
Hierarchical, Learning-based Automatic Liver Segmentation

Haibin Ling1, S. Kevin Zhou1, Yefeng Zheng1, Bogdan Georgescu1

Michael Suehling2, and Dorin Comaniciu1
1Integrated Data Systems Department2Siemens Medical Solutions

Siemens Corporate Research, USA Germany

{haibin.ling, shaohua.zhou, yefeng.zheng, bogdan.georgescu,michael.suehling dorin.comaniciu}@siemens.com

Abstract

In this paper we present a hierarchical, learning-based ap-
proach for automatic and accurate liver segmentation from
3D CT volumes. We target CT volumes that come from
largely diverse sources (e.g., diseased in six different or-
gans) and are generated by different scanning protocols
(e.g., contrast and non-contrast, various resolution and po-
sition). Three key ingredients are combined to solve the seg-
mentation problem. First, a hierarchical framework is used
to efficiently and effectively monitor the accuracy propaga-
tion in a coarse-to-fine fashion. Second, two new learning
techniques, marginal space learning and steerable features,
are applied for robust boundary inference. This enables
handling of highly heterogeneous texture pattern. Third,
a novel shape space initialization is proposed to improve
traditional methods that are limited to similarity transfor-
mation. The proposed approach is tested on a challenging
dataset containing 174 volumes. Our approach not only
produces excellent segmentation accuracy, but also runs
about fifty times faster than state-of-the-art solutions [7, 9].

1. Introduction

Liver analysis plays an important role in the thera-
peutic strategies for hepatic diseases. Segmentation of a
liver from a three dimensional computed tomography (CT)
volume often serves as the first step in image-based he-
patic studies and continuously attracts research attention
[19, 6, 16, 11, 1, 13, 7, 5, 18]. Despite a large body of
literature, fully automatic liver segmentation from a 3D vol-
ume remains a challenge, due to the large variations in liver
shapes and in the intensity pattern inside and along liver
boundaries.

Unlike in previous work, the CT volumes in our study
come from patients with diseases in different organs, and
are scanned under largely diverse protocols. Specifically,
there are several diversities in our dataset: 1) The volumes

(a)0.57× 0.57× 1.5 mm. (b)0.59× 0.59× 1.0 mm.

(c) 1.0× 1.0× 1.0 mm. (d)0.89× 0.89× 5.0 mm.
Figure 1.Examples of CT volumes in our dataset and their resolu-
tions. Note the variance in the intensity, position of livers, volume
dimensions. Hounsfield unit (HU) window [-15, 155] is used for
visualization purpose (same for other figures).

have diseases in six different organs (the liver counts only
one third); 2) Some volumes are enhanced by contrast agent
while some not; 3) The volume dimension and liver position
in the volume substantially vary; 4) The inter-slice resolu-
tion changes from 1.0 mm to 5.0 mm. Some examples are
shown in Figures1 and 6. More details can be found in
Sec.6.1. These diversities increase the variability of liv-
ers in both shape and texture patterns, and therefore render
the problem more challenging. Furthermore, the automatic
detection (or initialization) is made more difficult especially
because of 3). To the best of our knowledge, there is no pre-
vious work that handles all the above issues in an automatic
and robust fashion (cf. Sec.2 and Table2).

We propose an automatic segmentation approach that ad-
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dresses all the challenges mentioned above. There are three
major contributions in our system. First, the system uses
a hierarchical shape representation, which efficiently and
effectively handles the shape inference and accuracy prop-
agation. Second, a learning-based boundary localization
technique is utilized. By using this technique, the system
not only achieves accurate boundary responses, but also be-
comes reliable to the heterogeneous intensity patterns. In
addition, a liver surface is decomposed into patches accord-
ing to surrounding anatomic structures, and patch depen-
dent classifiers are used for further improvement. Third, a
subspace shape initialization is introduced to improve tradi-
tional pose initialization. The proposed approach is tested
on a database containing 174 3D CT volumes. Our method
demonstrates excellent performance, achieving an accuracy
of 1.76±0.92 mm (or 1.59±0.49 mm after excluding out-
liers). In addition, it is more than fifty times faster than
state-of-the-art approaches (e.g., [7] and [9]).

