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Abstract—Robust and fast solutions for anatomical object
detection and segmentation support the entire clinical workflow
from diagnosis, patient stratification, therapy planning, inter-
vention and follow-up. Current state-of-the-art techniques for
parsing volumetric medical image data are typically based on
machine learning methods that exploit large annotated image
databases. There are two main challenges that need to be
addressed, these are the efficiency in processing large volumetric
input images and the need for strong, representative image
features. When the object of interest is parametrized in a high
dimensional space, standard volume scanning techniques do not
scale up to the enormous number of potential hypotheses and
representative image features are subject to significant efforts of
manual engineering. We propose a pipeline for object detection
and segmentation in the context of volumetric image parsing,
solving a two-step learning problem: anatomical pose estimation
and boundary delineation. For this task we introduce Marginal
Space Deep Learning (MSDL), a novel framework exploiting both
the strengths of efficient object parametrization in hierarchical
marginal spaces and the automated feature design of Deep
Learning (DL) network architectures. Deep learning systems au-
tomatically identify, disentangle and learn explanatory attributes
directly from low-level image data, however their application in
the volumetric setting is limited by the very high complexity of
the parametrization. More specifically 9 parameters are necessary
to describe a restricted affine transformation in 3D (3 for
each location, orientation, and scale) resulting in a prohibitive
number of scanning hypotheses, in the order of billions for
typical sampling. The mechanism of marginal space learning
provides excellent run-time performance by learning classifiers
in clustered, high-probability regions in spaces of gradually
increasing dimensionality, for example starting from location
only (3D) to location and orientation (6D) and full parameter
space (9D). Given the structure localization, we estimate the 3D
shape through non-rigid, DL-based boundary delineation in an
Active Shape Model (ASM) framework. In our system we learn
sparse adaptive data sampling patterns which replace manually
engineered features by automatically capturing structure in
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the given data. This is also a type of model simplification,
ensuring significant computational improvements and preventing
overfitting. Experimental results are presented on detecting and
segmenting the aortic valve in ultrasound using an extensive
dataset of 2891 volumes from 869 patients, showing significant
improvements of up to 45.2% over the current methods. To our
knowledge, this is the first successful demonstration of the DL
potential to detection and segmentation in full 3D data with
parametrized representations.

Index Terms—Deep learning, sparse representations, marginal
space learning, three-dimensional (3D) object detection and
segmentation, image parsing.

I. INTRODUCTION

THE performance of machine learning algorithms depends
on the underlying data representation and implicitly on

the quality of the extracted features [1]. Designing strong
and robust features that are able to compactly capture the
information encoded in the given data is a particularly difficult
task [2], [3], [4], [5]. In practice, this requires complex data
preprocessing pipelines that do not generalize well between
different image modalities or learning tasks. The reason for
that is that most of these systems are manually engineered for
specific applications and rely exclusively on human ingenuity
to disentangle and understand prior information hidden in the
data in order to design the required features [1], [6].

Specifically in the context of volumetric image parsing,
machine learning is used to estimate the pose and nonrigid
shape deformation of arbitrary 3D objects [5]. Here, the task of
feature engineering becomes increasingly complex. A solution
is required for efficient feature extraction, especially under
challenging transformations such as arbitrary orientations, in
order to support the efficient scanning of parameter spaces. In
addition, these features need to be powerful and distinctive,
regardless of the image modality and data complexity. For
robust parameter estimation, scanning the parameter space
exhaustively is not feasible, since in a volumetric setting
the object pose is defined in a 9D parameter space. Such a
task surpasses the capabilities of current consumer machines,
creating also a need for a solution to effectively explore such
high-dimensional spaces.

In this work we overcome these challenges by proposing a
feature-learning-based framework to support the efficient 3D
segmentation of arbitrary anatomical structures. For this we
formulate a two-step approach using deep learning (DL) as a
powerful solution for joint feature learning and task learning
in each step: object localization and boundary estimation.

c© 2016 IEEE
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Fig. 1. Schematic overview of the complete proposed pipeline. The informa-
tion about the object location is used to initialize a mean shape which in the
second stage is deformed using learning to describe the true boundary.

To tackle the 3D object detection problem, we propose
Marginal Space Deep Learning (MSDL), an efficient archi-
tecture that exploits the advantages of both deep learning and
Marginal Space Learning (MSL) [5]. Marginal space learning
reduces the estimation of the rigid transformation parameters
to learning in parameter spaces of increasing dimensionality,
focused on high probability regions. We propose a unified
representation learning approach based on deep learning in
each marginal space. First the location is estimated (3D space),
then the location and orientation (6D space) and finally the
complete transformation with the anisotropic scale (9D space).
Since positives are usually clustered in dense regions of
each space, the underlying sample set is very unbalanced.
To account for this, we introduce a novel filtering cascade
to balance the training data.

Given the object pose we can compute an initial estimate of
the nonrigid shape. We then propose an deep-learning-based
active shape model (ASM) [7] to guide the shape deformation
(see Figure 1).

Focusing on the learning engine proposed in each of these
two steps, representation learning through deep learning serves
as a powerful solution against the limitations of handcrafted
features [1], [5]. This type of system is based on a different
learning paradigm, modeling the underlying task and the fea-
ture extraction as a joint automatic process, compared to tra-
ditional approaches which decouple the feature extraction task
as an independent, complex, manual prerequisite. Hierarchical
representations modeled by deep neural networks (DNN) [1]
such as Deep Convolutional Neural Networks (CNN) [8], Deep
Belief Networks (DBN) [9], Restricted Boltzmann Machines
(RBM) [10] or Stacked Denoising Autoencoders (SDAE) [11]
are very popular in this context, outperforming state-of-the-art
solutions for a wide range of problems [9], [12], [13], [14].

However, anchored in the field of computer vision, the
current applications of these architectures are focused on
pixel(voxel)-wise classification in 2D or 2.5D data, with no
generic extension supporting the parsing of large volumetric
images. Capturing the complex appearance of 3D structures
and ensuring the efficient scanning of high-dimensional pa-
rameter spaces are not straightforward, given the increased
number of parameters to describe the pose and nonrigid
deformation of an object. To account for this we propose novel
sparse adaptive deep neural networks (SADNN) for learning
parametrized representations from 3D medical image modal-
ities and supporting the efficient scanning of large parameter
spaces in the context of image parsing. In our system we
learn sparse, adaptive sampling patterns which simplify the
learning model, replacing the typical, manually engineered
feature patterns [2], [3], [4], [5]. Through the permanent

elimination of connections during training in the first layer of
the network, the data sampling pattern is gradually structured
around input voxels that are important for the learning task.

