Robust Multi-Scale Anatomical Landmark Detection in Incomplete 3D-CT Data

Florin C. Ghesu^{1,2}, Bogdan Georgescu¹, Sasa Grbic¹, Andreas Maier², Joachim Hornegger², and Dorin Comaniciu¹

Medical Imaging Technologies, Siemens Healthineers, Princeton NJ, USA Pattern Recognition Lab, Friedrich-Alexander-Universität, Erlangen, Nürnberg

Abstract

Robust and fast detection of anatomical structures is an essential prerequisite for the next-generation automated medical support tools. Previous solutions are typically driven by suboptimal and exhaustive strategies and do not effectively address cases of incomplete data, i.e., scans taken with a partial field-of-view. We address these limitations using the capabilities of **deep reinforcement learning** with **multi-scale image analysis** and **robust statistical shape modeling**. Artificial agents are taught optimal navigation paths in the image scale-space that can account for missing structures to ensure the **robust and spatially-coherent detection** of the observed anatomical landmarks. The identified landmarks are then used as robust guidance in estimating the extent of the body-region. Experiments show that our solution outperforms state-of-the-art deep learning in detecting different anatomical structures, without any failure, on a dataset of over **2300 3D-CT volumes**. In particular, we achieve **0% false-positive and 0% falsenegative rates** at detecting the landmarks or recognizing their absence from the field-of-view of the scan. In terms of runtime, we reduce the detection-time of the reference method by 15 -20 times to **under 40 ms**, an unmatched performance in the literature for high-resolution 3D-CT.

4 mm DRL navigation

2 mm DRL navigation

Body Range

Motivation

Typical Machine Learning for Anatomical Landmark Detection:

- Inefficient exhaustive scanning solutions subject to local false responses
- No understanding of underlying context
- Heuristics used for candidate aggregation and absence recognition
- Decoupled appearance model learning and object search

Proposed Method

Learning to search across image scales:

- Landmark detection 3D navigation (multi-scale search-strategy)
- Focus from coarse to fine scale
- Discard large subspaces from the search
- Diverging trajectories signal *absence*

Tra	ining	Testing					
Image database			Input	image			
Scale-Space Appearance Model	Learn Ensu Col	to search re Spatial herence	Search	Model			
Intelligent Artificial Agent							

8 mm DRL navigation

Experiments and Results

- Comparison with Marginal Space Deep Learning³
- FP-rate / FN-rate quantify the accuracy in detecting the presence / absence of landmarks
- MSDL detects the absence of objects using a probability threshold (set to allow 1.5% FP)
- Significant improvement both FP-/FN-rate and accuracy
- Real-time detection-speed which scales sub-linearly to volume size

		LK	RK	LHB	RHB	LCCA	BA	LSA	BB	
FP-rate	MSDL [1]	1.5%	1.5%	1.1%	1.2%	1.0%	1.0%	1.1%	1.0%	
	Ours	0%	0%	0%	0%	0%	0%	0%	0%	
FN-rate	MSDL [1]	13.9%	9.4%	1.2%	0.4%	10.8%	11.3%	7.2%	4.9%	
	Ours	0%	0%	0%	0%	0%	0%	0%	0%	
Mean	MSDL [1]	6.17	6.36	4.92	3.66	4.78	5.05	5.25	5.10	
	Ours	6.83	6.98	3.61	2.63	4.02	4.26	4.23	4.07	
Median	MSDL [1]	5.64	5.80	4.70	3.44	4.17	4.54	4.62	4.53	
	Ours	6.32	6.63	2.83	2.49	2.86	3.46	3.21	3.77	
STD	MSDL [1]	3.32	3.06	2.09	1.83	3.30	3.02	3.51	2.82	
	Ours	3 52	3 83	2 08	1 53	3 33	2 97	3 37	2 16	

Anatomical Structures

3D search trajectories

starting from image center

2. Robust Statistical Shape Model (SSM) fitted with MSAC

- Model landmark location as multi-variate normal distribution: $p_i \sim \mathcal{N}(\mu_i, \boldsymbol{\Sigma}_i)$
- Robust model fitting with random 3-samples yield largest consensus set:

$$\hat{\mathcal{S}} \leftarrow \underset{S \in I_{3}(\tilde{\boldsymbol{P}})}{\arg\min} \sum_{i=0}^{|\tilde{\boldsymbol{P}}|} \min\left[\frac{1}{Z_{i}} \left(\phi(\tilde{\boldsymbol{p}}_{i}) - \boldsymbol{\mu}_{i}\right)^{\top} \boldsymbol{\Sigma}_{i}^{-1} \left(\phi(\tilde{\boldsymbol{p}}_{i}) - \boldsymbol{\mu}_{i}\right), 1\right]$$

usa.siemens.com/abouthealthineers

© 2017 Siemens Medical Solutions USA, Inc. | All rights reserved

Correlation between image size and speed

× MSDL

Ours

Conclusion

- New learning paradigm for intelligent and robust multi-scale image parsing
- Learn multi-scale navigation paths instead of exhaustive scanning or regression
- Recognize if anatomy is missing and estimate body range based on present anatomy
- Significant improvement over state-of-the-art both in terms of accuracy and speed

Disclaimer

This feature is based on research, and is not commercially available. Due to regulatory reasons its future availability cannot be guaranteed.

References

Mnih, V. et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 2015
Ghesu, F.C. et al.: An artificial agent for anatomical landmark detection in medical images. MICCAI, 2016
Ghesu, F.C. et al.: Marginal Space Deep Learning: Efficient architecture for volumetric image parsing. IEEE TMI 35(5), 2016