The rest of the paper is organized as follow. Sec.2 sum-
marizes related work. Sec.3 introduces the hierarchical rep-
resentation for liver shapes. Sec.4 describes the detection
and robust initialization in our approach. Then, Sec.5 de-
scribes the hierarchical and learning-based boundary refine-
ment. Sec.6 gives the experiments on the challenging liver
database. Finally, Sec.7 concludes the paper.

2. Related Work

Early work on liver segmentation mainly focused on two
dimensional images and often required manual or semi-
manual interaction. For example, Gao et al. [6] presented
a semiautomatic liver segmentation system for CT data that
combines several image processing techniques. Some re-
cent works on 3D liver segmentation systems were built
from the processing of 2D slices. Soler et al. [16] pro-
posed a framework for a complete anatomical, pathological
and functional segmentation of the liver from CT scans. Liu
et al. [13] proposed a semiautomatic method for liver seg-
mentation from contrast-enhanced CT images using a gra-
dient vector flow field [20]. Florin et al. [5] used the level-
set techniques for 2D key slice segmentation and then a 3D
shape was interpolated from 2D contours.

Some recent work used probabilistic atlas for the task
[24, 14]. While convenient and fast, these methods deal
with volumes with the same dimension and are roughly
aligned (usually acquired by the same scanning protocol).
For example, volumes used in both [24] and [14] are of
fixed size and resolution. Consequently, these approaches
have difficulty in generalizing to datasets such as the one in
our experiment.

The work [11, 9, 7, 14] using statistical shape model
(SSM) [4] are the most related to ours. Lamecker et al. [11]
modeled liver surface with SSM and applied it for segmen-
tation tasks. It was later extended [9] with some detailed

processing on boundary intensity. Another work using SSM
is proposed by Heimann et al. [7], where an evolution al-
gorithm is applied for better shape initialization. The SSM
used in [14] is in a multi-level fashion, where a liver sur-
face is recursively decomposed into subsurfaces (patches)
and each subsurface is attached with a local SSM.

More recently, several approaches have been tested in the
MICCAI workshop on segmentation challenge [18]. The
SSM based approach in [9] achieved the best accuracy, and
a region growing approach in [15] ranked the second.

Our work is different from previous approaches in sev-
eral aspects. First, a hierarchical shape representation is
presented. Note that our hierarchy lies in the shape (and
volume) representation while the “multilevel” in [14] means
multilevel patch decomposition. Second, learning based
techniques are used for boundary deformation as well shape
detection. Third, we use the marginal space learning [22]
for the pose and subspace initialization. In addition, as men-
tioned in the introduction, none of previous works has been
tested on a heterogeneous dataset as ours. A summary of
some related works is given in Table2.

3. Hierarchical Representation for Livers

3.1. Mesh Representation

We represent the shape of a liver by a closed triangle
meshM(P, T ), whereP = {pi ∈ R3}n

i=1 is the set of
n mesh points, andT = {ti ∈ Z3

+}m
i=1 is the set ofm

triangle indices. A canonical mapping from the liver sur-
face to a unit sphere is built. Specifically, a continuous
liver surfaceS can be parameterized asS(θ, ϕ) : [0, 2π) ×
[−π/2, π/2] → R3. With this representation, a dense mesh
is generated by uniformly sampling the space of spherical
coordinates(θ, ϕ). In other words, the point setP is gen-
erated by first cuttingS into half-circle slices and then uni-
formly sampling along each half-circle slice. Accordingly,
the triangle setT is built by connecting points in neighbor-
ing slices sequentially. In practice, we use a dense mesh for
a liver shape with 120 half-slices and 42 points per slice.
This mesh serves as a reference mesh that provides point
correspondence and spherical coordinates. For this reason,
it is called abase meshand denoted asMb = (P b, T b). An
example of base mesh is shown in Fig.2(a).

