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Abstract—Existing methods for incorporating subspace model constraints in shape tracking use only partial information from the

measurements and model distribution. We propose a unified framework for robust shape tracking, optimally fusing heteroscedastic

uncertainties or noise from measurement, system dynamics, and a subspace model. The resulting nonorthogonal subspace projection

and fusion are natural extensions of the traditional model constraint using orthogonal projection. We present two motion measurement

algorithms and introduce alternative solutions for measurement uncertainty estimation. We build shape models offline from training data

and exploit information from the ground truth initialization online through a strongmodel adaptation. Our framework is applied for tracking

in echocardiograms where the motion estimation errors are heteroscedastic in nature, each heart has a distinct shape, and the relative

motions of epicardial and endocardial borders reveal crucial diagnostic features. The proposed method significantly outperforms the

existing shape-space-constrained tracking algorithm. Due to the complete treatment of heteroscedastic uncertainties, the strong model

adaptation, and the coupled tracking of double-contours, robust performance is observed even on the most challenging cases.

Index Terms—Shape tracking, subspace constraint, motion estimation with uncertainty, heteroscedastic noise, active shape model,

model adaptation.
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1 INTRODUCTION

MODEL constraints can significantly improve the perfor-
mance of a shape tracking algorithm. In most cases, a

subspace model is appropriate since the number of modes
capturing the major shape variations is limited and usually
much smaller than the original number of feature compo-
nents used to describe the shape [18]. A traditional
treatment is to project into a PCA (Principal Component
Analysis) subspace [54], [18]. However, this approach does
not take advantage of heteroscedastic (i.e., both anisotropic
and inhomogeneous) measurement uncertainties [33], [31]
(see Fig. 1). Intuitively, a tracking algorithm should down-
play measurements from uncertain regions when consult-
ing a shape model.

A more interesting solution was to directly incorporate a
PCA shape model constraint into a Kalman filter-based
tracker. In [9], [29], the proposal was to set the system noise
covariancematrix to be the covariance of a PCA shapemodel.
However, it didnotprovide a systematic and complete fusion
of the model information because the model mean is
discarded (as a result, the projection can be arbitrarily far
from the model mean in the subspace). More importantly, it
mixes the uncertainty from system dynamics with the
uncertainty from the statistical shape constraint, while these
two can be conceptually different. For example,wemaywant
touse thedynamicmodel to capturedifferentmodesofglobal
rigid motion, while applying a statistical shape model to

control themodes and range of shape variations. In addition,
existing solutions do not specifically address the issue of
heteroscedastic measurement uncertainties and its influence
during the fusion with other information sources. When
measurement errors are inhomogeneous and anisotropic,
joint fusion of all information sources becomes critical for
achieving reliable performance.

We decouple the uncertainty in system dynamics and the
statistical shape constraint and introduce a unified frame-
work for fusing a subspace shape model with the system dynamics
and the measurements with heteroscedastic uncertainties. We
build models for coupled double-contours so that more
information can be integrated, especially for very noisy data
[58]. The double-contour also achieves better preservation of
topology. To accommodate individual shape characteristics,
the shapemodel learned from a collection of training cases is
strongly adapted using information given about the current
case. The subspace model can take the form of a specific
subspace distribution, e.g., a Gaussian, or a simple subspace
constraint, e.g., the eigenspace model [54], [8]. Unlike
existing ad hoc formulations, our framework treats the two
cases in a consistent way and combines such constraints
seamlessly into the tracking framework. The new approach
calls for reliable estimation ofmeasurement uncertainties, for
which we employ a recent robust solution to the motion
estimation problem, which also computes the motion flow
uncertainties [16].

By shape tracking instead of contour tracking, we stress that
we detect actual control point movement (instead of
movement on a perpendicular line) and maintain point
labels throughout tracking. This facilitates alignment and
structural analysis and tangential motion estimation.

1.1 Related Work

When the measurement errors are heteroscedastic, an
orthogonal projection into the model subspace is not only
unjustified, but also damaging in terms of information loss
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[10]. It can only be justified when the error is isotropic and
homogeneous (cf. [19], [9], [29], [54]).