We validate our approach on the problem of detecting
and segmenting the aortic heart valve in 3D ultrasound data.
Several solutions for this problem have been presented in the
literature: non-learning-based approaches for 3D echocardio-
graphic images [15] and CT angiography [16], and a machine
learning driven approach - the MSL framework [5] for 3D
ultrasound [17] and 4D cardiac CT [18]. We selected this
framework as a state-of-the-art reference in the evaluation,
given the extensive experiments presented in previous works
and excellent results achieved on large patient sets. In this
sense we provide a comprehensive quantitative comparison
between our framework and this reference, using a dataset
of 2891 volumes from 869 patients. For completion, we also
present an indirect comparison to [16], [19].

This paper represents an extended version of our initial
work [20]. In summary, our contributions from [20] and
presented here in greater detail, are the following:
• We present a novel method for injecting sparsity in deep

neural networks to learn sparse, adaptive sampling pat-
terns which enable the computational efficiency necessary
for scanning large spaces. Note that this is different
from typical weight-dropping methods. We learn sparse,
adaptive structures in the data by dropping up to 90% of
the input.

• Based on this method, we present MSDL, a novel frame-
work combining the computational benefits of MSL with
the potential of DL technology, to estimate the pose of
arbitrary 3D anatomical structures.

Building upon these techniques, our additional contributions
in this paper are the following:
• We propose the integration of MSDL with a novel, DL-

based active shape model, enabling the automatic, non-
rigid shape segmentation of arbitrary anatomical struc-
tures in the context of volumetric image parsing.

• We include a comparison of our proposed architecture
with the state-of-the-art convolutional neural network. In
this context we also present experiments highlighting the
differences between these two architectures.

• We provide a comprehensive performance evaluation for
the detection and segmentation of the aortic valve using
an extensive dataset from 869 patients, with images
acquired from different vendors.

This complete pipeline represents, to the best of our knowl-
edge, the first DL-based approach in literature, that is focused
towards parametrized detection and segmentation of arbitrary
shapes in the context of volumetric image parsing.

The remaining paper is organized as follows. In Section II
we review previous work on object localization and nonrigid
shape estimation methods and also provide a motivation. In
Section III we present our approach for generic 3D detection
and segmentation using deep learning. Section IV shows the
experiments we perform for validation. Finally, Section V
concludes our paper.
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II. BACKGROUND AND MOTIVATION

Parsing volumetric medical image data is a challenging
problem, approached only marginally in literature [5], [21]. It
subsumes the robust detection, segmentation and recognition
of objects contained in a volume, a particularly difficult task
for arbitrary 3D anatomical structures considering the variance
in location, the nonrigid nature of the shape as well as
the differences in anatomy among different cases [5]. Many
solutions focus mainly on the segmentation task, proposing
methods for nonrigid boundary delineation based on Active
Shape Models [7], [22], Active Appearance Models [23],
Active Contour Evolution and Level Sets [24], [25], Markov
Random Fields [26] and deformable models [19], [27], [28].
For the automatic parsing of volumetric data, in particular for
the segmentation of arbitrary anatomical structures, a robust
and efficient solution is required for localizing the object of
interest.

A. Object Localization: Challenges

Given the complexity of nonrigid 3D shapes parametrized in
high-dimensional spaces, fitting the shape model without any
prior information extracted from the pose of the object, is not
always feasible. As such, an essential step towards an accurate
segmentation is the robust localization of structures (of the ob-
jects directly or of important anatomical landmarks). Initially
introduced in the 2D context [3], [4], machine learning can be
used for the efficient and robust localization of objects. In these
approaches, object localization is formulated as a patch-wise
classification problem. A parametric space is defined based on
the parameters encoding the pose of the object. The space is
then quantized to a large set of discrete hypotheses, which are
used for learning. In the detection phase, the trained classifier
is used to scan the parametric space and assign a score for
each hypothesis, regarding the highest scoring hypothesis to be
the detection result. The main advantage of such an approach
is the robustness towards local optima which comes at a
high computational cost associated with the space scanning.
However, extending the logic to 3D is not straightforward
since the number of hypotheses increases exponentially with
respect to the dimensionality of the parameter space. This
space becomes nine-dimensional when associated with a 3D
restricted affine transformation, three parameters to define the
position, three to define the orientation, and three to define
the anisotropic scale of the object. Even with a very coarse
discretization of d = 10 possible outcomes for each parameter,
the number of hypotheses residing in that space will be as high
as d9 = 1, 000, 000, 000, virtually impossible to evaluate on
any current consumer machine. In consequence, a solution is
needed to efficiently explore such high-dimensional spaces.

Considering the learning task itself in this high dimensional
space, we emphasize the limitations of handcrafted features in
capturing the variability of such complex data. For an accurate
detection, the used features need to be powerful and robust to
effectively represent the underlying phenomena. This property
should hold regardless of the image modality, with no prior as-
sumptions based on the appearance of the anatomy. Moreover,
turning the focus on the feature extraction in the context of

parametric space scanning, computational efficiency becomes
critical. Features need to be efficiently computed also under
challenging transformations such as arbitrary orientations or
scales, without explicitly transforming the data. For example
standard features such as local scale-invariant features [2],
Haar wavelet features [4] or gradient based features [3] are
not feasible in such a complex setup, lacking the required
efficiency. On the other hand, steerable features as proposed
by Zheng et. al. [5] can be efficiently evaluated under the
assumed transformations, but are subject to the limitations of
manual engineering, relying exclusively on human ingenuity,
regardless of the underlying data. As such, there is a clear
need for a mechanism to develop representative features which
overcome the limitations of handcrafting methods and are fast
to evaluate under any transformations.

B. Nonrigid Segmentation: Challenges

Even with an accurate object localization, the model fit-
ting, i.e. the segmentation of the target structure, remains
a challenging task given the nonrigid nature of the shape.
Non-learning based boundary delineation methods represent
a strong alternative (see for example [7], [15], [16], [19],
[22], [23], [26], [28]) since they do not require large image
databases for the model estimation and can also achieve
accurate results both in 2D [29] and 3D [19]. However, they
also suffer from a series of limitations in handling the frequent
noise present in the data and in generalizing among different
image modalities or anatomical structures. Machine learning is
proposed as a solution to these challenges [5], [30]. In the 3D
case, steerable features [5] have been proposed as a powerful
and efficient handcrafted solution, supporting the learning-
based shape segmentation using image evidence. Nonetheless,
as argued in the context of object localization challenges, we
can identify also here a need to address the limitations of
handcrafted features.

