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Abstract. Recently, marginal space learning (MSL) was proposed as a generic
approach for automatic detection of 3D anatomical structures in many medical
imaging modalities [1]. To accurately localize a 3D object, we need to esti-
mate nine pose parameters (three for position, three for orientation, and three for
anisotropic scaling). Instead of exhaustively searching the original nine-dimen-
sional pose parameter space, only low-dimensional marginal spaces are searched
in MSL to improve the detection speed. In this paper, we apply MSL to 2D object
detection and perform a thorough comparison between MSL and the alternative
full space learning (FSL) approach. Experiments on left ventricle detection in 2D
MRI images show MSL outperforms FSL in both speed and accuracy. In addi-
tion, we propose two novel techniques, constrained MSL and nonrigid MSL, to
further improve the efficiency and accuracy. In many real applications, a strong
correlation may exist among pose parameters in the same marginal spaces. For
example, a large object may have large scaling values along all directions. Con-
strained MSL exploits this correlation for further speed-up. The original MSL
only estimates the rigid transformation of an object in the image, therefore can-
not accurately localize a nonrigid object under a large deformation. The proposed
nonrigid MSL directly estimates the nonrigid deformation parameters to improve
the localization accuracy. The comparison experiments on liver detection in 226
abdominal CT volumes demonstrate the effectiveness of the proposed methods.
Our system takes less than a second to accurately detect the liver in a volume.

1 Introduction

Efficiently detecting an anatomical structure (e.g., heart, liver, and kidney) in medi-
cal images is often a prerequisite for the subsequent procedures, e.g., segmentation,
measuring, and classification. Albeit important, automatic object detection is largely
ignored in previous work. Most existing 3D segmentation methods focus on boundary
delineation using active shape models (ASM) [2], active appearance models (AAM) [3],
and deformable models [4] by assuming that a rough pose estimate of the object is avail-
able. Sometimes, heuristic methods may be used for automatic object localization by
exploiting the domain specific knowledge [5]. As a more generic approach, the discrim-
inative learning based method has been proved to be efficient and robust for many 2D
object detection problems [6]. In this method, object detection is formulated as a clas-
sification problem: whether an image block contains the target object or not. To build
a robust system, a classifier only tolerates limited variation in object pose. The object
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Fig. 1. Object localization using marginal space learning [1].

is found by scanning the classifier exhaustively over all possible combinations of po-
sition, orientation, and scale. Since both learning and searching are performed in the
full pose parameter space, we call this method full space learning (FSL). This search
strategy is different from other parameter estimation approaches, such as deformable
models [4], where an initial estimate is adjusted (e.g., using the gradient descent tech-
nique) to optimize a predefined objective function. Exhaustive search makes the learn-
ing based system [6] robust under local minima. However, the number of testing hy-
potheses increases exponentially with respect to the dimension of the parameter space.
We cannot directly apply FSL to 3D object detection since the pose parameter space
for a 3D object has nine dimensions: three for position, three for orientation, and three
for anisotropic scaling. Recently, we proposed an efficient learning-based technique,
marginal space learning (MSL), for 3D object detection [1]. MSL performs parameter
estimation in a series of marginal spaces with increasing dimensionality. To be specific,
the task is split into three steps: object position estimation, position-orientation estima-
tion, and position-orientation-scale estimation (as shown in Fig. 1). Instead of exhaus-
tively searching the original nine-dimensional parameter space, only low-dimensional
marginal spaces are searched in MSL. Mathematical analysis shows that MSL can re-
duce the number of testing hypotheses by about six orders of magnitude [1], compared
to a naive implementation of FSL.