The base mesh is inappropriate for direct use. First,
the dimension of its shape space is too high for effective
shape modeling. Second, it is computationally expensive
for boundary deformation. Third, it is not efficient because
it is not uniformly sampled along surfaces. For example,
the sampling around the lung region is much denser than
that around the cusp area.

To avoid these problems, a new meshM0 = (P 0, T 0) is
sampled fromMb (approximately) uniformly along mesh
surfaces, i.e., in the sense of geodesic distance. This is



(a)Mb (annotated groundtruth) (b)M0 (detected result)

(c)M1 (detected)

(d)M2 (detected)

Figure 2.Mesh pyramid.

done through a standard mesh simplification routine [8].
We denote this downsampling process with operator↓, i.e.,
M0 =↓ (Mb). One example is shown in Fig.2 (b).

Note thatP 0 is actually a subset ofP b. Therefore, it can
be written asP 0 = P b(I0) .= {pb

i ∈ P b : i ∈ I0}, where
I0 ⊂ {1, . . . , |P b|} is called index set forM0. The in-
dex set implicitly maintains correspondence from a “sparse”
mesh to the unit sphere. This is important because it is
used to compute the spherical coordinates that are needed
for boundary inference (Sec.5).

3.2. The Hierarchical Shape Model

Starting from the meshM0, a mesh pyramid is built by
recursively applying the downsampling process mentioned
above. As a result, our hierarchical mesh representation in-
cludes a dense meshMb and a mesh pyramid{Ml}L

l=0,
whereL + 1 is the number of pyramid layers (L = 2 in our
implementation). Specifically, we have




M0 = ↓ (Mb)
Ml = ↓ (Ml−1) l = 1 . . . L
P l = P b(I l) l = 0 . . . L .

(1)

In practice, about half of mesh points are kept during down-
sampling. That is,nl ' nl−1/2, wherenl = |P l| denoting
the number of points for layerl. A volume pyramid is built
such that meshes at different layers correspond to volumes
at different resolutions. An example of mesh pyramid is
illustrated in Fig.2.

Using the hierarchical shape representation, we build sta-
tistical shape models [4] for each layer. Specifically, the
model for layerl contains a pair(µl, V l = [νl

1, . . . , ν
l
kl

]),
whereµl ∈ R3nl is the mean shape, andV l ∈ R3nl×kl

containskl modes that capture sufficiently large shape vari-
ations at layerl. In summary, our hierarchical model is de-
noted by(µl, V l, P l, T l), l = 0, ..., L .

4. Detection and Initialization

In this section we describe our approach to automatic
liver detection and initialization. Both steps are performed
on the coarsest layer. This not only helps improving the effi-
ciency, but also implicitly captures more global information
that is important for the initialization purpose.

4.1. Liver Detection Via Marginal Space Learning

The task of detection is to find the best pose of a
liver in a given volumevol. The pose of a liver is
determined by nine parameters,p = (p1, p2, p3), θ =
(θ1, θ2, θ3), s = (s1, s2, s3), corresponding to location, ori-
entation, and (anisotropic) scale respectively. Using a prob-
abilistic framework, our task can be formulated as

(p̂, θ̂, ŝ) = arg max
p,θ,s

Pr(p, θ, s |vol) . (2)

Solving equation (2) involves a search in a 9D space,
which is too expensive in practice. Instead, an efficient in-
ference scheme,marginal space learning(MSL) [22], is ap-
plied. Intuitively, MSL reduces the size of the searching
space by marginal space inference and sequentially prop-
agates to the whole space. In our task, the 9D parameter
space is decomposed to three marginal spaces as follows:

