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Abstract

We discuss a novel statistical framework for image segmentation
based on nonparametric clustering. By employing the mean shift
procedure for analysis, image regions are identified as clusters in
the joint color-spatial domain. To measure the significance of each
cluster we use a test statistics that compares the estimated den-
sity of the cluster mode with the estimated density on the cluster
boundary. The cluster boundary in the color domain is defined
by saddle points lying on the cluster borders defined in the spa-
tial domain. The proposed technique compares favorably to other
segmentation methods described in literature.

1. INTRODUCTION

Segmentation using clustering involves the search for image points
that are similar enough to be grouped together. Algorithms from
graph theory [4, 7], matrix factorization [13, 14], deterministic an-
nealing [8], scale-space theory [9], and mixture models [5, 12]
were successfully used to delineate relevant structures within the
input data.

In this paper we present a new and practical approach to image
segmentation using a nonparametric model for image regions. Ac-
cording to this model, the regions are seen as clusters associated
to local maxima (modes) of the probability density function com-
puted in the joint color-spatial domain [1]. To evaluate the clus-
ter significance we employ a test statistic that compares the esti-
mated density of the mode with the estimated density on the cluster
boundary. The latter density is measured in the saddle points lying
on the cluster border defined in the spatial domain. The detection
of saddle points is based on a recently introduced algorithm [2].

The paper is organized as follows. Section 2 introduces the
mean shift based data decomposition. Section 3 shortly describes
the algorithm for saddle point detection and discusses the test statis-
tic. Experimental segmentation results and comparisons are shown
in Section 4.

2. MEAN SHIFT BASED DATA DECOMPOSITION

Given n data points xi, i = 1 . . . n in the d-dimensional space Rd,
the multivariate mean shift vector computed with kernel K in the

point x is given by [6, 1]
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where h is the kernel bandwidth. In the following we will use the
symmetric normal kernel. It can be shown that the mean shift vec-
tor at location x is proportional to the normalized density gradient
estimate computed with kernel K

mK(x) = h2 ∇̂fK(x)

f̂K(x)
. (2)

The normalization is by the density estimate in x obtained with
kernel K. This formula changes a bit for kernels different from
the normal [1].

The mean shift procedure is obtained by successive computa-
tion of the mean shift vector mK(x) and translation of the kernel
K(x) by mK(x). The procedure and is guaranteed to converge
at a nearby point where the density estimate has zero gradient. A
decomposition algorithm based on the mean shift property is dis-
cussed in [1].

3. SADDLE POINT DETECTION

We recently introduced in [2] an algorithm for finding the sad-
dle points associated with a given bandwidth h and a partition
{Du}u=1...m obtained through mean shift decomposition. A short
description of the algorithm is given in the sequel. First order sad-
dle points are detected, having the Hessian matrix with one posi-
tive eigenvalue and all other eigenvalues negative.

Let us select a cluster index v and define the complementary
cluster set

Cv ≡
⋃
u �=v

Du. (3)

In the following we drop the index v for the simplicity of the equa-
tions. We define two functions
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whose superposition at x equals the density estimate at x
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)
= f̂D,K(x) + f̂C,K(x). (6)

Computing now the gradient of expression (6), multiplying by h2,
and normalizing by f̂K it results that

mK(x) = h2 ∇̂fK(x)

f̂K(x)
= αD(x)mD,K(x) + αC(x)mC,K(x)

(7)
where
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are the mean shift vectors computed only within the sets D and C
respectively, and

αD(x) =
f̂D,K(x)

f̂K(x)
αC(x) =

f̂C,K(x)

f̂K(x)
(10)

with αD(x)+αC(x) = 1. Equation (7) shows that the mean shift
vector at any point x is a weighted sum of the mean shift vectors
computed separately for the points in the sets D and C.

We exploit this property for the finding of saddle points. As-
sume that xs is a saddle point of first order located on the boundary
between D and C. The boundary condition is

mK(xs) = 0 (11)

which means that the vectors αD(xs)mD,K(xs) and
αC(xs)mC,K(xs) have equal magnitude, are collinear, but point
towards opposite directions.