Measurement uncertainty has been exploited for tracking
and motion estimation in different contexts. However, none
has put all relevant information sources into a unified fusion
formulation. Brand and Bhotika [10] and Irani [27] use
measurement uncertainties, but they did not provide a
complete fusion-based tracking framework that combines
all the information sources. A rank-constrained flow estima-
tion formulation was proposed by Bregler et al. [11]. They
used constraints from both rigid and nonrigid motion
represented by basis-shapes. Although occlusion is ad-
dressed,measurement uncertainty in general is not optimally
exploited. Leedan andMeer (e.g., [33]) applied heteroscedas-
tic regression for fitting ellipses and fundamental matrices.
The fitting is achieved in the original space with parameter-
ized models. In our formulation, we avoid the parameteriza-
tion of shape variations. Instead, we build subspace
probabilistic models through PCA and obtain closed-form
solutions on both the mean and covariance of the fitted data.
Although simple, this model proves to be flexible and
effective for the current application, especially with the use
of our proposed SA-PCAmodel (see Section 3).Nevertheless,
for applications where this model is too restrictive, a future
research is to integrate more sophisticated nonlinear kine-
matic models (e.g., [43]). Robust model matching [7], [44]
relyingonM-estimatorsorRANSAChasbeenapplied to limit
or eliminate the influenceofdata components that areoutliers
with respect to themodel. Again, the locally (in space or time)
varying uncertainties are not exploited in these frameworks.

There is much research work done in the medical domain
that tracks heart motion using various techniques (e.g., [29],
[38], [1], [13], [36], [52], [37], etc.). These approaches explored
various techniques such as optical flow, active contours, PCA
shape constraints, joint appearance and shape models,
Kalman filters, etc. However, none of these addressed the
issue of heteroscedastic noise and its fusion with other
information sources.

The paper is organized as follows: The new tracking
formulation using fusion is presented in Section 2. Section 3
introduces our proposedmodel adaptation scheme. Section 4
discusses the issues related to localmotionmeasurement and
uncertainty estimation. Section 5 addresses the problem of
uncertainty handling during shape alignment. Experimental
evaluation and analysis are presented in Section 6. Conclu-
sions are drawn in Section 7, with a discussion of future
research directions.

2 FUSION-BASED SUBSPACE MODEL

CONSTRAINING DURING TRACKING

Throughout this paper, we represent shapes by configura-
tions of labeled control points or landmark points, assum-
ing correspondence. For displaying on the user interface,
these points are fitted by splines into one or more contours
(see Fig. 12). During analysis, however, point coordinates
for each shape (with one or more contours) are concate-
nated into one vector [18]. For more implementation details,
please refer to Section 6.

A typical tracking framework fuses information from
dynamic prediction and from noisy measurements. For
shape tracking, additional constraints are necessary to
stabilize the overall shape in a feasible space/range. In this
section, we first extend the traditional subspace constraint
using orthogonal projection to nonorthogonal projection.
Then, we show that, with a complete subspace model
constraint, this can be further generalized into an informa-
tion fusion formulation. Finally, these formulas are uni-
formly combined into the tracking framework.

2.1 Nonorthogonal Projection for Heteroscedastic
Uncertainties

Unless otherwise noted, bold lower-case letters are used to
represent vectors, bold upper-case letters are for matrices,
and italic letters represent scalars.

Given an n-dimensional measurement point1 represented
by a multivariate normal distribution with a mean vector x
anda covariancematrixC,wewant to find the “closest” point
y� in a p-dimensional (p < n) subspace, with its axes defined
by the orthonormal column vectors of an n� p matrix, Up,
UT

pUp ¼ I, such that the Mahalanobis distance is minimized,
i.e., y� ¼ argmin d2, where

d2 ¼ ðUpy� xÞTC�1ðUpy� xÞ: ð1Þ

This is in the form of a weighted least square ([45, p. 386]). By
taking a derivative of the above with respect to y and
setting it to 0, we have

y� ¼ C�
yU

T
pC

�1x; C�
y ¼ ðUT

pC
�1UpÞ�1: ð2Þ
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Fig. 1. Ellipses depicting uncertainties or confidence regions in feature localization and motion estimation. The heteroscedastic nature stems from
either the aperture problem [31], [28], or for echocardiograms (b), the acoustic drop-out [41].

1. Care should be taken to avoid confusion over the interpretation of the
term “point”: The point here would correspond to a contour with multiple
control points. By “inhomogeneous,” we refer to the inhomogeneity among
different control points [31].



In general, this is a nonorthogonal projection. It is easy to
show that the Gaussian Nðy�;Cy� Þ is the conditional
distribution, or intersection, of x in the subspace. Only when
C ¼ cI with some positive scalar c, we have

y� ¼ ðc�1UT
p IUpÞ�1UT

p ðcIÞ
�1x ¼ UT

p x; Cy� ¼ cIp: ð3Þ

In our application, this means that all control points on the
contour have isotropic and homogeneous uncertainties and
the solution reduces to classical orthogonal projection.

