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Automatic Detection and Segmentation of Lymph
Nodes from CT Data

Adrian Barbu, Michael Suehling, Xun Xu, David Liu, S. Kevin Zhou, Dorin Comaniciu

Abstract—Lymph nodes are assessed routinely in clinical prac-
tice and their size is followed throughout radiation or chemother-
apy to monitor the effectiveness of cancer treatment. This paper
presents a robust learning-based method for automatic detection
and segmentation of solid lymph nodes from CT data, with
the following contributions. First, it presents a learning based
approach to solid lymph node detection that relies on Marginal
Space Learning to achieve great speedup with virtually no
loss in accuracy. Second, it presents a computationally efficient
segmentation method for solid lymph nodes (LN). Third, it
introduces two new sets of features that are effective for LN
detection, one that self-aligns to high gradients and another set
obtained from the segmentation result. The method is evaluated
for axillary LN detection on 131 volumes containing 371 LN,
yielding a 83.0% detection rate with 1.0 false positive per volume.
It is further evaluated for pelvic and abdominal LN detection on
54 volumes containing 569 LN, yielding a 80.0% detection rate
with 3.2 false positives per volume. The running time is 5-20
seconds per volume for axillary areas and 15-40 seconds for
pelvic. An added benefit of the method is the capability to detect
and segment conglomerated lymph nodes.

Index Terms—lymph node detection, lymph node segmenta-
tion, cancer staging.

I. INTRODUCTION

Lymph node (LN) analysis is a difficult task that accounts
for a significant part of daily clinical work in Radiology. In
particular, automatic lymph node detection and segmentation is
important for cancer staging and treatment monitoring. Lymph
nodes nearby primary cancer regions are routinely assessed
by clinicians to monitor disease progress and effectiveness of
the cancer treatment. The assessment is usually based on 3D
Computed Tomography (CT) data. When the cancer treatment
is successful, the lymph nodes decrease in size. Since finding
the lymph nodes is time consuming and highly dependent on
the observer’s experience, a system for automatic lymph node
detection and measurement is desired. For follow-up studies,
the system could further report the size change for each major
lymph node.

In this paper we introduce a learning based method for the
automatic detection and segmentation of solid lymph nodes.
Enlarged lymph nodes with a solid interior are of particular
clinical interest since they are believed to have a higher
probability of being malignant than lymph nodes that for
example have a fatty core.
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According to the well-established RECIST guidelines [15]
that are widely applied in clinical routine, lesions are con-
sidered to be measurable if they have a diameter of at least
10mm in CT. Only those measurable lesions will be considered
as so-called target lesions to be recorded and tracked over
time across follow-up exams during therapies. Following these
guidelines, our method is targeted for detecting clinically
relevant (and possibly malignant) lymph nodes of size at least
10mm. Similar requirements are confirmed in [4] for neck
lymph nodes.

Fig. 1. Diagram of the proposed solid lymph node detection method.

The diagram of the proposed solid lymph node detection
and segmentation method is shown in Fig. 1. For speed and
accuracy, regions of interest (two axillary and one pelvic in
our experiments) are extracted automatically as described in
Section III-A. A number of lymph node center candidates are
generated for each region using a two-stage detector described
in Section III-B. Each candidate is segmented as described in
Section III-C. Finally, a verification stage described in Section
III-D gives the final result.

Earlier work appeared in [1], focused only on axillary LN
detection. This work follows the same basic algorithm, and
presents a more thorough evaluation of the LN detection on a
larger axillary dataset as well as on another dataset focused on
the pelvic/abdominal area. Moreover, we present an evaluation
of the segmentation accuracy of the proposed approach.

II. RELATED WORK

There is a limited amount of work directed to auto-
matic lymph node detection [5], [6], [7], [10], [21]. These
works target mediastinal [6], [7], abdominal [10], pelvic [21]
and neck [5] lymph nodes. Our work targets axillary and
pelvic+abdominal lymph nodes.
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While the work in [21] uses multiple MR sequences and
special contrast, our work addresses lymph node detection
in CT images. The proposed approach could in principle be
adapted to other modalities such as MR or 3D ultrasound
images, but that is subject to future work.

A special filter was used in [10] to detect lymph node cen-
ters. This minimum directional difference filter is constructed
with the assumption that lymph nodes have uniform intensity
and are spherical. The approach obtained a 57% detection rate
with about 58 false positives per volume.

The Min-DD filter work [10] was improved in [6] by adding
a Hessian-based blobness measure for reducing false positives.
In contrast, our work comes from a learning perspective, where
the appropriate features that discriminate the lymph nodes
from other structures are learned from training examples.
Blobness measures could also be included in the feature set of
our system and will be selected by the learning algorithm if
they are better than the other features. By using the learning
based approach and highly discriminative features based on
the LN segmentation, we observe a 30 times reduction in false
positives for the same detection rate, when compared to [6].