MSL was originally proposed for efficient 3D object detection. Due to the huge
number of hypotheses, FSL does not work for a 3D object detection problem. There-
fore, there is no direct comparison experiment between MSL and FSL. The comparison
on computation time of MSL and FSL in [1] was based on mathematical analysis. In
this paper, we apply MSL to 2D object detection to estimate five object pose parameters
(two for translation, one for orientation, and two for anisotropic scaling). In this low-
dimensional space, it is possible to apply FSL with a coarse-to-fine strategy to achieve
a reasonable detection speed. FSL is currently the state-of-the-art for 2D object detec-
tion [6]. There is a wide interest for a direct comparison between FSL and MSL. As a
contribution of this paper, we perform a thorough comparison experiment on left ven-
tricle (LV) detection in 2D magnetic resonance images (MRI). The experiment shows
that MSL significantly outperforms FSL on both speed and accuracy.

In terms of computational efficiency, MSL outperforms a brute-force full space
search by a significant margin on 3D object detection. However, it still has much room
for improvement since the pose subspaces are exhaustively searched, though in a lower
dimension. The variations of the object orientation and its physical size are normally
bounded. The distribution range of a pose parameter can be estimated from the training
set. During searching, each parameter is independently sampled within its own range
to generate testing hypotheses [1]. Each of the three subspaces (the translation, orien-
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Fig. 2. Object localization using full space learning with a coarse-to-fine strategy.

tation, and scale spaces) is exhaustively sampled without considering the correlation
among parameters in the same space. However, in many real applications, the pose pa-
rameters are unlikely to be independent. For example, a large object (e.g., the liver of
an adult) is likely to have larger scales than a small object (e.g., the liver of a baby)
in all three directions. Independent sampling of each parameter results in much more
testing hypotheses than necessary. Because the detection speed is roughly proportional
to the number of testing hypotheses, reducing the hypotheses can speed up the system.
In this paper, we propose to further constrain the search space using an example-based
strategy to exploit the correlation among object pose parameters. Using constrained
marginal space learning, we can further improve the detection speed by an order of
magnitude. Besides speed-up, constraining the search to a small valid region can re-
duce the likelihood of detection outliers, therefore improve the detection accuracy.

The original MSL was proposed to estimate the rigid transformation (translation,
rotation, and scaling) of an object [1]. To better localize a nonrigid object, we may need
to further estimate its nonrigid deformation. In this paper, we apply the marginal space
learning principle to directly estimate the nonrigid deformation parameters. Within the
steerable feature framework [1], we propose a new sampling pattern to efficiently incor-
porate nonrigid deformation parameters into the image feature set. These image features
are used to train a classifier to distinguish a correct estimate of the deformation param-
eters from the wrong estimates.

In summary, we make three major contributions in this paper.
1. We perform a thorough comparison experiment between MSL and FSL on 2D ob-

ject detection. The experiment shows that MSL outperforms FSL on both speed
and accuracy.

2. We propose constrained MSL to further reduce the search spaces in MSL, therefore
improve the detection speed by an order of magnitude.

3. We propose nonrigid MSL to directly estimate nonrigid deformation parameters of
an object to improve the localization accuracy.

2 Full Space Learning vs. Marginal Space Learning

2.1 Full Space Learning

Object detection is equivalent to estimating the object pose parameters in an image. As a
straightforward application of a learning-based approach [6], we can train a discrimina-
tive classifier that assigns a high score to a hypothesis that is close to the true object pose
and a low score to those far away. During testing, we need to exhaustively search the



Table 1. Parameters for full space learning. The “# Hyph” columns show the number of hypotheses for each parameter. The
“Step” columns show the search step size for each parameter. The “# Total Hyph” column lists the total number of hypotheses
tested by each classifier. The “# Preserve” column lists the number of candidates preserved after each step.

X Y θ Sx a # Total Hyph # Preserve
# Hyph Step # Hyph Step # Hyph Step # Hyph Step # Hyph Step

Ccoarse 36 8 23 8 18 20o 15 16 6 0.2 1,341,360 10,000
Cbootstrap

coarse 1 8 1 8 1 20o 1 16 1 0.2 10, 000× 1 200
C1

fine 3 4 3 4 3 10o 3 8 3 0.1 200× 243 100
C2

fine 3 2 3 2 3 5o 3 4 3 0.05 100× 243 100

full parameter space (i.e., all possible combinations of position, orientation, and scale)
to generate testing hypotheses. Suppose there are P pose parameters and parameter i is
discretized to Hi values, the total number of testing hypotheses is H1 ×H2 . . .×HP .
Each hypothesis is then tested by the trained classifier to get a score and the hypothe-
sis with the highest score is the best estimate of the pose parameters. (Please refer to
Fig. 9 of [1] for an illustration of the basic idea). Since both learning and searching are
performed in the full parameter space, we call it full space learning (FSL).