Pr(p, θ, s |vol) = Pr(p|vol)Pr(θ|p, vol)Pr(s |θ, p, vol) , (3)

which is consistent with the decomposition used in [22].
To learn the marginal probabilities (i.e., Pr(p|vol),

Pr(θ|p, vol), and Pr(s |θ, p, vol)), theprobabilistic boosting
tree (PBT) [17] is used. Another choice is the probabilis-
tic boosting network [21]. Moreover, 3D Haar features are
used for location detection and steerable features are used
for orientation and scale inferences. The detected shape can
be described as:

x = fŝ ◦ fθ̂ ◦ fp̂(µL) , (4)



Figure 3.Initialization. Left: after pose detection. Right: after
shape space initialization.

wherefŝ , fθ̂, andfp̂ denote the scaling, rotation, and trans-
lation using the detected parameters respectively. In other
words, we simply put the mean shape in the detected box.
An example detection is shown in Fig.3.

4.2. Subspace Initialization

SSM-based methods usually start boundary refinement
right after the pose detection (or manual initialization).
However, as noted in [7], for highly deformable shapes such
as livers, the pose detection can be improved by further ini-
tialization [23].

We propose using learning techniques for the inference
of shape initialization. The basic idea is to learn the coeffi-
cients corresponding to the first three shape components1.
In other words, the initialization now estimates another
three parametersc = (c1, c2, c3) after pose detection:

x = fs ◦ fθ ◦ fp

(
µL +

3∑

i=1

ciν
L
i

)
. (5)

In the MSL framework, this can be viewed as an additional
inference of a conditional probability Pr(c |s , θ, p, vol).
The PBT is used again for learning. The problems left are
how to obtain training samples and what features to use.

The training samples are extracted from the 3D parame-
ter spacesC .= [c1,0, c1,1]× [c2,0, c2,1]× [c3,0, c3,1], where
[ci,0, ci,1] is the range for coefficientci determined by the
corresponding eigenvalue. Positive samples inC are ex-
tracted from annotated meshes by standard projection in the
subspace. LetC+ be positive sample set. The negative sam-
ple setC− is built by first uniformly sampling the spaceC,
and then eliminating any samples that are within a certain
distance to positive samples inC+.

Given the shape model(µL, V L) and warping parame-
ters(p, θ, s), eachc ∈ C corresponds to a mesh, denoted as
ML

c . The feature set forc should be robust to the warping

1More coefficients can be included, but we did not observe significant
improvement after three.

process. For this purpose, we use intensity-based features
as in [22], but the features are sampled along the surface of
meshML

c .
Fig. 3 shows an example before and after subspace ini-

tialization. The improvement is obvious. Furthermore,
compared to the evolution algorithm used in [7] that re-
quires about six minutes, our solution runs as fast as about
four seconds using similar machine configurations (Sec.6).

5. Boundary Refinement

After initialization, boundary refinement is used for ac-
curate boundary localization. There are three key com-
ponents in our refinement method: hierarchical scheme,
probabilistic boundary response, and patch-based boundary
classifiers.

5.1. Hierarchical Boundary Refinement

Starting from the coarsest layerML, the mesh at current
layer is first refined and then upsampled to a finer layer.
The procedure continues till the finest layerM0 is reached.
Algorithm 1 summarizes the algorithm, whereΠl denotes
the subspace projection at thel-th layer.

There are several advantages by this hierarchical scheme.
First, the coarse-to-fine fashion helps to achieve reliability
as well as accuracy. In our application, the refinement at a
coarser level gathers more information from a larger sur-
rounding (note that volumes are organized hierarchically
too). As a result, the boundary accuracy improves gradually
and in a steady fashion. This can be seen in our experiments
summarized in Table3. Second, efficiency is improved as
a “standard” benefit from the hierarchical scheme. This is
verified by the fact that our solution is more than fifty times
faster than state-of-the-art solutions. Third, the framework
introduces the flexibility of treating layers differently. For
example, as shown in the following subsection, at the finest
layer, we use an array of boundary classifiers for different
regions of a liver (see5.3).