Feulner et al [7] detect mediastinal lymph nodes using
a learning-based lymph node detector based on Haar and
steerable features [22]. Using location information based on
automatic organ segmentation they obtain 64.8% detection
rate with 2.9fp/vol. Our approach also uses Haar features to
remove easy negatives, but it uses two novel sets of informative
features, one aligned to high gradients and one based on LN
segmentation to obtain state of the art results.

The idea of coupling segmentation with detection has been
recently proposed in the computer vision literature [11]. Our
work also combines segmentation with object detection, with
the following differences.

1) Our segmentation method produces a defined object
boundary whereas [11] has a fuzzy boundary.

2) Our work is oriented towards detecting 3D lymph nodes,
which have a high degree of shape variability. In con-
trast, [11] detects 2D objects of specific shapes such as
cars, cows and humans.

3) The segmentation is constructed differently in our work,
using a Gaussian MRF and gradient descent as opposed
to [11] where it is constructed in a greedy way from a
number of patches.

4) Our work constructs segmentation-based features that
are used to train a classifier, whereas [11] obtains a
probability from the segmentation hypotheses by voting.

Semi-automatic lymph node segmentation in CT has been
investigated in a number of papers [4], [20], [17], [19], using
manual initialization of the lymph node location. In compar-
ison, the approach proposed in this paper is fully automatic,
the lymph nodes are detected and segmented without any user
interaction. The proposed segmentation method can also be
used with user initialization if desired.

A method based on a variant of level sets called fast
marching was proposed in [20] for the 2D segmentation of
LN on individual CT slices. No quantitative evaluation was
reported.

In [4], a model based on springs that are arranged on a
sphere triangulation is deformed outwards starting from a
small initialization to find high gradient locations. The method
was evaluated on 5 volumes containing 40 lymph nodes and
obtained a smaller error (0.47mm) than our method (0.83-
1mm) but requires manual initialization and is thousands of
times slower than our segmentation method.

A novel graph based approach [19] uses a radial represen-
tation similar to ours, but with a different model with a cost
function that encourages homogeneity and an algorithm based
on the optimal surface reconstruction method of [12]. Results
are similar to [4] hence better than our method, but require
manual initialization.

Semi-automatic lymph node segmentation in multiple MRI
images was presented in [17] where an ellipse model was
evolved using PDEs.

III. PROPOSED METHOD FOR SOLID LYMPH NODE
DETECTION AND SEGMENTATION

The proposed lymph node detection and segmentation sys-
tem first detects candidate lymph node centers using a learning
based approach. Each candidate is used by a segmentation
module to extract a candidate lymph node boundary. A
learning-based verification stage uses features obtained from
the data and the extracted boundary to score the candidates and
keep only the best ones. The whole approach is summarized
in Algorithm 1 below.

Algorithm 1 LN Detection and Segmentation
Input: CT volume at 1.5mm isotropic voxel size.
Output: Set D of detected and segmented lymph nodes.

1: Extract subvolume(s) of interest from the CT data (Section
III-A).

2: for each subvolume V do
3: Obtain initial set of candidates C0 as all locations with

intensity in [−100, 200]HU (Section III-B.1).
4: Of the C0 candidates, keep the candidates C1 that pass

the Haar detector (Section III-B.2).
5: Of the C1 candidates, keep the candidates C2 that pass

the self-aligning detector (Section III-B.3).
6: for each ci = (xi, yi, zi) ∈ C2 do
7: Obtain a segmentation Si with center ci (Section

III-C).
8: Obtain a score pi from the detector based on seg-

mentation features extracted using Si(Section III-D).
9: end for

10: Discard from C2 all ci with pi < τ , obtaining C3.
11: Call non-maximal suppression (Algorithm 2) on C3 to

obtain the detected lymph nodes D.
12: end for

The steps of the algorithm are explained in more detail in
the rest of the section.

A. Subvolume of Interest Extraction

To constrain the search and for increased speed and ac-
curacy, the two axillary regions and the pelvic region are
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detected and cropped automatically. The axillary lymph node
detection is performed on the two cropped axillary subvolumes
and the pelvic lymph nodes in the pelvic subvolume. The
axillary subvolumes are obtained by first detecting the lung
tips, with an approach similar to [14]. This can be done
very reliably and is not the object of this paper. Relative to
the two lung tip locations (x, y, z), the axillary subvolumes
have size 240 × 240 × 240 mm and the upper-left corner at
(x+20, y−135, z−156) mm for the left lung and upper-right
corner at (x−20, y−135, z−156) mm for the right lung. The
pelvic region is obtained by detecting the pubic symphysis tip
and cropping a subvolume of size 280× 230× 200 mm with
the upper left corner at (−120,−80,−90) mm relative to the
detected pubic symphysis tip location.

