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Abstract

In this paper, we propose a novel framework for detect-

ing multiple objects in 2D and 3D images. Since a joint

multi-object model is dif�cult to obtain in most practical sit-

uations, we focus here on detecting the objects sequentially,

one-by-one. The interdependence of object poses and strong

prior information embedded in our domain of medical im-

ages results in better performance than detecting the ob-

jects individually. Our approach is based on Sequential Es-

timation techniques, frequently applied to visual tracking.

Unlike in tracking, where the sequential order is naturally

determined by the time sequence, the order of detection of

multiple objects must be selected, leading to a Hierarchical

Detection Network (HDN). We present an algorithm that

optimally selects the order based on probability of states

(object poses) within the ground truth region. The posterior

distribution of the object pose is approximated at each step

by sequential Monte Carlo. The samples are propagated

within the sequence across multiple objects and hierarchi-

cal levels. We show on 2D ultrasound images of left atrium,

that the automatically selected sequential order yields low

mean detection error. We also quantitatively evaluate the

hierarchical detection of fetal faces and three fetal brain

structures in 3D ultrasound images.

1. Introduction

Multiple object detection has many applications in com-

puter vision systems, for example in visual tracking [15], to

initialize segmentation [20], or in medical imaging [2]. Fig-

ure 1 illustrates the two examples of multi-object detection

we are interested in. State-of-the-art approaches for multi-

object detection [5, 19, 9] rely on an individual detector for

each object class followed by post-processing to prune spu-

rious detections within and between classes. Detecting mul-

tiple objects jointly rather than individually has the advan-

Figure 1. Examples of multi-object detection: �ve landmarks of

left atrium (LA) apical two chamber (A2C) view (left) and 3D

ultrasound volume of fetal brain with three anatomies (right).

tage that the spatial relationships between objects can be

exploited. Since obtaining a joint model of multiple objects

is dif�cult in most practical situations, the multi-object de-

tection task has been solved by multiple individual object

detectors connected by a spatial model [4]. Relative loca-

tions of the objects provide constraints that help to make

the system more robust by focusing the search in regions

where the object is expected based on locations of the other

objects. The most challenging aspect of these algorithms is

designing detectors that are fast and robust, modeling the

spatial relationships between objects, and determining the

detection order. In this paper, we propose a multi-object

detection system that addresses these challenges.

The computational speed and robustness of our system

is increased by hierarchical processing. In detection, one

major problem is how to effectively propagate object can-

didates across the levels of the hierarchy. This typically in-

volves de�ning a search range at a �ne level where the can-

didates from the coarse level are re�ned. Incorrect selection

of the search range leads to higher computational speeds,

lower accuracy, or drift of the coarse candidates towards in-

correct re�nements. The search range in our technique is

part of the model that is learned from the training data. The

performance of our multi-object detection system is further

improved by starting from objects that are easier to detect
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and constraining the detection of the other objects by ex-

ploiting object con�gurations. The dif�culty of this strat-

egy is selecting the order of detections such that the overall

performance is maximized. Our detection schedule is de-

signed to minimize the uncertainty of the detections. Using

the same algorithm, we also obtain the optimal schedule of

the hierarchical scales.

Our approach is motivated by Sequential Estimation

techniques [8], frequently applied to visual tracking. In

tracking, the goal is to estimate at time t the object state

xt (e.g. location and size) using observations y0:t (object

appearance in video frames). The computation requires a

likelihood of a hypothesized state that gives rise to observa-

tions and a transition model that describes the way states are

propagated between frames. Since the likelihood models

in practical situations lead to intractable inference, approx-

imation by Monte Carlo methods, also known as particle

�ltering, have been widely adopted. At each time step t, the
estimation involves sampling from the proposal distribution

p(xtjx0:t�1;y0:t) of the current state xt conditioned on the

history of states x0:t�1 up to time t � 1 and the history of

observations y0:t up to time t.