For the upsampling between layers, thethin plate spline
(TPS) warping [2] is used. Given two point sets with corre-
spondence between them, TPS finds a nonlinear warping by
minimizing a second order “bending energy”. In our task,
mesh points at a coarse level correspond to a subset of mesh
points at the finer level. Therefore, we can use the mean
shapes at different levels for the warping. For a given point
x ∈ R3, its TPS warping has the following formula

T (x;a,b, c,Q)=


aix + bi +

na∑

j=1

ci,j ‖ x− qj ‖



3

i=1

,

where subscripti denote thei-th coordinate;Q = {qj ∈
R3}na

j=1 is the anchoring point set, anda = (a1, a2, a3),
b = (b1, b2, b3), c = {ci,j} are warping parameters.



Algorithm 1 Hierarchical Mesh Refinement

1: ML(PL, TL) ← initialization.
2: for l = L down to0 do
3: for i = 1 to imax do {/* iteration for imax times*/}
4: for p ∈ P l do {/* local boundary refinement */}
5: Qp ← candidate points close top.
6: p ← arg maxq∈Qp

Pr(bdry|q, voll).
7: end for
8: P l ← Πl(P l). {/* subspace projection */}
9: end for

10: if l > 0 then {/* upsampling with TPS */}
11: Estimate TPS parameters(a,b, c).
12: P l−1 ← T (µl−1;a,b, c, µl).
13: end if
14: end for

Specifically, for the meshMl = (P l, T l), the parameters
(a,b, c) are estimated by warping fromµl to P l. ThenP l

is upsampled to getP l−1 by T (µl−1;a,b, c, µl).

5.2. Learning Based Boundary Detection

A key issue in boundary refinement is boundary localiza-
tion, which usually involves locally searching around cur-
rent shape boundaries. Specifically, for a current boundary
pointp ∈ P l, a candidate point setQp is formed by includ-
ing points along the normal direction atp and within some
distance. Then the point inQp with the maximum boundary
probability2 (response) is used to replacep, i.e.,

p ← arg max
q∈Qp

Pr(bdry|q, voll) . (6)

Previous works usually approximate the boundary response
by simple checking gradients or intensity distribution along
surface normals. However, the information gathered this
way is not enough for our task because the texture pattern of
livers has a large variability. When dealing with data from
different scanning protocols, the variability is even larger.

To attack this problem, we decide to learn
Pr(bdry|q, voll) using PBT and steerable features,
similarly to [22]. In addition, the spherical coordinates of
mesh points are included as features. These coordinates
provide important distinctive information because the
intensity patterns around boundary are closely tied to their
positions on the liver surface (see for example Fig.4). By
checking the learned PBT classifiers, we found that these
coordinates have been frequently selected, which validates
our idea. Computation of spherical coordinates is through
the mapping from the base meshMb to a unit sphere. In
particular, letpi ∈ P l be thei-th point in thel-th layer.
Its spherical coordinates is determined bysph(I l

i), where

2Strictly speaking, it is also conditioned on the normal direction atp.

Figure 4.Patch clustering. Different colors indicate points from
different patches.

I l
i is thei-th index in index setI l andsph(.) is a function

that converts an index to spherical coordinates via the base
mesh (cf. Sec.3.1).

5.3. Patch Based Boundary Refinement

The heterogeneity of texture pattern along liver bound-
aries suggests the use of patch dependent boundary clas-
sifiers. To this end, we decompose a liver surface to five
patches: liver-lung, liver-heart, liver-kidney, liver-tissue,
and liver-misc. We annotate twenty groundtruth (base)
meshes. Two slices of such annotation are shown in Fig.
4. For thei-th point in the base mesh, its prior probability
belonging to thek-th patch is estimated as the patch fre-
quencywi(k) = ni,k

nall
, whereni,k is the number of base

meshes that itsi-th point is annotated as belonging to the
k-th patch;nall=20; andk = 1, ..., 5 corresponds to the five
different patches.