At this stage we use fixed sizes for the ROIs. In the future
the size of the ROIs can be adapted patient-specifically by
using additional landmarks to define the bounding boxes.

B. Candidate Lymph Node Detection

Lymph node center candidates are detected in the cropped
subvolumes ignoring the lymph node size and shape, in
the spirit of Marginal Space Learning [22]. Marginal Space
Learning is a method that speeds-up object detection by many
orders of magnitude by first detecting object candidates in a
subspace where some object parameters (e.g. size, orientation,
etc) are ignored. This set of initial candidates is then refined
by searching for some of the missing parameters using appro-
priate detectors.

In this spirit, the proposed approach first detects a set of
LN center positions (x, y, z), thus ignoring the LN size and
shape. The LN sizes and shapes are then obtained using the
LN segmentation approach presented in Section III-C.

1. Initial set of candidates. The LN center positions are
detected using a cascade of trained detectors starting from
an initial set of LN positions containing all voxels in the
cropped subvolumes that have an intensity in the interval [-
100,200]HU. The candidates from this initial set are then
evaluated using a fast detector based on Haar features followed
by a second detector based on a newly proposed set of self-
aligning gradient features. These two detectors are described
in more detail below.

2. Haar Detector. The first detector

Fig. 3. Self aligning fea-
tures are computed along
14 directions relative to
candidate position.

is a cascade of Adaboost classifiers
trained using 92,000 3D Haar features
that have been described in [16]. For
each candidate location, the Haar fea-
tures are extracted from a window of
size 23×23×23 voxels centered at that
location. This window size guarantees
that most lymph nodes (up to 35mm
diameter) will be inside the window.
A cascade of detectors is trained using these features, with
the parameters for Classifier 1 from Table I.

3. Self-Aligning Detector. The second detector uses a set
of features that are self-aligned to high gradients. The self-
alignment insures that the feature values will be consistent for
different lymph nodes independent of their size and shape.

These features are computed based on rays casted in
14 directions in 3D space from each candidate location.
These 14 directions are (±1, 0, 0), (0,±1, 0), (0, 0,±1), and
(±1,±1,±1). Of the 14 directions, 10 are shown in Fig. 3
for clarity.

In each direction di, 1 ≤ i ≤ 14,

Fig. 4. In each direction,
local gradient maxima
above different thresholds
τj are found.

local maxima of the gradient above
each of 10 thresholds τj = 10j, 1 ≤
j ≤ 10 (see Figure 4), are found at
three scales sk = 1/2k, 1 ≤ k ≤ 3.

Some of the features are based on
the 24 point features that were de-
scribed in [22]. These 24 features are
computed at a point (x, y, z) based on
a given direction d = (dx, dy, dz) and
are:
• Intensity features Ik(x, y, z), k ∈ {1/3, 1/2, 1, 2, 3} and

ln I(x, y, z) where I(x, y, z) is the intensity value
• The three components of the intensity gradient
g = (gx(x, y, z), gy(x, y, z), gz(x, y, z))

• The norm ‖g‖ of the intensity gradient
• The dot product g · d, ln |g · d| and |g · d|k, k ∈
{1/3, 1/2, 1, 2, 3}

• The quantity
√
|‖g‖2 − (g · d)2|

• The angle θ = cos−1 g·d
‖g‖ as well as |θ|k, k ∈

{1/3, 1/2, 1, 2, 3} and ln |θ|
The proposed self-aligning gradient features are the follow-

ing:
• Each of the 24 point features described above is computed

at each of the first three local maxima for each direction
di, threshold τj and scale sk.

• Each of the 24 features types described above is com-
puted half way between the candidate location and each
of the first three local maxima, for each di, τj , sk.

• The distance to each of the first three local maxima for
each di, τj , sk.

• The differences between distances to the corresponding
first three local maxima in any combination of two
different directions di, dj for each τk, sl.

About 64,000 features are obtained from the 14 directions,
three local maxima in each direction, three scales and the
feature types described above. Some of these features are
based on appearance while others are based on the shape of
the iso-gradients around the LN candidate.

A cascade of detectors is trained using these features, with
the parameters for Classifier 2 from Table I.

The best Nmax candidates above a threshold are kept for
each cropped subvolume. Examples of detected candidates are
shown in Figure 2. For each candidate location, a segmentation
is obtained as described below.

C. Candidate Lymph Node Segmentation

The segmentation algorithm is specially designed for de-
tecting clinically highly relevant solid lymph nodes. The solid
lymph nodes have a blob-like shape that can be described by
using a radial function r : S2 → R defined on the sphere in
3D, representing the distance from the lymph node center to
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Fig. 2. Detected LN candidates shown as red crosses for an axillary region (left) and a pelvic region (right).

the boundary in all directions. The same shape representation
was used in [19] for LN segmentation, but using a different
model.