2.2 Incorporating Model Distribution through
Subspace Fusion

In the above, we only considered the subspace constraint,
while the actual model distribution (or the mean and
covariance, in case of Gaussian) represents important prior
information that should not be discarded. In the sequel, we
show that an information fusion formulation unifies all
cases within a general maximal likelihood framework. The
basic idea is to treat both themeasurement and the shape model
(and, later, the prediction as well) as noisy measurements
with covariance matrices and fuse all information in an
optimal way.

The information space is the space obtained by multi-
plying a vector by its corresponding information matrix,
which is, in the Gaussian case, the inverse of the error
covariance matrix. Given two noisy measurements of an
n-dimensional variable x, each with a Gaussian distribution,
Nðx1;C1Þ and Nðx2;C2Þ, the maximum-likelihood esti-
mate of x is the point with the minimal sum of
Mahalanobis distances, Di

2ðxÞ ¼ ðx� xiÞTC�1
i ðx� xiÞ, to

the two centroids, i.e., x� ¼ argmin d2 with

d2 ¼ ðx� x1ÞTC�1
1 ðx� x1Þ þ ðx� x2ÞTC�1

2 ðx� x2Þ: ð4Þ

Taking derivative with respect to x and setting it to zero,
we get:

x� ¼ CðC�1
1 x1 þC�1

2 x2Þ; C ¼ ðC�1
1 þC�1

2 Þ�1; ð5Þ

which is also known as the best linear unbiased estimate
(BLUE) of x, assuming that the two sources are independent
([4], [34]). When dependency or correlation exists, one
possible alternative is to use covariance intersection which
can avoid overly confident estimate [30].

Whenone of theGaussians is in a subspace of dimension p,
e.g., C2 is singular, the second term of (4) can be rewritten
using the pseudoinverse ofC2,C

þ
2 :

D2
2ðxÞ ¼

Xp
i¼1

��1
i ½UT

p ðx� x2Þ�2 � ðx� x2ÞTCþ
2 ðx� x2Þ ð6Þ

with the additional constraint of UT
0 x ¼ 0 (otherwise, d will

diverge). Here, C2 ¼ U�UT , U ¼ ½u1;u2; . . .;un�, Up ¼
½u1;u2; . . .;up�, U0 ¼ ½upþ1;upþ2; . . .;un�, with ui’s orthonor-
mal and � ¼ diagf�1; �2; . . .; �p; 0; . . .; 0g. (Here, we have
assumed, without loss of generality, that the subspace passes
through the origin of the original space.)

With UT
0 x ¼ 0, x resides in the subspace as y ¼ UT

p x.
Equation (4) now takes the following general form:

d2 ¼ ðUpy� x1ÞTC�1
1 ðUpy� x1Þ

þ ðUpy� x2ÞTCþ
2 ðUpy� x2Þ:

ð7Þ

Taking derivative with respect to y yields the fusion
estimator for the subspace:

y� ¼ Cy�UT
p ðC�1

1 x1 þCþ
2 x2Þ; Cy� ¼ ½UT

p ðC�1
1 þCþ

2 ÞUp��1:

ð8Þ

Equivalent expressions can be obtained in the original
space as:

x� ¼ Upy
� ¼ Cx� ðC�1

1 x1 þCþ
2 x2Þ; Cx� ¼ UpCy�UT

p : ð9Þ

It is easy to show that Cx� and Cy� are the covariance
matrices for x� and y�.

Alternatively, we can write (8) as

y� ¼ ðUT
pC

�1
1 Up þ��1

p Þ�1ðUT
pC

�1
1 x1 þ��1

p y2Þ: ð10Þ

Here,y2 ¼ UT
p x2, and�p ¼ diagf�1; �2; . . .; �pg. Interestingly,

(10) is, in fact, the BLUE fusion of two subspace Gaussian
distributions, one being Nðy2;�pÞ and the other being the
nonorthogonal projection of Nðx1, C1Þ in the subspace,
NððUT

pC
�1
1 UpÞ�1UT

pC
�1
1 x1; ðUT

pC
�1
1 UpÞ�1Þ (cf. (2)).

The fusion formulation ((8) through (10)) is general and it
takes as special cases the nonorthogonal projection of (2)
(when the distribution in the subspace is ignored, leaving
just a subspace as the constraint) and the traditional
approach of orthogonal projection of (3) (when considering
only the subspace and an isotropic C1). In this general
formulation, the model constraint can be interpreted as an
independent “virtual measurement” and can be treated
interchangeably with the true measurement.