We also use sequential Monte Carlo technique in multi-

object detection. We sample from a sequence of probabil-

ity distributions, but the sequence speci�es a spatial order

rather than a time order (Figure 2). The posterior distribu-

tion of each object pose (state) is estimated based on all ob-

servations so far. The observations are features computed

from image neighborhoods surrounding the objects. The

likelihood of a hypothesized state that gives rise to observa-

tions is based on a deterministic model learned using a large

annotated database of images. The transition model that de-

scribes the way the poses of objects are related is Gaussian.

Most object detection algorithms have focused on a �xed

set of object pose parameters that are tested in a binary clas-

si�cation system [17, 19]. Employing the sequential sam-

pling model allows us to use fewer samples of the object

pose and formally extend this class of algorithms to multi-

ple objects. This saves computational time and increases ac-

curacy since the samples are taken from the regions of high

probability of the posterior distribution. Many ideas from

the Sequential Sampling literature on visual tracking can

likely be extended to multi-object detection. In Section 4,

we will demonstrate the bene�t of the sampling when de-

tecting multiple landmarks in 2D images of the left atrium.

Unlike in tracking, where the sequential order is naturally

determined by the time progression, the order in multi-

object detection must be selected. In our algorithm, the or-

der is selected such that the uncertainty of the detections is

minimized. So, instead of using the immediate precursor in

the Markov process, the transition model could be based on

any precursor, which is optimally selected. This leads to a

Hierarchical Detection Network (HDN) 3. The likelihood

of a hypothesized pose is computed using a trained detec-

tor. The detection scale is introduced as another parameter

of the likelihood model and the hierarchical schedule is de-

termined in the same way as the spatial schedule.

The paper is organized as follows. We give an overview

of the background literature in Section 2. The sequential

multi-object detection algorithm is proposed in Section 3.

The algorithm is validated on a set of experiments presented

in Section 4. We conclude the paper in Section 5.

2. Background

A discrete set of object poses is tested for an object pres-

ence with a binary classi�er in many object detection al-

gorithms [17, 19]. Unlike these algorithms, that typically

sample the parameter space uniformly, we sample from a

proposal distribution [14] that focuses on regions of high

probability. This saves computational time as fewer sam-

ples are required and inreases robustness compared to the

case, where the same number of samples would be drawn

uniformly.

Multi-object detection techniques have focused on mod-

els that share features [16] or object parts [9]. This sharing

results in stronger models, yet in recent literature, there has

been a debate on how to model the object context in an ef-

fective way [7]. It has been shown that the local detectors

can be improved by modeling the interdependence of ob-

jects using contextual [6, 13, 12] and semantic information

[11]. In our Sequential Sampling framework, this interde-

pendence is modeled by a transition distribution, that spec-

i�es the �transition� of a pose of one object to a pose of

another object. This way, we make use of the strong prior

information present in medical images of human body. The

important questions are how to determine the size of the

context region (detection scale) and which objects to detect

�rst in an optimal way.

Multi-scale algorithms usually specify a �xed set of

scales with predetermined parameters of the detection re-

gions [1, 9]. Choosing the scale automatically has the ad-

vantage since objects have different sizes and the size of the

context neighborhood is also different. We propose a multi-

scale scheduling algorithm that is formulated in the same

way as the detection order scheduling.

The order of detection has been speci�ed by maximiz-

ing the information gain computed before and after the de-

tection measurement is taken [21] and by minimizing the

entropy of posterior belief distribution of observations [1].

Our scheduling criterion is based on probability of states

(object poses) within the ground truth region. Other mea-

sures could be used as well thanks to the �exible nature of

the Sequential Sampling framework.