In this work, the sphere has been

Fig. 5. Sphere triangulation
with 162 vertices and 320 tri-
angles.

discretized using a triangulation
with 162 vertices, 480 edges and
320 triangles, as shown in Figure
5. As the number of triangles of
our sphere mesh can only be 5∗4k,
we chose 320 triangles to balance
speed and accuracy for handling
large lymph nodes. Alternatively,
triangulations with 1280 or more
triangles could also be used at a
larger computational cost.

The edges of this triangulation induce a neighborhood
structure between the vertices. Two vertices are considered
neighbors if there is a triangulation edge connecting them.

This shape representation can accurately describe blob-like
shapes even when they are not convex. It has some difficulty
representing the extremities of very elongated shapes (with
aspect ratio at least 4:1), as shown in Figure 15. However,
out of the more than 900 solid lymph nodes that have been
manually segmented using this representation, we encountered
such difficulties with 26 LN (2.8% of all solid LN).

Other examples of lymph node segmentations with this
representation are shown in Figure 9, 12, 13 and 14. This
representation is similar to the shape representation in [4].

Each of the 162 sphere vertices

Fig. 6. Measurements yi
are found for each direc-
tion di as the most prob-
able boundary location.

represents a direction di. Given a
candidate lymph node location c ob-
tained by the candidate detector de-
scribed in Section III-B, a segmenta-
tion using this location as the center
is uniquely determined by the radii
ri, i = 1, ..., N for all directions di,
where N = 162 in our case. These
radii form a vector r = (r1, ..., rN ).

The lymph nodes exhibit high shape variability with no
particular commonalities, making it inappropriate to describe
them using generative models such as PCA. Instead of a PCA

model, we adopt a Gaussian MRF shape prior to constrain the
shape of the obtained segmentation.

To find the segmentation vector r we propose an approach
similar to the Active Shape Models [3], but using a robust data
cost, gradient optimization and a Gaussian MRF shape prior.

Given the candidate location c, the most likely lymph
node boundary location yi is found in each direction di, i =
1, ..., N = 162 as the first location where the intensity
difference from the candidate center is larger than a threshold
Dmax, as illustrated in Figure 6:

yi = arg min
r∈(0,Rmax)

|I(c)− I(c+ rdi)| > Dmax. (1)

From the measurement vector y = (y1, . . . , yN ), the seg-
mentation r is obtained by minimizing the following energy
function

E(r) = α

N∑
i=1

ρ(ri − yi) +
N∑
i=1

1

2|∂i|
∑
j∈∂i

(ri − rj)2 (2)

where ρ(x) = ln(1 + x2/2) is a robust function and for
each i, ∂i are the neighbors of i on the sphere triangulation.
Remember that two vertices are neighbors if there is an edge
of the sphere triangulation connecting them.

The first term in eq. (2) is a robust

Fig. 7. The robust data
term and Gaussian MRF
obtain a smooth segmen-
tation that ignores outliers
in the measurements yi.

data term, while the second term is the
Gaussian MRF prior that encourages
the neighboring vertices to have simi-
lar radii. The robust data term ensures
that the segmentation is robust to any
sporadic outliers in the measurements
yi, fact illustrated in Figure 7.

Moreover, if a measurement yi does
not exist, its corresponding term is
removed from the first sum of eq. (2).

Minimization of the energy from eq. (2) is done by gradient
descent, starting with r = y as initialization. The energy
gradient can be computed analytically, obtaining the following
update iteration:

ri ← ri − η
(
α

ri − yi
1 + (ri − yi)2/2

+ ri −
∑

j∈∂i rj

|∂i|

)
(3)
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In practice, we use η = 0.1 and 1000 gradient update
iterations, while Dmax = 50, α = 1.6. These parameters were
chosen by cross-validation. The dependence of the detection
performance on Dmax and α is quite smooth, similar to the
segmentation performance from Figure 18.

Other segmentation methods such as [4], [9], [20] could
possibly be used, but they lack a robust data term, making them
more prone to oversegmentations in low gradient locations.

D. Final Lymph Node Verification

For each of the candidate lymph node centers obtained using
the candidate LN detector from Section III-B, a segmentation
with 162 vertices is obtained as described in Section III-C. The
segmentation is used to obtain more discriminative features for
the final verification of the lymph node candidates.