Due to the exponential increase of hypotheses w.r.t. the dimension of the parameter
space, the computation demand of this naive implementation of FSL for 3D object
detection is well beyond the current personal computers. For 2D object detection, we
only need to estimate five object pose parameters, (X, Y, θ, Sx, Sy), with (X, Y ) for the
object position, θ for orientation, and (Sx, Sy) for anisotropic scaling. (Alternatively,
we can use the aspect ratio a = Sy/Sx to replace Sy as the last parameter.) A coarse-
to-fine strategy can be exploited to accelerate the detection speed. The system diagram
for left ventricle (LV) detection in 2D MRI images is shown in Fig. 2. In this particular
implementation, in total, we train four classifiers.

At the coarse level, we use large search steps to reduce the total number of test-
ing hypotheses. For example, the search step for position is set to eight pixels and the
orientation search step is set to 20 degrees to generate 18 hypotheses for the whole ori-
entation range. Even with these coarse search steps, the total number of hypotheses can
easily exceed one million. As shown by the row labeled “Ccoarse” in Table 1, in total,
we search 36 × 23 × 18 × 15 × 6 = 1, 341, 360 hypotheses at the coarse level. A
classifier is trained to distinguish the hypotheses close to the ground truth from those
far away. Interested readers are referred to [1, 6] for more details about the training of
a classifier. Each hypothesis is then tested using the trained Ccoarse classifier and the
top 10,000 candidates are preserved. A bootstrapped classifier Cbootstrap

coarse can be further
exploited to reduce the number of candidates to 200.

As shown in Fig. 2, we use two iterations of fine level search to improve the es-
timation accuracy. In each iteration, the search step for each parameter is reduced
by half. Around a candidate, we search three hypotheses for each parameter. In to-
tal, we search 35 = 243 hypotheses around each candidate. Therefore, for the first
fine classifier C1

fine, in total we need to test 200 × 243 = 48, 600 hypotheses. We
preserve the top 100 candidates after the first fine-search step. After that, we reduce
the search step by half again to start the second round refinement. The number of hy-
potheses and search step sizes for each classifier are listed in Table 1. In total, we test
1, 341, 360 + 10, 000 + 46, 800 + 23, 400 = 1, 424, 260 hypotheses.



2.2 Marginal Space Learning

Instead of exhaustively searching the full parameter space directly, MSL splits the
task into three steps: object position estimation, position-orientation estimation, and
position-orientation-scale estimation (as shown in Fig. 1). For each step, we train a
classifier to assign a high score to a correct hypothesis. After each step, only a limited
number of hypotheses are obtained for the following processing. Please refer to [1] for
more details about MSL.

Following is an analysis on the number of testing hypotheses for MSL on LV de-
tection in 2D MRI images. First all pixels are tested using the trained position classifier
and the top 1000 candidates, (Xi, Yi), i = 1, . . . , 1000, are kept. Next, the whole ori-
entation space is discretized under the resolution of five degrees, resulting in 72 orien-
tation hypotheses. Each position candidate is augmented with all orientation hypothe-
ses, (Xi, Yi, θj), j = 1, . . . , 72. The trained position-orientation classifier is used to
prune these 1000 × 72 = 72, 000 hypotheses and the top 100 candidates are retained,
(X̂i, Ŷi, θ̂i), i = 1, . . . , 100. Similarly, we augment each position-orientation candidate
with a set of hypotheses about scaling. For LV detection, we have 182 scale combina-
tions, resulting in a total of 100× 182 = 18, 200 hypotheses. The position-orientation-
scale classifier is then used to pick the best hypothesis. For a typical image of 300×200
pixels, in total, we test 300×200+1000×72+100×182 = 150, 200 hypotheses. For
comparison, a total of 1,424,260 hypotheses need to be tested in FSL. Since the speed
of the system is roughly proportional to the number of hypotheses, MSL is about an
order of magnitude faster than FSL.

