 CT 4.70 N/A
de Vos et al. [24] 100/– CT 4.80 10
Ours 1487/532 CT 4.19 2 0.061
1 Evaluated only on vertebrae localization with strong priors.
2 With no failures of clinical significance. All other solutions did not

provide any information in this respect.

4.4 Runtime Analysis

In terms of detection speed, the 3D deep learning solution
proposed in [18] clocked the highest runtime, averaging
61.56 seconds on CPU to detect one landmark. This high
runtime is explained by the fact that scanning was per-
formed on the complete volume on finest resolution. The
Overfeat method [22] improved this number by applying an
efficient convolutional forward-propagation scheme, run-
ning in under 2.5 seconds. A further increase in speed to
an average runtime of less than 0.7 seconds was achieved
by the SADNN solution [1], by using a cascade of efficient
sparse shallow models to pre-filter the large number of
negative hypotheses. We emphasize that these results were
achieved at a finest isotropic resolution of 4 mm, meaning
that the test volumes were 8 times smaller than the same
volumes at 2 mm. The PBT-based solution heuristically
aggregates multi-scale hypotheses to constrain the search
range on fine resolution. This strategy increased the average
detection speed by around 50 times, reaching 1 second.
In comparison, the method proposed by Donner et al. [10]
achieved a median detection time of 4.7 seconds.

However, none of these methods could match the detec-
tion speed of our solution. Learning the multi-scale search
trajectory and evaluating samples only on a single path,
as opposed to scanning the image space, led to a median
runtime of 33 milliseconds (slowest runtime: 85 ms) – an
unmatched real-time performance for landmark detection
in 3D-CT. The detection speed was also in similar range on
CPU. The improvement against the reference methods was
around 2-3 orders of magnitude (see Table 4).

In addition, the detection speed of our method has the
property of scaling sublinearly with respect to the scan size.
While the runtime of all reference methods increases linearly
with the volume size N , i.e., the number of voxels in the
volume, in our case the increase is proportional to 3

√
N (for

more details please see Figure 8 and proof in Appendix B).
As such, our method can also easily be applied on higher
resolutions, e.g., less than 0.5 mm spatial resolution, where
it can achieve similar detection speed.
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TABLE 2
Table showing results on different anatomical landmarks. The first three columns indicate the percentage of failed cases, as well as the median

and maximum error within this group. The accuracy is measured on successful detections (excluding failed cases). The error is measured in mm.

Failed Cases Accuracy (excl. failed cases)

Structure Type Landmark Method % Failed Median Max Mean ± STD Median

Bone

Hip Bone
Right Front Corner

PBT [3] 4.35% 38.89 141.88 3.05± 1.60 2.77
ExtRTrees [10] 8.07% 20.27 460.22 5.01± 2.40 4.95

Overfeat [22] 9.31% 35.64 231.29 4.55± 1.98 4.31
3D-DL [18] 0.62% 10.17 10.17 2.84± 1.36 2.53
SADNN [1] 0% – – 3.50± 1.63 3.37

Ours 0% – – 2.80± 1.46 2.53

Hip Bone
Left Front Corner

PBT [3] 3.75% 14.30 28.57 4.03± 1.79 3.86
ExtRTrees [10] 6.25% 13.43 17.44 5.13± 2.78 5.08

Overfeat [22] 3.75% 127.52 242.05 4.19± 1.80 4.15
3D-DL [18] 2.50% 262.81 513.81 3.14± 1.49 2.98
SADNN [1] 1.25% 12.57 12.57 4.44± 1.75 4.43

Ours 0% – – 3.07± 2.14 2.85

Nonrigid
Organ

Right Kidney Center

PBT [3] 3.16% 43.54 131.55 11.85± 5.97 11.15
ExtRTrees [10] 4.21% 158.28 166.55 8.06± 5.05 6.71

Overfeat [22] 1.05% 69.62 107.22 7.01± 3.94 6.16
3D-DL [18] 1.58% 47.26 50.42 8.05± 4.39 7.59
SADNN [1] 0% – – 6.92± 3.97 6.35

Ours 0% – – 6.89± 3.65 5.95

Left Kidney Center

PBT [3] 1.11% 89.77 140.03 8.51± 4.06 8.02
ExtRTrees [10] 3.33% 44.43 182.71 8.86± 5.72 7.26

Overfeat [22] 1.67% 40.27 134.05 6.57± 3.11 6.40
3D-DL [18] 0.56% 43.41 43.41 7.78± 4.00 7.58
SADNN [1] 2.22% 50.52 61.97 6.12± 3.07 5.52