III. METHOD

In this section we present a solution to all the aforemen-
tioned challenges, a novel feature-learning-based framework
for parsing volumetric images split in a two-stage approach:
anatomical object localization and nonrigid shape estimation.
For the first task, we present Marginal Space Deep Learning
(MSDL), a solution exploiting the computational benefits
of Marginal Space Learning (MSL) [5] and the automated,
self-learned feature design of Deep Learning (DL). For the
segmentation task we propose a learning based Active Shape
Model (ASM) using a deep-learning-based system to guide
the shape deformation.

A. Deep Learning: An Overview

Deep Learning (DL) is a rapidly developing technology in
the machine learning community addressing the limitations of
handcrafted features by proposing an automated feature design
learned directly from the data [12]. In the last years DL has
shown a remarkable impact on a wide range of applications
like speech recognition, natural language processing, transfer
learning and in particular object recognition.
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The breakthrough started in the computer vision community
on the classification of natural images, where DL solutions [9],
[12], [14] significantly surpassed the performance of the well-
established state-of-the-art support vector machines. Further
improvements were made through the introduction of the
dropout regularization technique [13] or the OverFeat frame-
work [31], an efficient multiscale, sliding-window approach
for scanning. In the context of face recognition and classifica-
tion the performance-boost of the DeepFace [32] platform over
the state-of-the-art is by more the 27%, closely approaching
human-level performance. These advancements also echoed
in the medical image processing field, where transfer learning
through DL enabled the application of this technology, given
the overall, very limited availability of medical images [33].
For example, DL models pre-trained on natural images achieve
accurate results for the localization of structures in fetal
ultrasound data [34] or the identification of different types
of pathologies in chest X-ray images [35]. Moreover, in the
context of medical image segmentation, recent DL-based solu-
tions for pixel-wise classification [29], [36] have significantly
outperformed the state-of-the-art.

To the best of our knowledge no solutions are focused yet
on the 3D context. This task is either approached through
fusion of 2D features [37], sampling of random 2D planar ob-
servations [38] or through hypothesized extensions of readily
available 2D methods [29] based on voxel-wise classification.
In this paper we make a first step towards applying DL for
efficient detection and segmentation in 3D with parametrized
representations.

B. Deep Neural Networks

At the core of deep learning systems are deep neural net-
works (DNN) - powerful, automated feature-learning engines,
built on hierarchies of data representations [8], organized as a
series of inter-connected neural layers. From a functional point
of view, the network is designed to emulate the functionality
of the brain, building with every layer of neurons more
abstract data representations, which are useful for better under-
standing the hidden structure and semantics of the input [1].
An essential step towards successfully training deep neural
networks comes with the introduction of the unsupervised
layer-wise pre-training algorithm [9]. Pre-trained layers can
also be stacked to build deep, unsupervised models used to
generate insightful representations of the data, for example
Deep Autoencoders [39], Deep Belief Networks [9] or Deep
Boltzmann Machines [40].

In our model we reduce both the detection and segmentation
to a patch-wise classification task described by a set of m
parametrized input patches ~X (i.e. observations) with a cor-
responding set of class assignments ~y, specifying whether the
sought anatomical structure is contained in the patch or not. In
a representation learning approach such inputs are processed to
abstract higher-level data representations using the inter-neural
connections, defined as kernels under non-linear mappings.
In this work, we focus on fully connected neural networks,
meaning that the size of the filters is equal to the size of the un-
derlying representations. From the perspective of one arbitrary

Input 

+1 +1 +1 

Output 

𝑤 𝑤 

Fig. 2. Example of a fully connected neural network with 3 layers. Every
neuron in a layer is connected to all neurons in the previous layer.

neuron, this means that it is connected to all neurons in the
previous layer (see Figure 2). Using this knowledge, we can
define a deep fully connected DNN with the parameters (~w,~b),
where ~w = (~w1, ~w2, · · · , ~wn)

> represents the parameters of
all n concatenated kernels over the layers of the network,
i.e. the weighted connections between neurons, and ~b encodes
the biases of the neurons. We mention that in this case n
represents also the number of neurons in the network, in other
words there is a one-to-one association between neuron and
kernel (proof is intuitive). For computing the response or so
called activation of one arbitrary neuron, a linear combination
is computed between the weights of all incoming connections
and the activations of all neurons from where the incoming
connections originate. The bias of this neuron is added on this
value, which is then transformed by a nonlinear mapping to
obtain the activation value. In mathematical terms, from the
perspective of the k-th neuron in the network, its activation
value ok is given by:

ok = δ
(
x>k wk + bk

)
, (1)

where δ represents a non-linear activation function, wk the
weights of incoming connections, xk the activations of the
connected neurons from the previous layer and bk the bias of
the neuron. If the neuron is part of the first layer, xk is given
by the voxel values, i.e. the input data.

C. Training Deep Models

Turning the focus on the activation function δ, used to
synthesize the input information, it can be shown that dif-
ferent functions relate to different learning problems. Possi-
ble functions are the identity function, rectified linear units
(ReLU), the hyperbolic tangent or the sigmoid function.
For our experiments we use the sigmoid function defined
as δ(y) = 1/(1 + e−y), building through our network a
multivariate logistic regression model for classification. Later
in the experiment part we justify our choice and argue why
the sigmoid activation function is more adequate in our setup.

Defining the network response function as R( · ; ~w,~b), we
use it to approximate the probability density function over the
class labels, given an input sample:

R(x(i); ~w,~b) ≈ p(y(i)|x(i); ~w,~b), 1 ≤ i ≤ m. (2)

Given the supervised setup and considering the independence
of the input observations, we can use the Maximum Likelihood
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Estimation (MLE) method to learn the network parameters in
order to maximize the likelihood function:(

~̂w,~̂b
)
= argmax

~w,~b
L(~w,~b; ~X)

= argmax
~w,~b

m∏
i=1

p(y(i)|~x(i); ~w,~b),
(3)

where m represents the number of training samples. In other
words we estimate the network parameters such that for
every training sample x(i) the network predicts with high
confidence its true class label y(i) (1 ≤ i ≤ m). This is
equivalent to minimizing a cost function C( · ) quantifying
how well the network prediction matches the expected output,
i.e. the true label. We use the L2 penalty function, reducing
the maximization problem defined in Eq. 3 to the following
minimization problem:(

~̂w,~̂b
)
= argmin

~w,~b

[
C( ~X; ~w,~b) = ‖R( ~X; ~w,~b)− ~y‖22

]
. (4)