3 Constrained Marginal Space Learning

In this section, we present our approach to effectively constraining the search of MSL in
all three subspaces (i.e., translation, orientation, and scale spaces) for further speed-up
in 3D object detection.

Due to the heterogeneity in scanning protocol, the position of an object may vary
significantly in a volume. As shown in Fig. 6, the first volume focuses on the liver, while
the second volume captures almost the full torso. A learning based object detection
system [1, 6] normally tests all voxels as hypotheses of the object center. Therefore,
for a big volume, the number of hypotheses is quite large. It is preferable to constrain
the search to a smaller region. The challenge is that the scheme should be generic and
works for different application scenarios. In this paper, we propose a generic way to
constrain the search space. Our basic assumption is that, to study an organ, normally
we need to capture the whole organ in the volume. Therefore, the center of the organ
cannot be arbitrarily close to the volume border. As shown in Fig. 3a, for each training
volume, we can measure the distance of the object center (e.g., the liver in this case) to
the volume border in six directions (e.g., X l for the distance to the left volume border,
Xr for right, Y t for top, Y b for bottom, Zf for front, and Zb for back). The minimum
value (e.g., X l

min for the left margin) for each direction can be easily calculated from
a training set. These minimum margins define a region (the white box in Fig. 3b) and
we only need to test voxels inside the region for the object center. Using the proposed
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Fig. 3. Constraining the search for object center in a volume, illustrated for liver detection in a CT
volume. (a) Distances of the object center to the volume borders. (b) Constrained search space
(the region enclosed by the white box) based on the minimum distances to the volume borders.
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Fig. 4. Example-based selection of testing hypotheses. (a) Uniformly sampled hypotheses, shown
as black ‘+’s. (b) After processing the first training sample. The blue dot shows the ground truth
and the circle shows the neighborhood range. All hypotheses inside the circle (represented as red
squares) are added to the testing hypothesis set. (c) The testing hypothesis set after processing
five training samples.

method, on average, we get rid of 91% of voxels for liver detection (see Section 5.2),
resulting in a speed-up in position estimation about 10 times.

In many applications, the orientation of an object is also constrained. Three Euler
angles were used to represent the 3D orientation in [1]. The distribution range for an
Euler angle can be calculated on a training set. Each Euler angle is then sampled in-
dependently within its own range to generate testing hypotheses. However, since the
Euler angles are unlikely to be independent in a real application, sampling each Eu-
ler angle independently generates far more hypotheses than necessary. To constrain the
search space, we should estimate the joint distribution of orientation parameters using
the training set. We then generate hypotheses only in the region with a large probabil-
ity. However, it is not trivial to estimate the joint probability distribution reliably since,
usually, only a limited number of training samples (a couple of hundreds or even less)
are available. In this paper, we propose to use an example-based strategy to generate
testing hypotheses. The procedure is as follows (also illustrated in Fig. 4),
1. Uniformly sample the parameter space with a certain resolution r to generate Su.



2. Set the selected hypothesis set St to empty.
3. For each training sample, its neighboring samples in Su (with a distance no more

than d to it) are added into St. Here, neighborhood size d should be large enough,
otherwise, there may be no sample satisfying the condition. In our experiments, we
set d = r.

4. Remove redundant elements in St to get the final testing hypothesis set St.

Using a discretization resolution of 9.72 degrees, we get Su of 7416 samples uni-
formly distributed in the whole orientation space [7]. On a dataset of 226 abdominal
computed tomography (CT) volumes, St of the liver orientation has only 42 unique ori-
entations, which is much smaller than Su (7416) and also smaller than the number of the
training volumes (226). For comparison, if we sample each Euler angle independently
under the same resolution, we get 2,686 hypotheses for orientation.