Ours 0% – – 6.72± 3.62 6.22

Vessel
Bifurcations

Left Com. Carotid Artery
Left Subclavian Artery

PBT [3] 7.22% 12.19 34.05 3.96± 2.06 3.36
ExtRTrees [10] 15.00% 19.65 35.11 6.17± 2.93 5.93

Overfeat [22] 8.88% 14.36 46.68 5.64± 2.33 5.53
3D-DL [18] 6.11% 11.75 15.93 4.37± 2.12 4.02
SADNN [1] 5.00% 13.21 17.50 4.80± 2.23 4.48

Ours 0% – – 3.89± 1.95 3.51

Left Com. Carotid Artery
Brachiocephalic Artery

PBT [3] 4.22% 12.88 17.13 3.85± 1.85 3.59
ExtRTrees [10] 18.07% 18.25 48.80 6.57± 2.95 6.63

Overfeat [22] 8.43% 12.04 25.28 5.25± 2.52 5.07
3D-DL [18] 6.02% 12.94 18.65 4.47± 2.19 4.09
SADNN [1] 6.02% 12.76 22.17 4.85± 2.29 4.67

Ours 0% – – 3.71± 2.01 3.47

Left Subclavian Artery
Bifurcation

PBT [3] 3.13% 16.30 19.84 3.67± 1.86 3.31
ExtRTrees [10] 15.63% 17.14 203.38 6.42± 2.73 6.24

Overfeat [22] 7.50% 12.04 34.96 5.34± 2.36 5.21
3D-DL [18] 3.13% 11.85 22.44 3.60± 1.76 3.29
SADNN [1] 6.25% 13.65 44.98 4.59± 2.17 4.26

Ours 0% – – 3.09± 1.50 2.86

Respiratory
Tract

Bronchial Bifurcation

PBT [3] 4.79% 13.80 28.20 3.43± 1.62 3.25
ExtRTrees [10] 7.18% 15.66 32.94 5.71± 2.65 5.52

Overfeat [22] 6.58% 11.65 19.05 5.07± 2.10 4.92
3D-DL [18] 2.99% 11.35 15.67 2.98± 1.49 2.86
SADNN [1] 5.39% 11.09 14.96 5.08± 2.22 5.00

Ours 0% – – 3.35± 1.77 3.10

4.5 Object Not in the Scan Range?

We empirically estimated the accuracy of our algorithm in
recognizing the absence of the landmark from the field-
of-view of the scan. For this, we selected the bronchial
bifurcation landmark and 100 random images from the 188
test-images. Each image was randomly cropped along the
Z-axis to eliminate the landmark from the field-of-view.
The image cut was performed at a distance of at least 1
cm from the landmark. During navigation, we investigated
whether the search trajectory leaves the image space on any

of the scale levels through the correct volume border. We
empirically found that, on at least 97% (an average of 99.2%)
of the images, the search trajectory leaves the image space,
regardless of the selected starting point. Similar percentages
are achieved also for the hip-bones. i.e., 97.8%, respectively
98.2%. In contrast, for the kidney center the accuracy is
lower, i.e., 92.2% for left and 90.5% for the right kidney. The
reason for this decrease are border cases. For many thoracic
CT scans, the kidney-centers are used as lower-limits for the
field-of-view. This results in many challenging test examples
in which the kidney center is very close to the border.
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Fig. 8. Scatter plot showing the correlation between scan size and de-
tection speed for all considered methods on the right hip-bone landmark.
Note that solutions based on scanning show a linear correlation between
volume size and execution time. We remind the reader that for technical
reasons the SADNN and Overfeat solutions are evaluated at a finest
isotropic resolution of 4 mm while the other methods are evaluated at 2
mm. Our approach not only improves the average speed, but also scales
sublinearly with respect to the size of the input volume.

TABLE 4
Table showing the runtime performance on the example of the right

hip-bone landmark. For this landmark the scans cover at least 60% of
the patient height at an average size of 250× 250× 500 voxels at 2
mm isotropic spatial resolution. The speed is measured in seconds.

DETECTION TIME per Volume [seconds]

Method Platform Median Min Max

PBT [3] CPU 8-core 1.051 0.14 16.20

ExtRTrees [10] CPU 8-core 4.714 0.272 44.535

Overfeat 1[22] GPU Titan X 2.175 0.331 14.86

3D-DL [18] CPU 10-core 57.034 7.161 548.23

SADNN 2[1] GPU GTX 1080 0.471 0.064 3.029

Ours CPU 8-core 0.061 0.035 0.155

Ours GPU Titan X 0.033 0.018 0.085
1,2 Evaluated on finest isotropic resolution of 4 mm.