We solve this with the Stochastic Gradient Descent (SGD)
method. Using a random set of samples X̃ from the training
input, a feed-forward propagation is performed to compute
the network response R(X̃; ~w,~b). Denoting ~w(t) and ~b(t)
the network parameters in the t-th optimization step, they are
updated according to the following rule:

~w(t+ 1) = ~w(t)− η∇wC(X̃; ~w(t),~b(t))

~b(t+ 1) = ~b(t)− η∇bC(X̃; ~w(t),~b(t)),
(5)

where ∇ denotes the gradient of the cost function with
respect to the network parameters and η the magnitude of
the update, i.e. the learning rate. To compute the gradient
we use the backpropagation algorithm [41], which computes
∇wC(X̃; ~w(t),~b(t)) and ∇bC(X̃; ~w(t),~b(t)) layer by layer
from the last layer to the first in a straightforward manner,
given the chain structure of R. We refer to X̃ as one batch
of samples. One complete batch-wise iteration over the entire
training data, with a parameter update at each step (see Eq. 5),
is considered one training epoch. To train a powerful network
based on this approach, many epochs are required (up to 300
in our experiments).

However, using this kind of technology straightforwardly
to scan large parameter spaces for object localization and
boundary delineation in the 3D context is not feasible. En-
suring the robustness of the network and also the training and
testing efficiency represents a challenging task. Specifically
in the volumetric setting, the parametrized input samples can
become very large (boxes enclosing larger objects can reach
sizes of 503 voxels). As such, a solution is required to handle
the data-sampling/feature-computation task, especially under
challenging transformations such as different orientations.
Moreover, overfitting represents a common issue, given the
large number of parameters in the low-level kernels.

D. Sparse Adaptive Deep Neural Networks

We address these challenges by proposing a novel method
for layer sparsification inspired by the fundamental work of
Lecun et al. [8], which conjectures that most neural networks

Algorithm 1 Learning algorithm with iterative threshold-
enforced sparsity

1: Pre-training using all weights ~w(0) ← ~w (small # epochs)
2: Initialize sparsity map ~s (0) with ones
3: t← 1
4: for training round t ≤ T do
5: for all filters i with sparsity do
6: ~s

(t)
i ← ~s

(t−1)
i + remove smallest active weights

7: ~w
(t)
i = ~w

(t−1)
i � ~s (t)

i

8: Normalize active coeff. s.t. ‖~w(t)
i ‖1 = ‖~w(t−1)

i ‖1
9: end for

10: ~b(t) ← ~b(t−1) (copy current biases)
11: Train network on active weights (small # epochs)
12: t← t+ 1
13: end for
14: Sparse kernels: ~ws ← ~w(T )

15: Biases: ~bs ← ~b(T )

Learned sparse 
sampling 
pattern 

Sample 

Output 

Sparse 
fully-connected 

layer 

Sequence of fully-
connected layers with 

decreasing number of units 

Sample 

Uniform  
sampling 
pattern 

After training Before training 

Fig. 3. Visualization of the difference between uniform/handcrafted feature
patterns and self-learned, sparse, adaptive patterns.

are over-parametrized for their learning task. This especially
holds for the non-convolutional fully connected deep networks
we use, where kernels capture full representations in their field
of view. As such we propose to apply sparsity as a means to
simplify the neural network, aiming for computational effi-
ciency and to avoid overfitting (see Figure 3). In other words,
we permanently eliminate filter weights, while approximating
as well as possible the original filter response. Viewing the
system as a whole we aim to find a sparsity map ~s for the
network weights ~w, such that over T training rounds, the
response residual ε given by:

ε = ‖R(X; ~w,~b)−R(X; ~ws,~bs)‖ (6)

is minimal, where ~bs denotes the biases of neurons in the
sparse network and ~ws denotes the learned sparse weights,
determined by the sparsity map ~s with si ∈ {0, 1},∀i. To
achieve this, we propose a greedy, iterative learning process
by gradually dropping neural connections which minimally
impact the network response (see Algorithm 1).

The pre-training stage is designed to induce a certain degree
of structure in the filters, prior to eliminating coefficients. Our
sparsity injection method is applied over a predefined number
of T training rounds. In each round t we greedily select
a percentage of the absolute smallest active weights of the
considered filters and permanently remove the corresponding
neural connections from the network (set them to zero with the
updated mask ~s (t)). We approximate the original response for
any given filter i by preserving its L1-norm (see Algorithm 1).
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In the last step of each iteration the supervised training is
continued on the remaining active connections, guiding the
recovery of the neurons from the missing information by
minimizing the original network loss function (see step 11
of Algorithm 1):(

~̂w(t),~̂b(t)
)
= arg min

~w: ~w(t)

~b:~b(t)

C( ~X; ~w,~b), (7)

where ~w(t) and ~b(t) (computed from the values in round t−1)
are used as initial values in the optimization step.

As such, our system learns highly sparse features with
adaptive structure. On the lowest level we learn adaptive,
sparse data patterns which capture essential structures in the
data, explicitly discarding input with minimal impact on the
network response function R (see Figure 3). In our approach
special focus is dedicated to how many active weights are
set to zero in one training round. This number decreases
with the training rounds, more specifically, in later stages of
the training exponentially less filter weights are set to zero.
This is intuitive, since the fewer weights in one particular
kernel, the harder it is for that kernel to recover after a
new sparsity enforcement step. The resulting adaptive sparse
patterns overcome the limitations of manually pre-defined
sampling patterns used in handcrafted features [2], [3], [4],
[5], eliminating all together the need for feature engineering.
We emphasize here that in our experiments the computed
patterns can reach sparsity levels of 90− 95%, meaning that
only 5− 10% of the weights of the low-level, fully-connected
kernels can approximate the original network response R.
Moreover, the sparse network even outperforms the original
model on unseen data since the sparsity acts as regularization
and reduces the likelihood of overfitting during training.
We call this type of networks: sparse adaptive deep neural
networks (SADNN).

1) Comparison to Deep Convolutional Neural Networks:
Among existing deep learning architectures, deep convolu-
tional neural networks show great computational efficiency
using concepts like kernel weight sharing and pooling (see [8],
[13] for more details). In the following we provide a brief
theoretical comparison of our proposed SADNN architecture
to the state-of-the-art CNN architecture, showing that the latter
cannot straightforwardly address the computational challenges
associated with scanning large volumetric spaces. For this we
choose a set of criteria to highlight the differences:

Sampling-layer: We emphasize that the input to the net-
work is particularly large in the volumetric setting, for example
a 50 × 50 × 50 patch contains 125, 000 input voxels. While
a SADNN indexes only a small fraction of the voxels using
sparse, adaptive patterns with up to 95% sparsity, the CNN
indexes every single input voxel multiple times, proportionally
to the size of the convolution kernel. This brings a consider-
able speed-wise increase in terms of sampling effort for the
SADNN (around 2 orders of magnitude, depending on the
sparsity of the patterns and the size of the convolution kernels).