A big object normally has large scaling values along all three directions. Therefore,
the same technique can also be applied to constrain the scale space by exploiting the
strong correlation among three scaling parameters. On the same liver dataset, if we
uniformly sample each scale independently using a resolution of 6 mm, we get 1,664
hypotheses. Using our example-based strategy, we only need 303 hypotheses to cover
the whole training set.

4 Nonrigid Marginal Space Learning

The original MSL [1] only estimates the rigid transformation for object localization. In
many cases, we want to delineate the nonrigid boundary of an organ. For this purpose,
the mean shape was aligned with the estimated object pose as an initial rough estimate
of the shape in [1]. The active shape model (ASM) was then exploited to deform the
initial shape to achieve the final boundary delineation. Since ASM only converges to a
local optimum, the initial shape needs to be close to the true object boundary. Other-
wise, the deformation is likely to get stuck in a wrong configuration. This problem is
manifest in liver segmentation since the liver is the largest organ in human body and it
is cluttered with several other organs (e.g., heart, kidney, stomach, and diaphragm). As
a soft organ, it deforms significantly under the pressure from the neighboring organs.
As noted in [8], for a highly deformable shape, the pose estimation can be improved by
further initialization. In this paper, we propose nonrigid MSL to directly estimate the
nonrigid deformation of an object for better shape initialization.

There are many ways to represent a nonrigid deformation. We use the statistical
shape model [2] since it can capture the major deformation modes with a few parame-
ters. To build a statistical shape model, we need N shapes and each is represented by M
points with correspondence in anatomy. Stacking the 3D coordinates of these M points,
we get a 3M dimensional vector Xi, i = 1, 2, . . . , N , to represent a shape. To remove
the relative translation, orientation, and scaling, we first jointly align all shapes using
generalized Procrustes analysis [2] to get the aligned shapes xi, i = 1, 2, . . . , N . The
mean shape x̄ is calculated as the simple average of the aligned shapes, x̄ = 1

N

∑N
i=1 xi.

The shape space spanned by these N aligned shapes can be represented as a linear space
with K = min{3M − 1, N − 1} eigen vectors, V1, . . . , VK , based on principal compo-
nent analysis (PCA) [2]. A new shape y in the aligned shape space can be represented



as

y = x̄ +
K∑

i=1

ciVi + e, (1)

where ci the so-called PCA coefficient, and e is a 3M dimensional vector for the resid-
ual error. Using the statistical shape model, a nonrigid shape can be represented para-
metrically as (T,R, S, c1, . . . , cK , x̄, e), where T,R, S represents the translation, ro-
tation, and scaling to transfer a nonrigid shape in the aligned shape space back to the
world coordinate system.

With this representation, we can convert the segmentation (or boundary delineation)
problem to a parameter estimation problem. Among all these parameters, x̄ is fixed and
e is sufficiently small if K is large enough (e.g., with enough training shapes). The orig-
inal MSL only estimates the rigid part (T,R, S) of the transformation. Here, we extend
MSL to directly estimate the parameters for nonrigid deformation (c1, . . . , cK). Given
a hypothesis (T,R, S, c1, . . . , cK), we train a classifier based on a set of image features
F to distinguish a correct hypothesis from a wrong one. The image features should be a
function of the hypothesis, F = F (T,R, S, c1, . . . , cK), to incorporate sufficient infor-
mation for classification. Steerable features were proposed in [1] to efficiently embed
the object pose information into the feature set. The basic idea of steerable features
is to steer (translate, rotate, and scale) a sampling pattern w.r.t. the testing hypothesis.
On each sampling point, 24 local image features (e.g., intensity and gradient) are ex-
tracted. A regular sampling pattern was used in [1] to embed the object pose parameters
(T,R, S). Here, we need to embed the nonrigid shape parameters ci, i = 1, . . . ,K, into
the sampling pattern too. For this purpose, we propose a new sampling pattern based on
the synthesized nonrigid shape. Each hypothesis (T,R, S, c1, . . . , cK) corresponds to a
nonrigid shape using the statistical shape model (see Eq. (1)). We use this synthesized
shape as the sampling pattern and extract the local image features on its M points, re-
sulting in a feature pool with 24 ×M features. If the hypothesis is close to the ground
truth, the sampling points should be close to the true object boundary. The image fea-
tures (e.g., gradient of the image intensity) extracted on these sampling points can help
us to distinguish it from a wrong hypothesis where the sampling points are far from the
object boundary and likely to lie in a smooth region. Similar to [1], we use the boosting
technique to learn the classifier.

