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Abstract

Robust and fast detection of anatomical structures is an essential prerequisite for the next-generation automated medical support tools. Previous solutions are typically driven
by suboptimal and exhaustive strategies and do not effectively address cases of incomplete data, i.e., scans taken with a partial field-of-view. We address these limitations
using the capabilities of deep reinforcement learning with multi-scale image analysis and robust statistical shape modeling. Artificial agents are taught optimal navigation
paths in the image scale-space that can account for missing structures to ensure the robust and spatially-coherent detection of the observed anatomical landmarks. The
identified landmarks are then used as robust guidance in estimating the extent of the body-region. Experiments show that our solution outperforms state-of-the-art deep
learning in detecting different anatomical structures, without any failure, on a dataset of over 2300 3D-CT volumes. In particular, we achieve 0% false-positive and 0% false-
negative rates at detecting the landmarks or recognizing their absence from the field-of-view of the scan. In terms of runtime, we reduce the detection-time of the reference
method by 15 -20 times to under 40 ms, an unmatched performance in the literature for high-resolution 3D-CT.
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Motivation

| | | | | Experiments and Results
Typical Machine Learning for Anatomical Landmark Detection:

e Comprehensive evaluation on 8 landmarks from different anatomical structures

(from left to right in table: left/right kidney centers, front corner left/right hip-bones, bifurcation of left common carotid
artery, brachiocephalic artery and left subclavian artery, and the bronchial bifurcation)

* |nefficient exhaustive scanning solutions subject to local false responses
 No understanding of underlying context
* Heuristics used for candidate aggregation and absence recognition

, , * Comparison with Marginal Space Deep Learning?
 Decoupled appearance model learning and object search

* FP-rate / FN-rate quantify the accuracy in detecting the presence / absence of landmarks

Training , Testing  MSDL detects the absence of objects using a probability threshold (set to allow 1.5% FP)
{ m ] [ putimage ]‘ Post-processing: * Significant improvement — both FP-/FN-rate and accuracy
; . * Enforce spatial coherence * Real-time detection-speed which scales sub-linearly to volume size
[Extract jeaturesJ {Extract features} * Probability thresholding .
- - - Anatomical Structures
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Proposed Method Tralning | Testing Norare MSDLITT 13.9%  9.4%  1.2%  0.4%  10.8% 11.3% 7.2%  4.9%
. . Ours 0% 0% 0% 0% 0% 0% 0% 0%
Learning to search across image scales:
| o | gmage ' inputimage Veay MSDLIN] 617 636 492 366 478 505 525 5.0
* Landmark detection — 3D navigation Ours 6.83 698 3.61 263 402 426 423  4.07
(multl-fscale Search-st?tegv) | SRR Learn o search y Vedion MSDLIT] 5.64 580 470 344 417 454 462 453
E‘,’C”S drfm Coar;e to '”‘]f >Ca fh i pearanee ol [ Ersre Span™ 527h Model | Ours 632 6.63 283 249 2586 346 321  3.77
>Cart 1arge SULSPAtes ITom e Seart conerence MSDL[1] 332 3.06 2.09 1.83 330 302 351 282
* Diverging trajectories signal absence Intelligent Artificial Agent STD
Ours 3.52 3.83 2.08 1.53 3.33 2.97 3.37 2.16
1. Multi-Scale Deep Reinforcement Learning 1 - - - - 10';
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Conclusion

* New learning paradigm for intelligent and robust multi-scale image parsing

* Learn multi-scale navigation paths instead of exhaustive scanning or regression
 Recognize if anatomy is missing and estimate body range based on present anatomy
* Significant improvement over state-of-the-art both in terms of accuracy and speed

e Model landmark location as multi-variate normal distribution: pi ~ N (s, %) Disclaimer
° RObUSt model fitting Wlth ra ndom 3-samp|es _ y|e|d Iargest consensus set: This feature is based on research, and is not commercially available. Due to regulatory reasons its future availability cannot be guaranteed.
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