For each lymph node, a bound-

Fig. 8. Mesh vertices A
and B are opposite if the
line connecting them passes
through the LN center C.

ing box is extracted from the seg-
mentation and used to measure the
LN size. Candidates whose second
largest bounding box size is less
than 9mm are automatically rejected
purely based on their size since
we are interested only in detecting
lymph nodes larger than 10mm. We
chose 9mm instead of 10mm as the
rejection threshold in order to ac-
count for small errors in the automatic segmentation. The
threshold could be changed accordingly to detect smaller
lymph nodes if desired.

The LN verification is done using a trained detector based
on the following features that are computed from the segmen-
tation result:

• Each of the 24 point features described in Section III-B
are computed at the 162 segmentation vertices using the
directions from the LN center. For each feature, the 162
values are sorted in decreasing order.

• For each of the 24 point features, the 81 sums of feature
values at the pairs of opposite vertices are computed and
sorted in decreasing order. Two vertices are opposite if
the line connecting them passes through the LN center,
as illustrated in Figure 8. The sphere mesh is constructed
to be symmetrical relative to the center, thus every vertex
has exactly one opposite vertex.

• The 81 diameters (distances between opposite vertices
relative to the segmentation center) are sorted in decreas-
ing order. For each diameter the following features are
computed:

1) The size of each diameter.
2) Asymmetry of each diameter, i.e. the ratio of the

larger radius over the smaller radius.
3) The ratio of the i-th sorted diameter and the j-th

diameter for all 1 ≤ i < j ≤ 81.
4) For each of the 24 feature types, the max or min of

the feature values at the two diameter ends.
5) For each of the 24 feature types, the max or min of

the feature values half way to the diameter ends.

In total there are about 17,000 features based on the shape and
appearance of the segmentation result.

The verification detector is trained using the segmentation
features described above, with the parameters for Classifier
3 from Table I. In this paper we present experiments using
Adaboost [8], [13] and Random Forest [2], but other learning
algorithms, e.g. Support Vector Machines [18] could also be
used.

The trained classifier assigns a score pi to each candidate
i, a higher score representing a higher estimated likelihood to
be a lymph node.

E. Non-maximal Suppression
All candidates with the score below a threshold τ are

automatically removed. On the remaining candidates, a non-
maximum suppression scheme is implemented as described in
Algorithm 2.

The algorithm repeats adding the remaining candidate of
highest score and removing all candidates close to it until no
candidates are left.

Algorithm 2 Non-maximal Suppression
Input: Candidates ci = (xi, yi, zi) with scores pi > τ and
bounding boxes bi.
Output: Set D of detected lymph nodes.

1: Find the candidate ci with highest score pi.
2: if ci exists then initialize D = {i} else D = ∅, stop.
3: while true do
4: Remove candidates cj inside any box bi, i ∈ D.
5: Find remaining candidate cj of highest score p.
6: if cj exists then add j to detected set: D ← D ∪ {j}

else stop.
7: end while

Examples of detected and segmented lymph nodes are
shown in red in Figure 9. The method can detect parts of
lymph node conglomerates as shown in Figure 9, middle.

F. Training details
Table I contains the number of weak classifiers for each of

the three detectors (based on Haar, Gradient and Segmentation
features respectively). As the first two detectors contain a
cascade of Adaboost classifiers, the number of weak classifiers
of each level of the cascade are given in the correspond-
ing table entries for both the axillary LN detector and the
pelvic+abdominal LN detector. All parameters were chosen
by cross-validation.

For comparison, a Random Forest [2] classifier with 100
trees was also trained on the segmentation-based features for
the verification step.

IV. EXPERIMENTAL VALIDATION

The experimental results below are based on a six-fold
cross-validation as follows. The CT volumes were divided into
six disjoint sets. For each fold, the union of five of the sets
was used to train the three classifiers and the remaining set
was used for evaluation. Training all three classifiers for each
fold takes about five hours.
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TABLE I
TRAINING DETAILS FOR THE THREE CLASSIFIERS INCLUDING THE NUMBER OF WEAK CLASSIFIERS, DETECTION RATE AND FALSE POSITIVE RATE.

Classifier Features Type # Weak Axillary # Weak Pelvic TPR FPR
1 Haar AdaBoost cascade 22, 67 25, 75 96% 1− 3%
2 self-aligning AdaBoost cascade 40, 120 60, 180 94% 2.5− 6%
3 segmentation-based AdaBoost 26 32 90% 10− 15%

Fig. 9. Detected lymph nodes with their mesh segmentation. Middle: The method can also handle lymph node conglomerates.

A. Evaluation Datasets

Data was taken from routine CT scans of cancer patients
with lymph node involvement from different hospitals in
Germany, China and the United States. Intravenous contrast
bolus was applied. Typical soft tissue kernels (B20 to B41)
were used for reconstruction. CT slice thickness was at most
5mm.