3. Sequential Monte Carlo

The state (pose) of the modeled object t is denoted as

�t and the sequence of multiple object detections as �0:t =
f�0;�1; : : : ;�tg. In our case, �t = fp; r; sg denotes the

position p, orientation r, and size s of the object t. The

set of observations for object t are obtained from the im-

age neighborhood Vt. The neighborhood Vt is speci�ed by

the coordinates of a bounding box within an d-dimensional

image V , V : Rd ! [0; 1]. The sequence of observa-

tions is denoted as V0:t = fV0; V1; : : : ; Vtg. This is pos-

sible since there exists prior knowledge for determining the

image neighborhoods V0; V1; : : : ; Vt. The image neighbor-

hoods in the sequence V0:t might overlap and can have dif-

ferent sizes. An image neighborhood Vi might even be the

entire volume V . The observations Vt with a marginal dis-

tribution f(Vtj�t) describe the appearance of each object

and are assumed conditionally independent given the state

�t. The state dynamics, i.e. relationships between object

poses, are modeled with an initial distribution f(�0) and a

transition distribution f(�tj�0:t�1). Note that here we do

not use the Markov transition f(�tj�t�1).

V3

V2

V1

Vt

V0

V

Figure 2. In multi-object detection, the set of observations is a se-

quence of image patches. The sequence speci�es a spatial order

rather than a time order. The latter is typically exploited in track-

ing applications.

The multi-object detection problem is solved by recur-

sively applying prediction and update steps to obtain the

posterior distribution f(�0:tjV0:t). The prediction step com-

putes the probability density of the state of the object t using
the state of the previous object, t � 1, and previous obser-

vations of all objects up to t� 1:

f(�0:tjV0:t�1) = f(�tj�0:t�1)f(�0:t�1jV0:t�1): (1)

When detecting object t, the observation Vt is used to com-

pute the estimate during the update step as:

f(�0:tjV0:t) =
f(Vtj�t)f(�0:tjV0:t�1)

f(VtjV0:t�1)
; (2)

where f(VtjV0:t�1) is the normalizing constant.

As simple as they seem these expressions do not have

analytical solution in general. This problem is addressed by

drawingm weighted samples f�j0:t; w
j
tg

m
j=1 from the distri-

bution f(�0:tjV0:t), where f�j0:tg
m
j=1 is a realization of state

�0:t with weight wj
t .

In most practical situations, sampling directly from

f(�0:tjV0:t) is not feasible. The idea of importance sam-

pling is to introduce a proposal distribution p(�0:tjV0:t)
which includes the support of f(�0:tjV0:t).

In order for the samples to be proper [14], the weights

are de�ned as

~wj
t =

f(V0:tj�
j
0:t)f(�

j
0:t)

p(�j0:tjV0:t)

wj
t = ~wj

t=

mX
i=1

~wi
t: (3)

Since the current states do not depend on observations from

other objects then

p(�0:tjV0:t) = p(�0:t�1jV0:t�1)p(�tj�0:t�1; V0:t): (4)

The states are computed as

f(�0:t) = f(�o)

tY
j=1

f(�j j�0:j�1): (5)

Substituting (4) and (5) into (3), we have

~wj
t =

f(V0:tj�
j
0:t)f(�

j
0:t)

p(�j0:t�1jV0:t�1)p(�
j
t j�

j
0:t�1; V0:t)

(6)

= ~wj
t�1

f(V0:tj�
j
0:t)f(�

j
0:t)

f(V0:t�1j�
j
0:t�1)f(�

j
0:t�1)p(�

j
t j�

j
0:t�1; V0:t)

(7)

= ~wj
t�1

f(Vtj�
j
t )f(�

j
t j�

j
0:t�1)

p(�jt j�
j
0:t�1; V0:t)

: (8)

In this paper, we adopt the transition prior f(�jt j�
j
0:t�1)

as the proposal distribution. Hence, the importance weights

are calculated as:

~wj
t = ~wj

t�1f(Vtj�
j
t ): (9)

In future, we plan to design more sophisticated proposal

distributions to leverage relations between multiple objects

during detection.

When detecting each object, the sequential sampling

produces the approximation of the posterior distribution

f(�0:tjV0:t) using the samples from the detection of the pre-

vious object as follows:



1. Obtainm samples from the proposal distribution, �
j
t �

p(�jt j�
j
0:t�1).

2. Reweight each sample according to the importance ra-

tio

~wj
t = ~wj

t�1f(Vtj�
j
t ): (10)

Normalize the importance weights.