There are two schemes to use the prior informationwi

when computing boundary responses (6): soft-patch and
hard-patch. The soft-patch method computes a weighted
probability as

Pr(bdry|q, vol) =
5∑

k=1

wq(k)Prk(bdry|q, vol) , (7)

where Prk is the learned conditional probability for thek-th
patch,wq is the prior probability at pointq.

In contrast, the hard-patch scheme takes only the re-
sponse from the patch with maximum prior probability, i.e.

Pr(bdry|q, vol) = Pr̂k(q)(bdry|q, vol) , (8)

wherek̂(q) .= arg max1≤k≤5 wq(k) is precomputable.
While the soft-patch scheme sounds more natural than

the hard-patch one, there is no significant difference ob-
served in our experiments. There are two reasons for this.
First, the patch decomposition of liver surfaces is relatively
stable. Second, when training classifiers for each patch, we
also include sample points from its neighborhood. Consid-
ering its apparent speed benefit, the hard-patch scheme is
chosen in our final system.

Note that, the patch-dependent boundary classifiers are
used only for the finest layer due to the sparseness of meshes
at coarse layers and the lack of training samples.



Table 1.Disease distribution of the dataset.
diseased organliver colon lymphnode kidney pancreasperitoneum

percentage 33% 39% 19% 4% 4% 1%
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Figure 5.Left: the distribution of volume sizes of our dataset.
Right: the distribution of liver locations. Each circle indicates the
normalized x and z coordinates of a liver centroid (i.e., a volume
dimension is normalized to1× 1× 1).

6. Experiments

6.1. Dataset

Our database contains 174 3D CT volumes, each with
an annotated groundtruth dense mesh. As mentioned in the
introduction, the dataset is very challenging in that the vol-
umes come from largely diverse sources. In particular, the
patients have diseases in six different organs (cf. Table1)
and therefore are often scanned under different protocols.
This heterogeneity causes a large variation in both shape
deformation and texture patterns of livers. Moreover, di-
agnosis of different diseases often request different contrast
agent to be injected into the patient, or no contrast at all. For
example, in our database, most volumes with liver diseases
are enhanced with contrast agent, while those with colon
diseases are usually not.

Due to the different scanning protocols, the volumes
have various dimensionality: the inter-slice resolution
varies from 1.0 mm to 5.0 mm; the number of slices varies
from 105 to 524; the actual volume height varies from 183
mm to 766 mm. Moreover, the position of livers changes
a lot, which presents significant challenges to atlas based
approaches such as [24, 14]. The distributions of volume
heights and liver center positions are shown in Fig.5. Some
example volumes are shown in Figures1 and6.

6.2. Evaluation

Two experiments are conducted for evaluation. The first
experiment uses the whole dataset for both training and test-
ing. The second one uses five-fold cross validation. Errors
are measured using the average symmetric surface distance.
Experiment I: testing with all volumes. The purpose of
this experiment is two-fold. First, it aims to study the limit
of our approach, which provides a reasonable expectation
when there are enough training samples. Second, it illus-
trates how the hierarchical scheme helps in the procedure.

Table 3.Performance using all 174 volumes. The fourth and fifth
columns show the average symmetric surface errors in millime-
ters. The last column shows the average running time of the corre-
sponding stage (initialization is included in layer 2).

Layer # points Voxel After init. After mesh Run time
size or upsamping refinement (seconds)

2 602 6 mm 5.29±1.49 2.52±0.43 7.8
1 1202 3 mm 3.11±0.45 1.82±0.33 1.6
0 2402 varies 2.01±0.32 1.26±0.37 2.2

The average segmentation performance at different stages
are shown in Table3.