Dropout/Activation-sparsity: While we did not apply the
dropout technique [42] or any other regularization methods
used in state-of-the-art models, the SADNN incorporates the

benefits of connection dropping and activation-sparsity by
explicitly enforcing sparsity in the network and guiding the re-
maining neurons to learn to cope with the missing connections.
The sparsity acts as regularization and reduces the likelihood
of overfitting (see evaluation).

Translation Invariance: At the core of the CNN architec-
ture is the translation invariance of the learned kernels. Using
the concept of weight sharing, a kernel can detect features
at any position in the input field. SADNNs do not have this
advantage at patch level, however when scanning the input
space each sparse pattern is invariant to the location of the
patch, detecting features at any position in the input (same as
in the case of CNN kernels).

Pooling: An advantage of the CNN architecture compared
to SADNN is the use of pooling operations, a translation
invariant operation reducing the dimensionality of the data
representations.

Kernel Structure: In terms of filter structure, both sparse
adaptive patterns and CNN kernels are based on local cor-
relation between pixels/voxels. The difference is that the
latter maintains the squared structure throughout the learning
process whereas the adaptive patterns change the structure by
explicitly dropping connections.

In the experiments section we show a performance compar-
ison of these two types of architectures which reveals that in
practice the SADNN is around 2 orders of magnitude faster.
However in our future work we will continue to seek solutions
to address these computational limitations and integrate the
CNN in our framework either as a standalone classifier or as
part of a hybrid CNN-SADNN architecture.

E. Marginal Space Deep Learning

As briefly introduced in the motivation in Section II, we
model the pose of the sought object by using a bounding box,
defined by 9 parameters: ~T = (tx, ty, tz) for the translation,
~R = (φx, φy, φz) for the orientation and ~S = (sx, sy, sz)
for the anisotropic scaling of the object. Given a volumetric
image I, we propose to find the pose of the sought object by
maximizing the posterior probability defined as:(

~̂T, ~̂R, ~̂S
)
= arg max

~T ,~R,~S
p(~T , ~R, ~S|I). (8)

We estimate this probability using the introduced sparse,
adaptive deep neural network R(X; ~ws,~bs), where ~ws and ~bs
are the weight and bias vectors of the sparse network. Scanning
over the entire space of possible transformations is however
not feasible, given the prohibitive number of hypotheses which
grows exponentially with respect to the dimensionality of the
parameter space. This number reaches the order of billions
even for a very coarse discretization for each parameter. In
this context we propose Marginal Space Deep Learning, a
solution exploiting the computational benefits of Marginal
Space Learning (MSL) [5] and the automated feature design
and efficiency of the SADNN architecture. Instead of scanning
the entire 9D space exhaustively, the search is performed in
clustered, high-probability regions of increasing dimensional-
ity, starting in the position space, extending to the position-
orientation space and finally to the full 9D space, including
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Fig. 4. Schematic visualization of the marginal space deep learning frame-
work. The black/white dots encode the sparse sampling patterns.

also the anisotropic scaling information of the object. For
this purpose we reformulate the original optimization problem
presented in Eq. 8 by factorizing the posterior probability:(

~̂T, ~̂R, ~̂S
)
= arg max

~T ,~R,~S
p(~T |I)p(~R|~T , I)p(~S|~T , ~R, I)

= arg max
~T ,~R,~S

p(~T |I)p(
~T , ~R|I)
p(~T |I)

p(~T , ~R, ~S|I)
p(~T , ~R|I)

,

(9)

where the probabilities p(~T |I), p(~T , ~R|I) and p(~T , ~R, ~S|I)
are defined in the previously enumerated spaces of increasing
dimensionality, also called marginal spaces. As such, we
reduce our problem to learning classifiers in these marginal
spaces and then scanning each space exhaustively to estimate
in turn the position, orientation and scale of the object. This
is possible by modeling each learning space as a set of
sample hypotheses, positives and negatives used for training.
For example, after learning the translation parameters in the
translation space UT (I), only the positive hypotheses with
highest probability, clustered in a dense region are aug-
mented with discretized orientation information, to build the
joint translation-orientation space UTR(I). The same principle
applies when extending to the full 9D space UTRS(I). In
mathematical terms, the stage-wise optimization is defined by:(

~̂T,UTR(I)
)
← argmax

~T
R
(
UT (I); ~ws,~bs

)
(
~̂T, ~̂R,UTRS(I)

)
← argmax

~T ,~R
R
(
UTR(I); ~ws,~bs

)
(
~̂T, ~̂R, ~̂S

)
← arg max

~T ,~R,~S
R
(
UTRS(I); ~ws,~bs

)
,

(10)

whereR( · ; ~ws,~bs) denotes the response of the sparse adaptive
deep neural network, learned from the supervised training data
( ~X, ~y). The same steps are performed also in the detection
phase, using as input a single volumetric image. This type
of approach brings a speed-up of 6 orders of magnitude
compared to the exhaustive search in the 9D space (see proof
in [5]), based on a dense discretization for each parameter.
The pipeline is visualized in Figure 4.

1) Efficient Hypotheses Filtering: One important particular-
ity of the learning task in each marginal space is the high class-
imbalance. In parametric space this is explained by the limited
range of possible positions, orientations or scales of the object

Algorithm 2 Negative sample filtering algorithm
1: P - set of positive samples
2: N - set of negative samples (|P | << |N |)
3: while |N | ≥ 1.5× |P | do
4: Learn shallow SADNN using Algorithm 1
5: d← largest decision boundary with FNR = 0
6: Filter N based on d - eliminate true negatives
7: end while

Balanced 
Sample Set 

rejected  
negatives rejected  

negatives 
rejected  

negatives 

positive 
hypotheses positive 

hypotheses 
 
 
 

 
shallow 

sparse net 

Imbalanced Training Set 

positives negatives 

+  
 
 

 
shallow 

sparse net 

 
 
 

 
shallow 

sparse net 

Fig. 5. Schematic visualization of the negative-sample filtering cascade used
to balance the training set. The black/white dots encode the sparse sampling
patterns of the shallow nets.

of interest, assuming a predetermined patient pose or image
acquisition protocol. In practice, this imbalance can reach
ratios of 1 : 1000 positive to negative samples, impacting both
the training efficiency and stochastic sampling of the gradient
during learning, resulting in a bias of the classifier towards
the overrepresented negative class. While over/undersampling
methods can be used in this context, the typical solution for
this problem, as proposed by Ciresan et al. [43], is based
on a re-weighting scheme of the network penalty to account
for the imbalance ratio of the dataset. However, this type
of approach does not address the computational challenges
associated with processing such large amounts of training sam-
ples (in particular negative hypotheses), and also re-weighting
the cost function can further worsen the vanishing gradient
effect. Furthermore, most of these negative hypotheses are very
easy to classify showing characteristics that are fundamentally
different from the ones of positive examples. Using deep
architectures with complex features to classify such simple
hypotheses might lead to overfitting during training, affecting
the performance of the classifier in difficult cases.