Let us define the vectors

rD(x) =
‖αC(x)mC,K(x)‖
‖αD(x)mD,K(x)‖αD(x)mD,K(x) (12)

and

rC(x) =
‖αD(x)mD,K(x)‖
‖αC(x)mC,K(x)‖ αC(x)mC,K(x) (13)

obtained by switching the norms of αD(xs)mD,K(xs) and
αC(xs)mC,K(xs). Note that in case of a perturbation of xs to-
wards C and along the line defined by αD(xs)mD,K(xs) and
αC(xs)mC,K(xs), the resultant

r(x) = rD(x) + rC(x) (14)

will point towards the saddle point. Since the saddle point is of
first order, it will be also stable for the directions perpendicular to
r(x) hence it will be a stable point with basin of attraction.

The algorithm uses the newly defined basin of attraction to
converge to the saddle point. The saddle point detection should be

started close to a valley, i.e., at locations having divergent mean
shift vectors coming from the sets D and C

αD(x)αC(x)mD,K(x)�mC,K(x) < 0 (15)

Since the data is already partitioned it is simple to search for points
that verify condition (15). If one starts the search from a point in
D just follow the mean shift path defined by mC,K(x) till the
condition (15) is satisfied. Nevertheless, if the cluster D is iso-
lated, the function f̂C,K(x) (5) will be close to zero for the data
points belonging to x ∈ D and can generate numerical instability.
Therefore a threshold should be imposed on this function before
computing mC,K(x). The algorithm for finding the saddle points
lying on the border of D is given below.

Saddle Point Detection
Given a data partitioning into a cluster D and another set C

containing the rest of the data points. For each xD ∈ D, if the
value of f̂C,K(xD) (5) is larger than a threshold

1. Follow the mean shift path defined by mC,K(x) (9) until
the condition (15) is satisfied.

2. Follow the mean shift path defined by r(x) (14) until con-
vergence.

Denote by xs the saddle point with the largest density lying of
the border of a given cluster characterized by the mode ym. The
point xs represents the “weakest” point of the cluster border. It re-
quires the least amount of probability mass which should be taken
from the neighborhood of ym and placed in the neighborhood of
xs such that the cluster mode disappears, as described in [11].

In [2] we have derived the test statistic for the null hypothesis
of the mode existence

z =

√
nc

2

f̂K(ym) − f̂K(xs)√
f̂K(ym)f̂K(xs)

(16)

where f̂K(ym) is the probability density at the mode location and
f̂K(xs) is the density at xs. The p-value of the test is the proba-
bility that z, which is distributed with N(0, 1), is positive

Prob(z ≥ 0) =
1√
2π

∫ ∞

−z

exp(−t2/2)dt (17)

A confidence of 0.95 is achieved when z = 1.65.
To test the existence of two neighboring clusters, we adapt

the test by replacing f̂K(ym) by
f̂K(y1)+f̂K(y2)

2
where f̂K(y1)

and f̂K(y2) are the densities associated to the modes of the two
clusters. In this case, xs is taken as the common saddle point with
the largest density.

4. SEGMENTATION EXPERIMENTS

We adapt the framework presented in Section 3 for the characteri-
zation of image clusters in the joint color-spatial domain. The idea
is to start with a given decomposition (over-segmentation) and join
the least significant clusters until they become significant accord-
ing to the measure (17). We use the image segmentation frame-
work described in [1], which employs mean shift to delineate clus-
ters in a joint space of dimension d = r + 2 that includes the



spatial coordinates (r = 3 for color images). All experiments pre-
sented here are performed with a bandwidth hr = 20 for the color
information, and hs = 4 for the spatial domain. To characterize
the joint-domain clusters, we run the saddle point detection algo-
rithm for each pixel on the cluster boundary. However, the spatial
component is fixed and only the color component varies. Then, for
every pair of two neighboring clusters we compute the mean den-
sity associated with their borders and their peak densities. These
values are used in (17) to determine the significance of the cluster
pair. Only clusters with confidence larger than 0.9 are retained.

Figure 1 presents the segmentation of image Lenna using the
new method. We compare our results with the a recent segmen-
tation method described in [3]. The two algorithms have roughly
the same complexity (a few seconds on a typical PC for 512×512
images). Observe the quality of hat delineation in comparison to
the technique [3]. Two sets of segmented images using the same
parameters are presented in Figure 2 and Figure 3 for data coming
from Berkeley database [10]. Observe the high quality of contours.

(a)

(b)

Fig. 1. Contours for Lenna. (a) Our method. (b) Method [3].

5. CONCLUSION

This paper shows that hypothesis testing for segmentation is an
effective direction for solving decomposition problems and evalu-
ating the significance of the results.
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Fig. 2. Segmentation of images from Berkeley database.

Fig. 3. Segmentation of images from Berkeley database.