Due to the exponential increase of testing hypotheses, we cannot train a mono-
lithic classifier to estimate all nonrigid deformation parameters simultaneously. Using
the marginal space learning principle, we split the nonrigid deformation parameters
into groups and estimate them sequentially. To be specific, we train a classifier in the
marginal space of (T,R, S, c1, c2, c3), where (c1, c2, c3) correspond to the top three
deformation modes. Given a small set of candidates after position-orientation-scale es-
timation, we augment them with all possible combinations of (c1, c2, c3) and use the
trained nonrigid MSL classifier to prune these hypotheses to a manageable number. In
theory, we can apply the MSL principle to estimate more and more nonrigid deforma-
tion parameters sequentially. In practice, we find that with the increase of the dimen-
sionality of the marginal spaces, the classifier is more likely to over-fit the data due to
the limited number of training samples. No significant improvement has been achieved
by estimating more than three nonrigid deformation parameters.



Fig. 5. Left ventricle detection results on 2D MRI images. Red boxes show the ground truth,
while cyan boxes show the detection results.

Table 2. Comparison of marginal space learning (MSL) and full space learning (FSL) for LV bounding box detection in 2D
MRI images on both the training (400 images) and test (395 images) sets. The errors are measured in millimeters.

Training Set Test Set
Center-Center Distance Vertex-Vertex Distance Center-Center Distance Vertex-Vertex Distance
Mean Median Mean Median Mean Median Mean Median

Full Space Learning 9.73 1.79 17.31 5.07 43.88 21.01 63.26 46.49
Marginal Space Learning 1.31 1.15 3.09 2.82 13.49 5.77 21.39 10.19

5 Experiments

5.1 Left Ventricle Detection in 2D MRI Images

In this experiment, we quantitatively evaluate the performance of marginal space learn-
ing (MSL) and full space learning (FSL) for left ventricle (LV) detection in 2D MRI
images. We collect 795 images of the LV long-axis view. Among them, 400 images are
randomly selected for training and the remaining 395 images are reserved for testing.
Two error measurements are used for quantitative evaluation, the center-center distance
and the vertex-vertex distance (which is defined as the mean Euclidean distance be-
tween the corresponding vertices of the box). Table 2 shows detection errors of the LV
bounding box obtained by MSL and FSL. It is quite clear that MSL achieves much
better results than FSL. The mean center-center and vertex-vertex errors on the test set
are 13.49 mm and 21.39 mm for MSL, respectively, which are about one third of the
corresponding errors of FSL. MSL was originally proposed to accelerate 3D object de-
tection [1]. In this comparison experiment, we find it also significantly improves the
accuracy for 2D object detection.



Table 3. Comparison of unconstrained and constrained MSL on the number of testing hypotheses and computation time for
liver detection in CT volumes.

Unconstrained MSL [1] Constrained MSL
#Hypotheses Speed #Hypotheses Speed

Position ∼403,000 2088.7 ms ∼38,000 167.1 ms
Orientation 2686 2090.0 ms 42 59.5 ms

Scale 1664 1082.8 ms 303 243.7 ms
Overall 6590.8 ms 470.3 ms

Table 4. Comparison of constrained MSL and nonrigid MSL against the baseline version [1] on liver detection in 226 CT
volumes. “Constrained + Nonrigid MSL” is the version combining both constrained MSL and nonrigid MSL. Average point-
to-mesh error Ep2m (in millimeters) of the initialized shape is used for evaluation.