To account for all these issues, we propose a different
approach based on a cascade of shallow neural networks used
to efficiently and effectively filter the negative hypotheses. In
each stage of the cascade we train a shallow, sparse neural
network and adaptively tune its decision boundary to eliminate
as many true negative hypotheses from the training set as
possible. The remaining hypotheses, classified as positives, are
propagated to the next stage of the cascade where the same
filtering step is applied until the training set is balanced (see
Figure 5 and Algorithm 2). Note that in each stage of the
cascade, the underlying set of hypotheses used for training is
unbalanced. We manually ensure that each batch of B samples
used to estimate the gradient is balanced, by independently and
randomly sampling B/2 positives respectively negatives from
the training set.

Using this type of cascaded approach requiring only sim-
ple low-level features to filter the sample set represents an
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essential step towards a competitive run-time performance
(both during training and testing). Reducing the size of the
sample set processed by the main classifier in each stage from
|N |+ |P | to approximately 3×|P | improves the scanning per-
formance by an additional 2 orders of magnitude (depending
on the imbalance ratio).

F. Nonrigid Deformation Estimation

The automatic object localization using MSDL is followed
in the second stage by the nonrigid deformation estimation
of the object. The mean shape, computed based on the
groundtruth data, is aligned to the estimated pose and then
deformed to fit the object boundary. Based on the underlying
image information, an active shape model can be used for the
deformation process. However, the original approach based on
energy deformation [7] is not feasible in a 3D setup where the
image information and the boundary context are very complex.
Learning based approaches have been introduced and been
proven successful in solving this problem in 2D [30], [44]
and 3D [5]. More specifically, a classifier labeled as boundary
detector is trained at specific anatomical locations to detect the
shape boundary based on local evidence, i.e. decide whether
there is a boundary point at a given position, under a given
orientation. To avoid the complexity associated with the image
or feature pattern rotation, Zheng et. al. [5] propose steerable
features combined with the Probabilistic Boosting Tree [45]
to efficiently tackle the problem in the 3D context.

However, as argued in Section II, handcrafted features are
based on strong prior assumptions and do not generalize
well between different modalities or anatomical structures. We
address this by proposing the SADNN (with negative filter-
ing cascade) as a boundary classifier to automatically learn
adaptive, sparse feature sampling patterns directly from low-
level image data. Essentially, for a given control point of the
warping mesh, we are dealing with the same problem as faced
in the joint translation-orientation space, in the localization
stage. Here we ask the question: Is there a boundary point at
position ~T = (tx, ty, tz) and orientation ~R = (φx, φy, φz)?
The position ~T and orientation ~R is given by the current
sample along the normal for the respective shape point. This
is a classification problem and can be solved using the same
mechanism used in the second stage (the joint translation-
orientation learning space) of the MSDL framework. Train-
ing is performed by using positive samples on the current
ground-truth boundary for each mesh point (aligned with the
corresponding normal) and using negative samples at various
distances from the boundary. The sparse adaptive patterns are
essential in efficiently applying this classifier under arbitrary
orientations, emphasizing relevant anatomical structures.

The iterative process is illustrated in Figure 6. The boundary
estimation is followed by constraining the deformed shape
to the space of shapes corresponding to the current object.
We use statistical shape modeling for the constraint, where
we estimate from the training set the linear shapes subspace
through principal components analysis and online we project
the current shape into this subspace using the learned linear
projector. The process of boundary estimation and shape con-

deep 
sparse 
net 

sparse 
cascaded nets 

Enforce 
Shape Constraint 

Boundary Estimation 

Generated 
Hypotheses 

Fig. 6. Schematic visualization of the boundary deformation with SADNN.
Starting from the current shape, the SADNN is aligned and applied along
the normal for each point of the mesh, the boundary is deformed and
projected under the current shape space. The process is iteratively repeated.
The black/white dots encode the sparse patterns, learned in the cascaded
shallow networks and deep boundary classifier.

straint enforcement are iteratively applied for a number of pre-
determined iterations or until there are no large deformations.

IV. EXPERIMENTS

In order to validate our approach we compare the perfor-
mance against the state-of-the-art Marginal Space Learning
solution [5] on detecting and segmenting the aortic valve (root)
in 3D transesophageal echocardiogram (TEE) images. The
aortic root connects the ascending aorta to the left ventricular
outflow tract and is represented through a tubular grid (see
Figure 9). This is a particularly challenging task, considering
the high variation in anatomical appearance of the valve, the
heart-motion and implicitly motion of the valve-leaflets and
also the image quality limitations, i.e. noise in ultrasound
images.

A. Dataset

The dataset used for evaluation stems from 869 patients and
contains 2891 3D TEE volumes from different vendors. The
size and resolution of the images vary from 100 × 100 × 50
to 250×250×150 voxels and 0.75 to 1 mm. In terms of pre-
processing, we resampled all images to an isotropic resolution
of 3 mm for the object localization task and mean shape
initialization, and normalized the intensity of each volume to
unit-range.

The validation setup is the same for both approaches and
is based on a random split of the volumes in 2481 training
and 410 testing volumes (about 84%− 16%). At patient level
this results in 719 patients in the training set and 150 patients
in the test set. Note that the split is made at patient-level,
meaning that for any given patient, all corresponding frames
are either in the training or the testing set. This ensures an
unbiased comparison of the two approaches.

Ground truth was obtained through extensive manual an-
notation using a smart editing process performed by experts
(see [17] for more details). The aortic root contour is modeled
with a pseudo-parallel slice based method using cutting planes
distributed equidistantly along the centerline of the structure.
To account for the bending of the shape, the normal of each
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TABLE I
COMPARISON OF THE PERFORMANCE OF THE STATE-OF-THE-ART MSL [5] AND THE PROPOSED MSDL FRAMEWORK FOR AORTIC VALVE DETECTION.