The experiments are performed on two datasets, for axillary
and pelvic lymph nodes respectively. The axillary lymph node
dataset contains 131 CT volumes of 84 patients, containing
371 large (> 10mm) solid lymph nodes and 546 lymph
nodes that are either small (< 10mm) or non-solid. The
pelvic/abdominal lymph node dataset contains 54 CT volumes
of 49 patients, in which the pelvic region was cropped as
described in Section III-A and all lymph nodes were annotated.
These pelvic regions contain 569 large solid lymph nodes
and 460 small or non-solid lymph nodes. The pelvic regions
contain a large number of abdominal lymph nodes, which
increase the difficulty of the the detection problem as there are
many folds and other structures in the abdomen that resemble
lymph nodes.

All CT volumes have been converted to 1.5mm isotropic
voxel size.

B. Lymph Node Annotation

All lymph nodes of size at least 10mm in the target regions
of interest (axillary or pelvic+abdominal) have been annotated
by placing bounding boxes around them, as shown in Figures
10 and 11. Lymph node annotation was guided by expert
Radiologists who provided the major part of the annotations
which were then extended by the authors. The lymph nodes
are labeled as solid or non-solid depending whether they have
a homogeneous interior or not.

Fig. 10. The lymph nodes are marked with bounding boxes and labeled as
solid(yellow) and non-solid (cyan). Left: an axillary region. Right: a cross-
section showing the difference between solid and non-solid lymph nodes.

The bounding box annotation contains all the information
necessary for training the lymph node detectors described
below.

C. Manual Lymph Node Segmentation

For a comprehensive evaluation we manually segmented
each lymph node using an interactive segmentation tool.

The segmentation tool allows the visualization and interac-
tion with the LN boundary on a number of cutting planes
that contain the line that passes through the lymph node
center and is parallel to the Z-axis. Three such cross-sections
for the same lymph node are shown in Figure 12. The LN
manual segmentations are also based on the sphere mesh
with 162 vertices described in Section III-C. The interactive
segmentation tool allows the user to manually modify the
radius r of any of the 162 segmentation vertices. After a
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Fig. 11. A pelvic region in which the lymph nodes have been manually
annotated with bounding boxes. The pelvic region usually contains both pelvic
and abdominal lymph nodes.

radius rk (having direction dk) has been changed, the LN
segmentation r is updated by minimizing the following energy:

E(r) =

N∑
i=1

αi(ri − yi)2 +
N∑
i=1

1

2|∂i|
∑
j∈∂i

(ri − rj)2 (4)

where we took

αj =

{
10 if j = k or ‖dj − dk‖ ≥ 0.5

0 otherwise

Fig. 12. The manual segmentation tool allows the LN delineation on a
number of cross-sections containing the line parallel to the Z-axis that passes
through the LN center.

Minimizing this energy allows the segmentation to pass very
close to the modified vertex while keeping almost unchanged
the vertices that are far from the interaction location. The
energy minimization is done by 1000 gradient update iterations
with η = 0.1:

ri ← ri − η
(
αi(ri − yi) + ri −

∑
j∈∂i rj

|∂i|

)
, i = 1, ..., N

(5)
The energy minimization offers a mild smoothing of the

segmentation at the vertices far away from the vertex that has
been modified. If this is not desired, those vertices should not
be updated at all using eq (5).

Examples of manual LN segmentations are shown in Figure
13, 14 and 15.

Figure 15 shows an elongated lymph node in 3D and two
cross-sections. Using the radial representation for generating
the ground truth segmentations could induce a certain bias in
the generated ground truth that favors radial representations.
However, we suspect that this bias is small since 97% of the
lymph nodes could be accurately segmented with the manual
segmentation tool described in this section.

Fig. 13. The lymph nodes boundaries are delineated using a manual
segmentation tool and are used to evaluate the automatic detection and
segmentation.

Fig. 14. A pelvic region in which the lymph nodes have been manually
segmented.

D. Evaluation of Lymph Node Detection Performance

Evaluation Methodology. This approach is aimed at de-
tecting solid lymph nodes, since they are relevant for cancer
screening. Thus only the solid LN detection is evaluated. Since
the solid lymph nodes are often very similar and difficult to
distinguish from the non-solid ones (that have a hilum), we
adopted the following evaluation measure for the detection
results. A solid lymph node is considered detected if there
exists a detection with the center inside the manually seg-
mented lymph node. A detection is considered false positive
if its center is not inside any annotated solid or non-solid
lymph node. Thus any detection on a non-solid lymph node
is neither considered a positive nor a false alarm.

Fig. 15. A manually segmented elongated lymph node (left) and two of its
cross-sections.
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TABLE II
DETECTION RESULTS AND COMPARISON WITH OTHER METHODS.