In parallel work, we address this challenge by enforcing
the spatial coherence of the visible landmarks using robust
statistical shape models. Particularly for border-cases, we
investigate the benefits of explicitly training the navigation
models on cases where target objects are outside the field-
of-view. These ideas fall out of the scope of this paper.

4.6 A Computer Vision Perspective
Although motivated in the context of anatomical landmark
detection in large 3D-CT scans, our method can also be
applied to different 2D problems from both the medical do-
main [21] and computer vision – where data is unstructured
and objects are often occluded. Several recent publications
based on reinforcement learning demonstrate competitive
results on a variety of computer vision tasks:
Object Localization Using convolutional neural networks
as pre-trained feature extractors, deep Q-learning can be
applied to learn a policy for hierarchical object local-
ization [58], [59]. Using tree-structured parsing schemes,

Jie et al. [60] proposed to use DRL for the sequential search
of multiple objects. Reinforcement learning is also used
to learn stochastic policies for how and where to apply
detectors for object localization [61]. Reported results on
the PASCAL VOC 2012 dataset show significant speed-
improvements over conventional solutions.

Tracking Trajectory learning can also be formulated for
image sequences over time, e.g., video frames, to support
active object tracking [62]. By using deep recurrent models,
the learned tracking policy captures motion patterns over
time. Reinforcement learning is also used to model the
lifetime and visibility of objects in online tracking [63].

Visual Navigation Deep actor-critic models are effectively
applied to visual navigation tasks [64], such as robot navi-
gation or autonomous driving. In this formulation the actor
model learns the action selection policy using the feedback
from the critic, which estimates the long-term reward.

The principles of multi-scale deep reinforcement learning,
introduced in this work, might address the limitations of the
aforementioned methods and increase their performance.
First, using an explicit scale-space model to represent the
state space allows for an improved system scalability for
different object scales. This property is important for lo-
calization, tracking and navigation tasks based on pho-
tographs, for which there is typically no prior information
about scale [20]. In addition, as demonstrated in our applica-
tions, modeling the object search across scales significantly
increases the effectiveness of the exploration, leading to a
more robust and globally consistent navigation policy, that
is invariant to ambiguous local image information. This is
particularly important, e.g., for visual navigation for au-
tonomous driving or tracking in high-dynamic scenes [62],
[64]. Second, coupling the concept of navigation with a
scale-space representation increases the detection speed,
which scales sub-linearly with respect to the scan size. This
enables the effective exploitation of raw high-resolution data
to increase the detection accuracy while maintaining real-
time performance – an important requirement for tracking
and online navigation systems. Finally, training the system
end-to-end leads to a high policy performance. This was
emphasized in [19] in the context of game playing, and also
empirically observed in our experiments on medical image
data. In contrast, Caicedo et al. [58] and Bellver et al. [59]
apply pre-trained feature extractors to get an embedding of
the state, which is used as input for the policy network.

5 CONCLUSION

In this work, we presented a novel method for accurate real-
time 3D anatomical landmark detection in CT scans. Based
on the reformulation of the problem as a generic behavioral
learning task, we combine the concept of deep reinforce-
ment learning with multi-scale image analysis to enable an
artificial agent to systematically learn optimal strategies for
finding anatomical structures. Experiments show that our
method is robust against outliers and achieves an average
accuracy improvement of 20-30% over the selected reference
solutions. At the same time, the detection speed of our
algorithm is 2-3 orders of magnitude faster, reaching real-
time performance on high-resolution 3D-CT volumes. Our
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Fig. 9. Comparison of the four best performing solutions (regarding accuracy and failures). For each of the considered anatomical landmarks our
method reduces the number of failed detections to zero and improves the average and median error by around 20-30%. Note that the plot displays
the distribution of detection errors that are smaller than 70 mm and does not show very large outliers above this value (noted in Table 2).

solution can also elegantly handle the case of absent objects
and can be extended to support the simultaneous detection
of multiple objects. Through high robustness and real-time
performance, the proposed method might represent an im-
portant component of next-generation clinical technologies
that contribute to better, faster and more reproducible pa-
tient diagnosis, therapy and disease management.

Disclaimer This feature is based on research, and is not
commercially available. Due to regulatory reasons its future
availability cannot be guaranteed.
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[30] C. Chu, D. L. Belavý, G. Armbrecht, M. Bansmann, D. Felsenberg,
and G. Zheng, “Fully automatic localization and segmentation of
3D vertebral bodies from CT/MR images via a learning-based
method,” PLOS ONE, vol. 10, no. 11, pp. 1–22, 2015.

[31] A. Criminisi, D. Robertson, O. Pauly, B. Glocker, E. Konukoglu,
J. Shotton, D. Mateus, A. Martinez Möller, S. G. Nekolla, and
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