3. Resample the particles using their importance

weights to obtain the unweighted approximation of

f(�0:tjV0:t):

f(�0:tjV0:t) �

mX
j=1

wj
t �(�0:t � �

j
0:t); (11)

where � is the Dirac delta function.

3.1. The Observation and Transition Models

Let us now de�ne a random variable y 2 f�1;+1g,
where y = +1 indicates the presence and y = �1 absence

of the object. To leverage the power of a large annotated

dataset, we use discriminative classi�er (e.g. PBT [17]) in

the observation model:

f(Vtj�t) = f(yt = +1j�t; Vt); (12)

where f(yt = +1j�t; Vt) is posterior probability of object

presence at �t in Vt.
In tracking, often a Markov process is assumed for the

transition kernel f(�tj�0:t�1) = f(�tj�t�1), as time pro-

ceeds. However, this is too restrictive for multiple object

detection. The best transition kernel might stem from an

object different from the immediate precursor, depending

on the anatomical context. In this paper, we use a pairwise

dependency

f(�tj�0:t�1) = f(�tj�j); j 2 f0; 1; : : : ; t� 1g: (13)

Wemodel f(�tj�0:t�1) as a Gaussian distribution estimated

from the training data. We will show how to select the best

precursor j next.

3.2. Detection Order Selection

Unlike a video, where the observations arise in a natu-

rally sequential fashion, the spatial order in multi-object de-

tection must be selected. The goal is to select the order such

that the posterior probability P (�0:tjV0:t) is maximized.

Since determining this order has exponential complexity in

the number of objects, we adopt a greedy approach. We

�rst split the training data into two sets. Using the �rst

set, we train all object detectors individually to obtain pos-

terior distributions f(�0jV0); f(�1jV1); : : : ; f(�tjVt). The
second set is used for order selection as follows.

We aim to build a Hierarchical Detection Network

(HDN) from the order selection. As shown in Figure 3, the

HDN is a pairwise, feed-forward network. Note that the

cascade is a special case of HDN.

Suppose that we �nd the ordered detectors up to s � 1,
�(0); �(1); : : : ; �(s�1). We aim to add to the network the best

pair [s; (j)] (or feed-forward path) that maximizes the ex-

pected value of the following score S[s; (j)] over both s
and (j) computed from the second training set:

S[s; (j)] = (14)Z

�s2
(~�s)

�(0:s�1)2
(~�(0:s�1))

f(�(0:s�1)jV(0:s�1))f(�sj�(j))f(Vsj�s)d�sd�(0:s�1);

where 
(~�) is the neighborhood region around the ground

truth ~�. The expected value is approximated as the sample

mean of the cost computed for all examples of the second

training data set.

(0) (1) (s-2)

(2) (s-3)

(s-1)

s

Figure 3. Illustration of the Hierarchical Detection Network

(HDN) and order selection. See text for details.

3.3. Detection Scale Selection

Many previous object detection algorithms [17, 19] use

a single size of image neighborhoods fVig. Typically, this
size and corresponding search step need to be chosen a pri-

ori to balance the accuracy of the �nal detection result and

computational speed [1]. We propose to solve this problem

by hierarchical detection. During detection, larger object

context is considered at coarser image resolutions resulting

in robustness against noise, occlusions, and missing data.

High detection accuracy is achieved by focusing the search

in a smaller neighborhood at the �ner resolutions. Denoting

the scale parameter as � in HDN, we treat the scale param-

eter � as an extra parameter to �s and use order selection to

select � as well.

4. Experiments

Our experiments are on 2D ultrasound images of left

atrium and 3D ultrasound images of fetus. In both cases,

we test the automatic detection order / scale selection (Sec-

tion 3.2) and provide quantitative evaluation of the hierar-

chical detection (Section 3.3).



4.1. Sampling Strategy

In our �rst set of experiments, we detect �ve left atrium

landmarks of the left atrium (LA) endocardial wall in the

apical two chamber (A2C) view (Figure 1). The LA ap-

pearance is noisy since during imaging it is at the far end of

the ultrasound probe. The expert annotated �ve landmarks

in a total of 417 images. The size of the images is 120�120
pixels on average.