Method Target Area # cases Size of LN # LN #TP #FP TPR FP/vol PPV Time/vol
Ours Axillary 131 > 10.0mm 371 308 134 83.0% 1.0 69.7% 5-20sec
Ours Pelvic+Abdomen 54 > 10.0mm 569 455 172 80.0% 3.2 72.6% 15-40sec
Feuerstein [6] implementation Axillary 131 > 10.0mm 371 308 4346 83.0% 33.2 0.07% 3-6min
Feuerstein [6] implementation Pelvic+Abdomen 54 > 10.0mm 569 424 5741 74.5% 106.3 0.07% 5-10min
Feuerstein [6] Mediastinum 5 > 1.5mm 106 87 567 82.1% 113.4 13.3% 1-6min
Kitasaka [10] Abdomen 5 > 5.0mm 221 126 290 57.0% 58 30.3% 2-3h
Dornheim [5] Neck 1 > 8.0mm 29 29 9 100% 9 76.3% 17min
Feulner [7] Mediastinum 54 > 10.0mm 266 174 157 65.4% 2.9 52.6% 135sec

Fig. 16. Lymph node detection results with six-fold cross-validation. Left: Axillary LN evaluation on 131 volumes containing 371 LN. Right: Pelvic and
abdominal LN evaluation on 54 volumes containing 569 LN.

Results.
Out of the 131 axillary cases, the region extraction failed

on the left side of one patient that actually had the left lung
removed. The pelvic region extraction was always successful.

Using the above evaluation measure, we obtained the ROC
curves shown in Figure 16. The solid black curve represents
the performance on the test set with the parameters given
in Table I. The dashed red curve is the performance of the
system on the training data. The dashed black curve is the
performance of the system with the verification step trained
as a Random Forest with 100 trees. The dash-dotted green
ROC curve is the performance of the LN candidate detector.
Thus, the verification step based on segmentation has a great
impact on the overall performance of the system.

We also evaluated a system in which the segmentation and
verification steps are removed and replaced with a lymph node
detector that searches the size of the lymph node bounding
box, similar to [7]. This detector is an Adaboost cascade
with 50, 125 and 250 weak classifiers trained using steerable
features, as described in [22]. For each of the lymph node
candidates, this detector searches 890 combinations of the
three lymph node sizes and reports the bounding box of
highest score above a threshold. Non-maximal suppression as
described in Algorithm 2 is used to further reduce the number
of detections. The results using this “scale detector” are shown
as a solid blue curves in Figure 16. This shows that the
segmentation-based detector has a much better performance
than the scale detector. An added benefit is the fact that the
segmentation based detector is about 5 times faster than the
scale detector. A comparison with other lymph node detection
methods present in the literature is shown in Table II.

The proposed method achieves a detection rate of 83.0% at
1.0 false positives per volume for the axillary lymph nodes, i.e.
a 69.7% Positive Predictive Value. On the pelvic area (that also
contains many abdominal lymph nodes), the proposed method
achieved a detection rate of 80.0% with 3.2 false positives per
volume (72.6 positive predictive value).

These results compare favorably with the previous work
[6], [10]. Dornheim[5] obtains a better detection rate but is
evaluated only on a single volume.

For a more fair comparison, we implemented the approach
proposed in [6] using the MinDD filter and blobness measure.
For fairness, this approach was evaluated on the regions of
interest (subvolumes) extracted as described in section III-A.
We experimented with different parameter values and observed
the best results were obtained using a blobness threshold of
5 and a size threshold of 25 for each connected component.
Different values of the MinDD filter threshold gave differ-
ent detection/false positive rates which are displayed as the
magenta curves from Figure 17. The results of our trained
detectors are shown as black curves in Figure 17 while the
performance of the LN candidate detectors are shown as green
dashed curves.

One could observe that the axillary dataset is easier than
other LN datasets, as our implementation of [6] obtained much
better results than those reported for mediastinal LN. How-
ever, the pelvic dataset appears of similar difficulty with the
mediastinal LN dataset from [6]. On both axillary and pelvic
datasets, our approach obtained about 30-40 times fewer false
alarms for the same detection rate than our implementation of
the filter based approach from [6].

To estimate the generalization ability of our trained LN
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Fig. 17. Comparison of our method with an implementation of Feuerstein et al, [6]. Left: axillary dataset, right: pelvic + abdominal dataset. Also displayed
is the performance of the pelvic detector on the axillary dataset (left) and the axillary detector on the pelvic+abdominal dataset (right).

detector to other types of LN, we tested the pelvic LN detector
(trained on one of the six cross-validation folds) on the axillary
data and the axillary lymph node detector on the pelvic data.
The results are shown in cyan in Figure 17. As the pelvic
detector has never seen an axillary LN, its performance is
slightly below the detector trained to detect axillary LN.
However, it outperforms the filter-based approach of [6] by a
large margin. The same applies to the axillary detector when
tested on the pelvic + abdominal dataset.