THE MEASURES USED TO QUANTIFY THE QUALITY OF THE RESULTS W.R.T TO THE GROUND TRUTH DATA ARE THE ERROR OF THE POSITION OF THE BOX
AND MEAN CORNER DISTANCE (BOTH MEASURED IN MILLIMETRES). THE SUPERIOR RESULTS ARE DISPLAYED IN BOLD.

Position Error [mm] Corner Error [mm]

Training Data Test Data Training Data Test Data

MSL MSDL MSL MSDL MSL MSDL MSL MSDL

Mean 3.12 1.47 3.34 1.83 5.42 2.80 6.16 3.72

Median 2.80 1.27 3.05 1.58 4.98 2.58 5.85 3.34

STD 1.91 0.99 1.85 1.31 2.47 1.23 2.31 1.74

plane is aligned to the tangent of the centerline of the tubular
structure. The defined nonrigid shape is guided to delineate
the boundary of the aortic valve and then used to extract
the ground truth for the global location model. Centered at
the barycenter of the aortic valve, the ground truth bounding
box is scaled to capture the complete underlying anatomy and
aligned according to the orientation of the commissural plane
and interconnection point of the left and right leaflets. As such,
the pose of the 3D bounding box is fully determined. For a
complete definition of the aortic model please see the work of
Ionasec et al. [17].

B. Aortic Valve Detection and Segmentation in 3D US

Detecting the aortic valve resumes to finding the 9 param-
eters describing its position, orientation and scale in the 3D
space. The detected bounding box is then used to initialize a
mean shape which in both approaches is guided using learning
to fit the true boundary. Given the aforementioned validation
setup, both MSDL and MSL frameworks are optimized to
achieve maximum performance.

1) Model Selection and Meta-parameters: We used a grid
search to estimate both the meta-parameters related to the
hypotheses generation and augmentation in each marginal
space, as well as the network dependent parameters, i.e.
network architecture, number of hidden units, learning rate
and sparsity levels of the sampling patterns. To highlight
the benefits of using sparse sampling patterns we compared
against the original non-sparse network (in our experiments
we denote this framework as MSDL-non-sparse). Across all
3 marginal spaces we use the same SADNN architecture for
the cascade and main classifier, i.e. cascade: 2 layers = 5832
(sparse) × 60 × 1 and main classifier: 4 layers = 5832 (sparse)
× 150 × 80 × 50 × 1 hidden units. Note that in each stage we
managed to balance the training set using at most 3 shallow
networks in the cascade. Although trained successively, during
testing the cascade networks and the main classifier define one
large network with 7 to 13 layers (depending on how many
shallow networks are necessary to achieve the balancing).

In all networks we used sigmoid activations, observing that
ReLU does not perform as well in our experiments. We argue
this might happen for two possible reasons. Firstly, having
a cascaded structure of networks with early reject stages
reduces the depth of each individual network to at most 4
hidden layers, thus decreasing the likelihood of vanishing gra-
dients for which ReLU usually represents a powerful solution.
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Fig. 7. Left: Training and testing error of the SADNN in the translation
stage. The performance oscillation of the sparse model is explained by the
enforcement of sparsity in the dense sampling layer of the network. Right:
Example color-coded sparse patterns for translation (upper box) and full space
(lower box). The latter representation is more compact because of the better
data alignment.

Secondly, the sparsity effect of the ReLU activation (when
applied on negative inputs) might not be that meaningful in
our system, where sparsity is heavily enforced during training.
We complete our model with a mean squared loss (MSE)
instead of the cross-entropy loss which is usually suited for
classification tasks. Given the fact that the target of the MSDL
framework is the robust fusion / aggregation of hypotheses
into a final result, we hypothesize that the MSE loss is more
adequate for this task, given the increased smoothness of this
type of loss function around the ground truth, compared to the
cross-entropy loss.

2) Estimation Performance: We quantify the performance
of the object localization step by measuring the position
difference of the center of the detected box compared to the
reference box and by computing the corner distance error, i.e.
the average distance between the 8 corners of the detected
box and the ground truth box. While the first value only
measures the accuracy in terms of translation, the latter gives
also an indication about the accuracy of the orientation and
scale estimation. Table I shows the obtained results. The
MSDL framework significantly improves the performance
of the state-of-the-art MSL solution, decreasing the mean
position error by 45.2% and the corner distance error by
39.6%. In this context, Figure 7(left) highlights the fact that
using sparsity is an important step towards reaching this
performance level. The error variation on the training data
is caused by the iterative enforcement of sparsity in the low-
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TABLE II
COMPARISON OF THE PERFORMANCE OF THE STATE-OF-THE-ART MSL [5] AND THE PROPOSED MSDL FRAMEWORK FOR AORTIC VALVE

SEGMENTATION. THE MEASURE ILLUSTRATES THE DISTANCE OF THE DETECTED MESH TO THE GROUNDTRUTH FOR BOTH THE INITIALIZATION FROM
THE DETECTED BOX AS WELL AS THE DISTANCE AFTER BOUNDARY REFINEMENT. THE SUPERIOR RESULTS ARE DISPLAYED IN BOLD.

Training Data, distance to ground truth mesh [mm] Test Data, distance to ground truth mesh [mm]

Initialization Final Initialization Final

MSL MSDL MSL MSDL MSL MSDL MSL MSDL

Mean 2.08 1.16 1.17 0.89 2.06 1.21 1.04 0.90

Median 1.94 1.09 1.05 0.82 1.95 1.10 0.98 0.80

STD 0.83 0.40 0.66 0.35 0.79 0.55 0.50 0.48

Fig. 8. Example images showing the detection results for different patients
from the test set. The detected bounding box is visualized in green and the
ground truth box in yellow. The segments with the origin in the center of
each box define the corresponding coordinate system. Note that as specified
in the text, the 3D pose of the aortic valve (position, orientation and scale) is
fully determined by the anatomy.

level kernels, directly impacting the immediate performance
of the network. The affected neurons however recover during
the following training epochs to reach and even surpass the
original performance. The reason is that by enforcing sparsity
we introduce regularization in the network, which helps to
prevent overfitting (see performance on the hold-out test set).