The table shows clearly how the segmentation accuracy
increases in the hierarchical framework. At the coarser lay-
ers, our system efficiently reduces the error to nearly a half-
voxel precision. The results are then propagated to finer
layers for further refinement. At the final layer, the accuracy
reaches 1.26 millimeter, which is smaller than the average
inter-slice resolution of the database. The average running
time for one volume, including all steps, is around 12 sec-
onds (on an Intel 3.2 GHz processor). This is much faster
than many state-of-the-art solutions (cf. Table2).
Experiment II: cross validation. In most previous studies,
liver segmentation approaches were evaluated by dividing
the dataset into training and testing sets. This can be eas-
ily biased given the limited number of samples (cf. Table2)
and the large shape and texture variation of livers. To give
a thorough evaluation, we conduct a five-fold cross valida-
tion on 75 volumes selected from the dataset3. Specifically,
the dataset is divided to five sets, each containing 15 vol-
umes. Each time one set is chosen as the testing set and
the rest as the training set (for both the shape model and
boundary classifiers). This is done for five times and the av-
erage performance is reported. The mean error measured in
the average symmetric surface distance is 1.76±0.99 mm,
and the median is 1.45 mm. For comparison reason, after
removing five outliers (similar to [7]), the mean error be-
comes 1.59±0.50 mm, and the median becomes 1.38 mm.
Some typical segmentation results are shown in Fig.6.
Comparison to previous works. It is difficult to directly
compare different liver segmentation approaches due to the
use of different datasets as well as different annotations.
That said, it is worth summarizing the previous experiments
to comprehend the status of the study. Table2 summa-
rizes recent works of fully automatic liver segmentation
with reported average symmetric surface distances4 along
with datasets used. The table shows clearly that our preci-
sion is among the the best reported. Furthermore, compared
to the two methods [9, 7] with similar reported precisions,
our approach have two apparent strengths. First, the dataset
used in our experiments has more diversities than previous
tested datasets. Second, our method runs more than fifty

3These are all the volumes we had when we conduct cross-validation.
4We exclude [24] because it uses different error measures.



Table 2.Comparison to recent automatic liver segmentation experiments, sorted by the reporting time. Note:\Experiments from the
MICCAI liver segmentation challenge [18]. The online testing scores are shown (http://www.sliver07.org/miccai.php). The top two scores
are included.†The shape model is built from additional 43 volumes as in [11]. ‡Reported scores are after excluding outliers.

Method Mean Error (mm) Run time # volume involved # volume tested contrast Interslice reso. # slice
Soler et al. [16] 2‡ 15min 35 35 Yes 2-3 n/a

Lamecker et al. [11] 2.3±0.3 n/a 43 33 Yes 5 n/a
Heimann et al. [7] 1.6±0.5‡ 10 min 86 54 Yes 3 60-130
Okada et al. [14] 2.15 n/a 28 8 Yes 2.5 159
\Rusḱo et al. [15] 2.01 56 sec 40 10 Yes 1-3 n/a

\Kainmueller et al. [9] 1.37 15 min 40(+43)† 10 Yes 1-3 n/a
Our approach 1.59±0.50‡ / 1.76±0.99 12 sec 174 174 Mixed 1-5 105-524

times faster.

7. Conclusion

In this paper we propose a hierarchical, learning based
approach for automatic liver segmentation from 3D CT vol-
ume. We target on general data from patients with differ-
ence diseased organs and scanned under different protocols.
Despite the challenges, our approach demonstrates excel-
lent performance in accuracy and runs more than fifty times
faster than state-of-the-art solutions.

There are two important future directions along our
study. First, more data should be included to achieve fur-
ther improvement. Second, post-processing steps can po-
tentially achieve better accuracy. In particular, graph theory
could be used for boundary adjustment [7, 12, 3].
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Figure 6.Typical results. From left to right: sagittal, coronal, and transversal slices. The errors (inter-slice resolutions, diseased organs) for from top to
bottom: 1.09 (1.5, liver) mm, 1.30 (1.0, colon) mm, 1.63 (1.0, liver) mm, and 2.38 (5.0, lymphnode) mm.