E. Evaluation of Lymph Node Segmentation Performance

The segmentation performance is evaluated only for the
detected lymph nodes. We considered two evaluation mea-
sures. The first is the average symmetric point-to-mesh error,
computed as the average of the distances between the auto-
matic segmentation points and the manual segmentation mesh
and vice-versa. The second is the Dice similarity coefficient
(DSC) between the voxels inside the obtained segmentation
and voxels inside the manual segmentation.

DSC(A,B) =
2|A ∩B|
|A|+ |B|

The evaluation results are summarized in Table III. Observe
that the average point-to-mesh errors are smaller than the voxel
size of 1.5mm. The errors are higher and the DSC is lower than
the the graph based segmentation method [19], which works
on CT volumes at their original resolution, with voxel size
typically less than 1mm. However, it should be noted that our
method is fully automatic whereas in [19] the segmentation
depends on a manually given LN center.

The segmentation depends on the parameter Dmax from
eq. (1) and the data strength parameter α from eq (2). We
observed experimentally that the parameter combination that
gives the best detection rate (Dmax = 50, α = 1.6) is not the
same as the parameter combination that gives the smallest seg-
mentation error (Dmax = 70, α = 1.6). Hence the detection
is based on a segmentation with Dmax = 50, α = 1.6 and for
each detected lymph node another segmentation is performed
with Dmax = 70, α = 1.6. The dependence of the point-to-
mesh segmentation error on α is shown in Figure 18 (left)
while the dependence on Dmax is shown in Figure 18 (right).

Fig. 18. Left: The symmetric pt-to-mesh error vs the parameter α of
the segmentation energy (2). Right: The symmetric pt-to-mesh error vs the
parameter Dmax of (1).

As one can see, the segmentation performance is similar for
a large range of values of the two parameters.

Fig. 19. The sorted point-to-mesh errors for the two datasets being evaluated.

Finally, in Figure 19 are shown the sorted point-to-mesh
errors on the two datasets, which gives a better idea of the
distribution of errors than the average error from Table III.
From Figure 19 one could see that 80% of the axillary LN
have a segmentation error less than 1mm while 80% of the
pelvic+abdominal LN have an error less than 1.25mm.

Examples of segmentations for the axillary, pelvic and
abdominal lymph nodes are shown in Figure 20.

V. DISCUSSION AND FUTURE WORK

In this paper, we presented a novel method for automated
lymph node analysis based on integrating segmentation with
a learning-based detector.
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TABLE III
EVALUATION OF THE AUTOMATIC LYMPH NODE SEGMENTATION. THE STANDARD DEVIATION IS SHOWN IN PARENTHESES.

Method Target LN LN evaluated Avg pt-to-mesh Avg DSC Time/LN
error (mm) (s)

Ours Axillary 308 0.83 (0.663) 0.80 (0.126) 0.001
Ours Pelvic+abdom 455 1.0 (0.797) 0.76 (0.127) 0.001
Graph Based [19] Mediastinal, abdomen, head/neck, axillary 22 0.47(0.08) 0.84 5.3
Mass-Spring Model [4] Neck 40 0.47 - 2-30

Fig. 20. Detected and segmented lymph nodes. Top row: axillary LN, mid row: pelvic LN, bottom row: abdominal LN. Ground truth annotation is yellow
for solid LN and cyan for non-solid or small LN. The segmentation result is shown in red. All results are at the same scale and the voxel size is 1.5 mm.

While we address the restricted problem of solid lymph
node detection, we obtain better results with a more thorough
evaluation (54-131 cases compared to 5 cases in [6], [10]). At
the same time, the proposed method is also the fastest, due
to detecting the lymph node centers first, while ignoring the
lymph node size and shape and potentially eliminating millions
of expensive verifications.

Many lymph nodes in the pelvic area are inside the abdomen
and many false positives arise from the intestines and vessel
bifurcations, as shown in Figure 21. A segmentation of the
colon, intestines and vessels could in theory improve detection
performance for the pelvic area. However, no colon or intestine
segmentation has been used in the proposed approach. The
axillary lymph nodes are easier to detect than other types of
lymph nodes as they are far from airways and intestines, two
potential sources of false positives. The evaluation confirms
that the detection performance for the axillary region is
better than for the pelvic area. The accuracy of the proposed
approach for the axillary region could be further improved
by using a vessel segmentation, to eliminate many of the
systematic false positives.

In the future, we plan to study the improvement brought by
using more than one segmentation at each candidate location.
We also plan to use the proposed method for segmenting and

detecting lymph nodes in other modalities (e.g. MRI) and other
types of lesions (e.g. tumors).
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