2.3 Constrained Tracking through Fusion and
Projection

To integrate the above projection and fusion formulas into a
tracking framework, we first note that the Kalman filter is
essentially fusion in nature, which is evident in its
information filter form ([3, p. 138]):

xkþ1jkþ1¼ðP�1
kþ1jkþHTR�1HÞ�1ðP�1

kþ1jkxkþ1jk þHTR�1zkþ1Þ:
ð11Þ

Here, xijj is the state estimate at time i given the state or
measurement at time j, P is the state covariance, and H is
the measurement matrix. The measurement model is
zk ¼ Hxk þ rk, where rk represents measurement uncer-
tainty with covariance R. P is recursively updated as
Pkþ1jk ¼ SPkjkS

T þQ using information from a dynamic
system model xkþ1 ¼ Sxk þ qk, where qk represents system
noise with covariance Q ([5, p. 56]).

For the special case where H is a square matrix and
admits an inverse, we can see (11) in a strict information
fusion form, namely, the fusion of prediction and measure-
ment in the information space (cf. (5)):

xkþ1jkþ1 ¼ ðP�1
kþ1jk þR�1

x Þ�1 P�1
kþ1jkxkþ1jk þR�1

x xz;kþ1

h i
; ð12Þ

where Rx ¼ H�1RðH�1ÞT and xz;kþ1 ¼ H�1zkþ1.

Because the Kalman filter is a fusion filter and the
information fusion operation is associative, we can apply the
subspace fusion formulas, (8) and (9), on the Kalman fusion
result of (11) (in general, H is not square nor invertible;
otherwise, (12) canbeused) anda subspace sourceNðx2;C2Þ,
to obtain a complete fusion formula:

ZHOU ET AL.: AN INFORMATION FUSION FRAMEWORK FOR ROBUST SHAPE TRACKING 3



xkþ1jkþ1 ¼ Pkþ1jkþ1ððSPkjkS
T þQÞþxkþ1jk

þHTR�1zkþ1 þCþ
2 x2Þ;

ð13Þ

Pkþ1jkþ1 ¼ Up½UT
p ððSPkjkS

T þQÞþ

þHTR�1HþCþ
2 ÞUp��1UT

p :
ð14Þ

It is worth pointing out that this solution combines all the
available knowledge in the information space. It provides a
unified fusion of the system dynamics, a subspace model,
and measurement uncertainty. It addresses, in a principled
way, uncertainties from various sources that affect the
tracking system.

Compared to a PCA shape space representation [9], [29], the
fusion formulation takes into account not only the model
subspace (the eigenvectors), but also the actual model
distribution, in a unified framework. On the other hand, if
only a subspace constraint is desired,we can simply apply the
special case of (2) on (11) and the resulting nonorthogonal
projection is still within the same analytical framework.

3 UPDATING SHAPE MODEL: FUSION VERSUS

MODEL ADAPTATION

The use of a model learned from a pool of training samples
to guide a specific case is inherently problematic, especially
when novel shapes commonly appear. Theoretically, what
we really need is the deformation model of the current case.
Therefore, there is a strong need to update the generic
model to reflect what is already known for the current case.
A natural choice is to use the initial contour (by hand or
through automatic detection) to update the existing model.
In the context of the preceding discussions on fusion, a
tempting idea would be to fuse the model and the new contour
by assigning some covariance C ¼ �I for the new contour.
This turns out to be inappropriate and we will discuss this
at the end of this section.

An alternative tool is incremental PCA (IPCA) [22],
where a PCA model can be updated without using previous
training data. However, to effectively exploit the prior, one
needs to put more emphasis on the initial contour. There-
fore, we apply a strongly adapted-PCA (SA-PCA) model as
follows: We assume that the existing PCA model and the
initial contour of the current case jointly represent the
variations of the current case, but with relative energy being
� and ð1� �Þ, 0 < � < 1. In other words, a portion of the
shape variations of the current case is captured by the
generic model, while the rest is captured in the direction of
the initial contour in the model space.