In Figure 7(right), we illustrate an example of the learned
sparse sampling patterns, emphasizing that in the later stages,
i.e. in the full 9D space, the patterns are more compact and

structured around relevant anatomical parts (in our case around
the aortic root). Qualitative results for different patients from
the test set are depicted in Figure 8. The MSDL framework
matches the excellent run-time performance of the MSL
framework running in less than 0.5 seconds using only the
CPU. This is greatly due to the use of sparse data sampling
patterns which bring a speed-up of ×300 to the MSDL-non-
sparse, hence also the significant computational benefit of the
network simplification. We also emphasize here that using
a cascade for the early rejection of hypotheses is essential
to reaching this competitive performance. Depending on the
imbalance ratio in each marginal space, using a cascade brings
around 2 orders of magnitude speed-wise improvement.

For the segmentation experiments, we initialize the bound-
ary deformation by aligning the mean mesh with the detected
box and refining the boundary. The performance is measured
by computing the distance between the segmentation and the
ground truth annotation mesh. Table II shows that the MSDL
approach outperforms the MSL method by reducing the aver-
age mesh error from 1.04 mm to 0.9 mm, an improvement of
13.5%. Similar accuracy of around 1 voxel mean mesh error on
the same image modality is also reported in [15], using a multi-
atlas segmentation approach combined with deformable medial
modeling. However there the image set used for validation
contains only 22 cases. Also in an indirect comparison against
methods evaluated not only on different patient sets, but also
different image modalities, our framework shows a competitive
accuracy. For example, Elattar et al. [16] present a method for
aortic root segmentation in CT angiography data reaching a
mean error of 0.74 mm on a test set of 20 cases, with a runtime
of around 90 seconds/case. Adaptations of the MSL approach
with which we directly compare in this work reach an accuracy
of 1.08 mm on C-arm CT data [46], respectively 1.22 mm
mean mesh error on 4D CT data [18]. In both these cases
the segmentation of the aortic root is performed in around 0.8
seconds and the number of patients used for evaluation is in
the order of hundreds.

We emphasize here that our DL-based approach shows
competitive runtime performance, achieving the segmentation
in under 1 second using only the CPU. Qualitative results can
be seen in Figure 9.

3) Additional Experiments and Discussion: Given the fact
that the accuracy of the nonrigid shape segmentation directly
depends on the accuracy of the object detection, Table II is
not an optimal indicator for the superiority of the DL-based
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Fig. 9. Example images showing the aortic valve segmentation results for
different patients from the test set, using our proposed method. Each row
of images corresponds to a different patient, the left image represents the
groundtruth mesh, while the right image shows the detected mesh.

segmentation alone. In this context we have investigated the
performance of two mixed framework-versions: one combin-
ing our MSDL object detection with the original segmentation
approach from Zheng et al. [5] and the other combining the
MSL object detection solution [5] with our the DL-based
segmentation. This gives a direct comparison between typical
handcrafted features and adaptive sparse patterns in captur-
ing the image context around the boundary. The experiment
highlights the overall superiority of our end-to-end DL-based
approach on the test set. Table III shows the results.

Replacing the current cascaded solution with a single end-
to-end deep architecture (for example a convolutional neural
network) and comparing the accuracy is not feasible - the
main reason is the limited computational performance. We
have experimented with using a CNN both in the cascade and
as main deep classifier. Our implementation is based on direct
calls to the latest cuDNN 4.0 library on top of a high-end
GTX980 GPU architecture. We found that reasonable archi-
tectures with 1 convolution layer for the cascade, respectively
3 convolution layers (with pooling and fully-connected) for
the main classifier are about 400 − 500 times slower than
our original solution. For example, in the orientation stage
a deep 3D-CNN could process around 600 hypotheses/second

TABLE III
COMPARISON OF THE PERFORMANCE OF OUR DL-BASED FRAMEWORK

WITH THE STATE-OF-THE-ART SOLUTION [5] AND THE TWO MIXED
VARIANTS: COMBINING THE MSDL BOX DETECTION WITH THE ORIGINAL

SEGMENTATION METHOD [5], RESPECTIVELY THE MSL BOX
DETECTION [5] WITH OUR DL-BASED SEGMENTATION METHOD. THE

SUPERIOR RESULTS ARE DISPLAYED IN BOLD.

Segmentation error [mm]

Mean Median STD

Ours 0.90 0.80 0.48

Reference [5] 1.04 0.98 0.50

Detection (ours) + Seg. [5] 0.95 0.88 0.48

Detection [5] + Seg. (ours) 1.00 0.90 0.51

compared to 420, 000 processed with a SADNN. When com-
paring shallow versions of these type of networks for cascade
filtering, the SADNN is around 200× faster, processing over
1, 200, 000 hypotheses/second using only the CPU. In this
context, removing the cascade and using a single end-to-
end deep CNN can only further increase this performance
deficit, both during training and testing. As such, training
our framework with standard deep networks and investigating
their accuracy becomes infeasible, requiring in the order of
thousands of hours of training time.

The main reason for this speed difference is not only the
cascade filtering but also the data-efficiency of the sparse
sampling. Recall that most sparse patterns in our SADNN
architecture reach sparsity levels of 90 − 95%, thus indexing
only a small fraction of the data voxels during scanning
and minimizing the memory-footprint in the large incoming
stream of volumetric data. This is different from the CNN
architecture which samples every single voxel multiple times,
proportionally to the size of the convolution kernel. However
integrating the CNN in our pipeline in a type of hybrid
learning system is part of our ongoing work. For example,
we are optimistic in managing to integrate such precise deep
architectures into our pipeline to process only small subsets
of difficult hypotheses, to further increase the accuracy of the
system.

V. CONCLUSION

In this work we presented a novel framework support-
ing the efficient and robust detection and segmentation of
arbitrary objects using parametrized representations. For the
detection task our solution is the Marginal Space Deep Learn-
ing framework, which combines the inherent computational
benefits of marginal space learning for efficient exploration of
large parameter spaces, with the descriptive power of deep-
learning-based data representations. The direct application of
deep learning in this context is however not computationally
feasible. For this we introduced a novel method for enforc-
ing sparsity in the layers of deep neural networks, creating
sparse, adaptive sampling patterns that replace the standard,
pre-determined, handcrafted features. To further increase the
evaluation speed and also address the high sample imbalance
we proposed a novel technique to filter negative hypotheses
using a cascade-like hierarchy of shallow neural networks.
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Finally, given the object pose, we applied these techniques
to build a deep-learning-based active shape model guiding
the automatic segmentation of the object shape. Our method
has been extensively tested on a challenging 3D detection
and segmentation task, outperforming the state-of-the-art by
a considerable margin. This represents, to the best of our
knowledge, the first deep-learning-based method, focused on
volumetric detection and segmentation with parametrized rep-
resentations in the context of volumetric image parsing.
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