Mean Standard Deviation Median
Unconstrained MSL [1] 7.44 2.26 6.99

Constrained MSL 7.12 2.15 6.73
Constrained + Nonrigid MSL 6.65 1.96 6.25

MSL is faster than FSL since much fewer hypotheses need to be tested. On a com-
puter with a 3.2 GHz processor and 3 GB memory, the detection speed of MSL is about
1.49 seconds/image, while FSL takes about 13.12 seconds to process one image.

5.2 Liver Detection in 3D CT Volumes

In this experiment, we compare constrained MSL and nonrigid MSL against the base-
line version [1] on liver detection in 226 3D CT volumes. Our dataset is very challeng-
ing (including both contrasted and non-contrasted scans) because the volumes come
from diverse sources. After object localization, we align the mean shape (a surface
mesh) with the estimated transformation. Similar to [1], the accuracy of the initial shape
estimate is measured with the symmetric point-to-mesh distance Ep2m. We can then de-
form the mesh to fit the image boundary to further reduce the error. In this paper, we
focus on object localization. Therefore, in the following we only measure the error of
the initialized shapes for comparison purpose.

The detection speed of MSL is roughly proportional to the number of testing hy-
potheses. The analysis presented in Section 3 shows that constrained MSL significantly
reduces the number of testing hypotheses. Table 3 shows the break-down computa-
tion time for all three steps in MSL (see Fig. 1). Overall, constrained MSL uses only
470.3 ms to process one volume, while unconstrained MSL uses 6590.8 ms. Using
constrained MSL, we achieve a speed-up by a factor of 14. Constrained MSL also im-
proves detection accuracy marginally. Since we constrain the search to a smaller but
more meaningful region, the likelihood of detection outliers is reduced. As shown in
Table 4, constrained MSL reduces the mean Ep2m error from 7.44 mm to 7.12 mm, and
the median error from 6.99 mm to 6.73 mm, in a three-fold cross-validation.

To further reduce the initialization error, we estimate three more nonrigid deforma-
tion parameters (top three PCA coefficients) to improve the object localization accu-
racy. As shown in the last row of Table 4, combining nonrigid MSL with constrained
MSL, we can further reduce the average Ep2m to 6.65 mm (about 11% improvement
compared to the original error of 7.44 mm).



(a) Initialization by constrained+nonrigid MSL for example 1.

(b) Final segmentation result for example 1.

(c) Initialization by constrained+nonrigid MSL for example 2.

(d) Final segmentation result for example 2.

Fig. 6. Typical liver segmentation results on two CT volumes. From left to right: transversal,
sagittal, and coronal views.

Fig. 6 shows typical liver segmentation results on two volumes. Accurate boundary
delineation is achieved starting from the good initial estimate of the shape achieved by
the proposed method. After applying the learning-based non-rigid deformation estima-
tion method [1], we achieve a final Ep2m error of 1.45 mm on 226 CT volumes (based
on a three-fold cross-validation), which compares favorably with the state-of-the-art [9].
Our overall system runs as fast as ten seconds per volume (1 s for object localization
using constrained+nonrigid MSL and 9 s for boundary delineation), while the state-of-
the-art solutions take at least one minute [10], often up to 15 minutes [8,11], to process
a volume.

6 Conclusion

In summary, we made three major contributions in this paper. First, we performed a
direct comparison experiment between MSL and FSL on 2D object detection, which



shows that MSL outperformed FSL on both speed and accuracy. Second, a novel con-
strained MSL technique was introduced to reduce the search space. Based on the statis-
tics of the distance from the object center to the volume border, we proposed a generic
method to effectively constrain the object position space. Instead of sampling each ori-
entation and scale parameter independently, an example-based strategy is used to con-
strain the search to a small region with a high distribution probability. Last, nonrigid
MSL was proposed to directly estimate the nonrigid deformation parameters to im-
prove the localization accuracy for a nonrigid object. Comparison experiments on liver
detection demonstrated the effectiveness of both the constrained and nonrigid versions
of MSL.
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