Three location detectors were trained independently us-

ing 281 images. The detection order for this experiment

was �xed: 09 ! 01 ! 05 (see Figure 6 for landmark

numbering). We test two different sampling strategies in

detection within 136 unseen images. In the �rst strategy,

we obtain N number of samples with the strongest weight.

In the second strategy, we obtain up toM = 2000 samples

with the strongest weight and perform k-means clustering

to get N number of modes. After each landmark detection,

these N samples are propagated to the next stage. The de-

tected location is obtained by averaging the N samples for

each landmark.

The number of samples, N , varies between 1 and 50.

For each setting, the detection algorithm was run to obtain

locations of the three landmarks. Mean of the 95% smallest

errors was computed by comparing the detected locations to

manual labeling. Figure 4 shows, that by using the k-means

sampling strategy, the errors are lower for all number of

samples. By focusing our representation on the modes of

the distribution, we avoid the explosion in the number of

samples that would otherwise be required [3, 18].
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Figure 4. Sampling by obtaining N number of samples with the

strongest weight or by usingN strongest k-means. By focusing on

the modes of the distribution, we can use small number of samples.

The mean detection error is smaller.

4.2. Detection Order Selection

In the next experiment, we evaluate the automatic de-

tection order strategy described in Section 3.2. The goal is

to automatically determine the detection order of �ve left

atrium landmarks (Figure 1). As before, the landmark de-

tectors are trained independently using 281 annotated im-

ages. Total of 46 annotated images from the testing data set

were used to obtain the detection order. The remaining 90

cases were used for detection and evaluation comparison.

Figure 5 shows the score value (normalized after each

step) plotted for each stage of the 100 random cases and the

automatically selected order. The greedy strategy selects

order with the highest score value at each step. The �nal

selection order or the HDN is shown in Figure 6.

The automatically selected sequential order is compared

to 100 randomly generated orders. For each order, we

record the �nal detection error averaged over all testing im-

ages and detected landmarks. We also compute score as the

probability of states in the ground truth region (Eq. 15) for

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Order selection stage

S
c
o

re

Figure 5. Selected order score values after each order selection

stage. The selected order (red) has high score values across all

stages. The two high score values in the �nal stage (see also Fig-

ure 7) have low scores at earlier stages. These detection orders

were therefore not selected by the automatic algorithm.

1313 0101

1717

0505

0909

01

05 09

13

17

Figure 6. The �nal automatically selected detection order. At �rst,

it might seem that landmarks 01 and 17 would be preferred over

landmarks 5 and 13 due to the higher distinctiveness of the region.

However, the high appearance variation of these landmarks causes

preference of landmarks 05 and 13.
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Figure 7. Comparing automatically selected order (red) to 100 ran-

domly selected orders. The �nal detection errors were averaged

over all testing images and detected landmarks. The score indi-

cates preference of a particular order. The automatically selected

order has a low mean detection error and a high score.

the �nal selection stage normalized by the maximum prob-

ability across all stages. The plot in Figure 7 shows, that the

automatically selected order has low mean error (among the

lowest when compared to the 100 random orders) and high

probability (among the highest). The order with the high-

est probability was not selected due to the greedy strategy.

This is because the probability of states near ground truth

was low at earlier order selection. Since in real detection

scenarios the ground truth is not available and sampling in

low-probability regions is not reliable, these sequential or-

ders are not preferred. Example detections are in Figure 10.

4.3. Brain Anatomies in 3d Ultrasound

Our next experiment is on detecting three fetal brain

structures in 3d ultrasound data. The output of the system is

a visualization of the plane with correct orientation and cen-

tering as well as biometric measurement of the anatomy. A

total of 589 expert-annotated images were used for train-

ing and 295 for testing. The volumes have average size

250 � 200 � 150 mm. We use three resolutions in a hi-

erarchical system shown in Figure 8.