The PCA model has its mean, eigenvalue matrix, and
eigenvector matrix, denoted by xm, �, and U, respectively.
If the original covariance matrix C were stored, the adapted
mean xnew

m and covariance matrix Cnew would simply be the
weighted sum of the two contributing sources:

xnew
m ¼ �xm þ ð1� �Þx; ð15Þ

Cnew ¼ � Cþ ðxm � xnew
m Þðxm � xnew

m ÞT
� �

þ ð1� �Þðx� xnew
m Þðx� xnew

m ÞT

¼ �Cþ �ð1� �Þðx� xmÞðx� xmÞT :

ð16Þ

Eigenanalysis can be performed on Cnew to obtain the new
subspace model.

Amore interesting and practical scenario is whenC is not
stored and fxm;�;Ug resides only in the subspace. Denote the
subspace component of x as xs ¼ UTxd, where xd ¼ x� xm,
and the residual vector as xr ¼ ðx� xmÞ �Uxs. Let xru be
the normalized unit vector of xr. Through straight algebraic
manipulations, we can arrive at the adapted eigenanalysis
results fxnew

m ;�new;Unewg with Unew ¼ ½U;xru�R, where R
and �new are solutions to the following eigenanalysis
problem:

�
� 0
0T 0

� �
þ �ð1� �Þ xsx

T
s erxs

erx
T
s e2r

� �� �
R ¼ R�new; ð17Þ

where er ¼ xT
ruðx� xmÞ is the residual energy.

The above formulas are extensions of IPCA or the
eigenspace merging formula of [22], with tunable energy
ratios between the new data and the old data. With � set at a
smaller value, the PCAmodel is strongly adapted toward the
current case, hence the name. Fig. 2 shows a simple two-
dimensional illustration of IPCA and SA-PCA with different
� values. One open issue for SA-PCA is how to set the value
for �. Based on our experiments, we observe that optimal
performance is reachedwhen � is between 0.3 and 0.6 [57]. In
this work, we set it at 0.5.

We are now in a position to point out the differences
between fusion and IPCA or SA-PCA. First of all, a fused
model cannot break out of the subspace, while IPCA or SA-
PCA can. More fundamentally, fusion provides the “inter-
section” of the information sources [30], while IPCA or SA-
PCA yield some “union” of the sources. We need to augment
instead of constrain the generic model, so fusion is not the
proper choice.

With SA-PCA, our framework now incorporates four
information sources: the system dynamic, measurement,
subspace model, and the initial contour. This last addition is
especially useful for periodic shape deformations such as
cardiac motion.

4 ESTIMATING LOCAL MOTION AND UNCERTAINTY

In this section, we first review existing research on the
estimation of measurement or feature uncertainties,
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Fig. 2. SA-PCA versus IPCA. The dark crosses (“x”) are 99 training
points, the black dot is the new point. The solid ellipse shows the original
model distribution, the black “+”-ellipse is IPCA (equivalent to SA-PCA
with � ¼ 0:99), the diamond-ellipse is SA-PCA with � ¼ 0:5, and the
square-ellipse corresponds to � ¼ 0:1. Each ellipse depicts the
90 percent equal-probable contour of the corresponding distribution.



particularly heteroscedastic (i.e., location-dependent and
anisotropic) analysis. We then discuss our selection of
matching algorithms and the corresponding formulations
for uncertainty estimation.

4.1 Measurement Uncertainty Estimation

Motion estimation uncertainty is jointly influenced by three
factors: 1) the noise characteristics and levels, 2) the intrinsic
tractability of the target pattern. A typical example is the so-
called “aperture problem”: Points on an edge are intrinsi-
cally harder to track than a point sitting on a corner. This
factor is intrinsic because it exists regardless of what
algorithms to use, and 3) the complexity of the appearance
change with respect to the capability of the estimator. For
example, affine deformations of the target would result in
low confidence estimates if a tracker assumed only
translational motion [48]. Even for a good feature such as
a corner or a patch with “high texture content” [48], its
motion uncertainty can be high if the feature is significantly
altered or lost in the second image.

Under some limiting assumptions, the covariances of the
motion estimates can be obtained analytically. For example,
with the assumptions of “conservation of image intensity”
and Gaussian noise, the gradient-based optical flow
calculated by least squares has a covariance matrix

C ¼ �2G�1; ð18Þ

i.e., with its spread proportional to the noise variance �2

and its anisotropy or directionality governed by the inverse
of the gradient Grammian G ([25], [45], [53, p. 378]), where

G ¼
X

ðxi;yjÞ2W

Ixðxi; yjÞ2 Ixðxi; yjÞIyðxi; yjÞ
Ixðxi; yjÞIyðxi; yjÞ Iyðxi; yjÞ2

� �
: ð19Þ

Here, Ix and Iy are the spatial gradients of the image
function I, and ðxi; yjÞ are the points used to estimate the
flow. Not surprisingly, the same matrix G is used in other
contexts such as interest point detection,where an interest point
is declared if this matrix has two significant eigenvalues [46],
point feature detection and monitoring during tracking [48],
and other computer vision problems such as homography or
fundamental matrix computation [31].