Quantitative evaluation is in Table 1 and several exam-

ples of detected structures in Figure 11. The HDN average

detection error 2.2 mm is lower compared to 4.8 mm error

of a system without HDN.

4.4. Fetal Face in 3D Ultrasound

Our �nal experiment is on the detection of fetal face in

3d ultrasound volumes. A total of 962 images were used

in training and 48 in testing. The gestational age of the

CER 4 mmCER 4 mm CER 2 mmCER 2 mm CER 1 mmCER 1 mm

LV 2 mmLV 2 mm

CM 1 mmCM 1 mm

LV 1 mmLV 1 mm
Transventricular
plane

Transcerebellar
plane

LV

CER

CM

Figure 8. The detection order and the hierarchy of three brain

structures: Cerebellum (CER), Cisterna Magna (CM), and Lateral

Ventricles (LV). Scale selection is applied.

mean std median max # train # test

CER 2.289 0.884 2.213 4.197 589 295

CM 2.149 0.807 2.075 4.019 589 295

LV 2.245 0.817 2.154 3.891 589 295

CER 4.961 6.767 3.422 59.607 589 295

CM 4.989 6.832 3.519 68.679 589 295

LV 4.565 5.023 3.097 39.176 589 295
Table 1. Measurement errors of the hierarchical detection system

(top part of the table) compared to an earlier system without the

hierarchy [2]. Mean error, standard deviation, median error, and

maximum error are computed. The system was trained using num-

ber of volumes speci�ed in the 6th column and tested on the num-

ber of volumes speci�ed in the 7th column. The average detection

error using the hierarchy is 2.2 mm on data with 1 mm �nest res-

olution. The average error of the system without the hierarchy is

4.8 mm.

fetus ranged from 21 to 40 weeks. The average size of the

volumes is 157 � 154 � 104 mm. The major challenges of

this data set include varying appearance of structures due to

different developmental stage and changes in the face region

caused by movement of the extremities and umbilical cord.

The face was annotated by manually specifying mesh points

on the face region [10]. Bounding box of the mesh speci�es

the pose that are automatically determined by the detection

algorithm.

The system consists of three hierarchical levels with res-

olutions 4 mm, 2 mm, and 1 mm. The �nal training error

was 5.48 mm and testing error 10.67 mm. The previous ver-

sion of the system only operated on a single level of 1 mm

which resulted in higer training and testing errors (6.90 mm

and 14.10 mm respectively). Qualitative detection results

are in Figure 9.

5. Conclusion

We have presented a Sequential Monte Carlo based Hi-

erarchical Detection Network (HDN) for detecting multiple

objects. The order of detection is automatically determined

by a greedy algorithm that puts the most reliable detections

earlier in the detection sequence. The detectors are orga-



Figure 9. Example results of the fetal face detection using a hierar-

chy of three resolutions. Initial pose after loading the volume (top

row), after automatic detection at the �nest level (middle row),

and after volume carving of the region in front of the face (bottom

row).

nized in a multi-scale hierarchy with the scale parameter

included in the order selection process. We have shown the

effectiveness of the automatic order selection process on the

detection of �ve left atrium landmarks in 2D ultrasound im-

ages. The multi-scale hierarchical detectors have higher de-

tection accuracy than systems based on a single level as we

demonstrated on detection of fetal face and three fetal brain

structures in 3D ultrasound images.

The described framework opens up several possible av-

enues of future research. One area we are particularly in-

terested in is how to include dependence on multiple ob-

jects at each detection stage. This will result in a stronger

geometrical constraint and therefore improve performance

on objects that are dif�cult to detect by exploiting only the

pairwise dependence.
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Figure 10. Final sequential detection result (cyan) compared to ground truth (red). Notice that the landmarks are accurately detected despite

the noise, high appearance and shape variations, and shadowing effects. The landmark detection errors (in pixels) are shown below each

image in the left-bottom-right order.
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Figure 11. Final hierarchical detection (Figure 8) result (cyan) compared to ground truth (red). The last two columns show the agreement

of the detection plane in the sagittal and coronal cross section.
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