Note here that the uncertainty depends only on the
intrinsic property of the target (by the Grammian) and the
noise and not on the actual matching candidate image,
which has been assumed to be simply a shifted version of
the target in noise. The noise, however, can be divided into
two types and modeled explicitly, one for errors in temporal
derivative measurements and the other for variations in
spatial gradients. If both are Gaussian, a closed-form
solution can be obtained for the distribution of the flow [49].

However, motion uncertainty is not easy to formulate
when complex, non-Gaussian appearance variations occur in
the second image, such as affine or nonlinear distortions,
partial occlusion/disocclusion, and signal drop-outs, as often
occur in echocardiography [41], etc. In an early proposal,
Anandan [2] used multiple sum-of-squared-differences
(SSD) matching scores SSDðx; yÞ around the best match to
estimate matching confidence. The two principal curvatures
of the SSDsurfacewere estimated to represent the anisotropic
matching confidence. This schemewas revised subsequently
by, e.g., Singh [50] andNickels andHutchinson [40], where a
response distribution, RDðx; yÞ, is used instead of the original
SSD map:

RDðx; yÞ ¼ expðkSSDðx; yÞÞ; ð20Þ

where the factor k is used to normalize RD, e.g., to sum

to 1 [40].
The use of SSD and RD are both justifiable under certain

assumptions, but one has to use the right formulation for

the covariance estimate. The guideline for choosing an

uncertainty measure is that it should conform to (18) under

the same assumptions. Indeed, under the assumptions that

led to (18), the SSD surface SSDðx; yÞ can be approximated

using a Taylor expansion around the best-match location

(which is set at ð0; 0ÞÞ:

SSDðx; yÞ ¼
X
i;j

ðIðiþ x; jþ yÞ � Iði; jÞÞ2

�
X
i;j

ðIði; jÞ þ Ixxþ Iyy� Iði; jÞÞ2

¼ x yð ÞG
x

y

� �
;

ð21Þ

where G has the same form as (19).
This indicates that the motion covariance can be

estimated, up to scale, through a quadratic fitting of

SSDðx; yÞ (cf. [31]).
Combining (20) and (21), it becomes apparent that the

RDðx; yÞ,whenapproximatedbyaGaussiandistribution, has

acovariance that isproportional to thatof (18). Inotherwords,

motioncovariancecanbedirectlyestimated,uptoscale,bythe

covariance ofRDðx; yÞ around the best-match location.
Given RDðx; yÞ, assuming additive zero-mean indepen-

dent errors, the covariance matrix is [50], [40]:

C ¼ 1P
i;j RDðxi; yjÞX

i;j

RDðxi; yjÞðxi � xÞ2 RDðxi; yjÞðxi � xÞðyj � yÞ
RDðxi; yjÞðxi � xÞðyj � yÞ RDðxi; yjÞðyj � yÞ2

" #
;

ð22Þ

where xi and yj are sampled in the neighborhood of ðx; yÞ.
Alternatively, one can obtain a covariance estimate based

on the estimated Hessian matrix, assuming Gaussianity. For

a Gaussian distribution with a covariance matrix C, the

Hessian matrix at the peak is:

G ¼ �ð2�Þ�d=2 Cj j�1=2C�1: ð23Þ

By taking determinants on both sides, Cj j can be expressed

as a function of G. Combining this with (23), we get:

C ¼ 2�ð�G�1Þ
�� ��� 1

dþ2ð�G�1Þ: ð24Þ

This estimate is invariant to vertical shift of the RD-surface

because the estimate depends only on the derivatives (see

also [23]).

4.2 Local Matching of Control Points

To measure the local motion at each control point of a

contour, different algorithms can be applied. Here, we

discuss two approaches: The first is the Bayesian kernel

matching algorithm [14]. The second is an optical flow-

based matching algorithm [16].
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4.2.1 Bayesian Kernel Matching with Uncertainty

We adopt the algorithm proposed in [14], based on
nonparametric density estimation.

Both the target model and the candidate image patch are
represented by probability densities in the joint spatial-
intensity domain. The candidate is assumed to be a
transformed version of the target in this augmented space.
The parametric transformation vector can be estimated
using a maximum-likelihood formulation. The optimal
transformation vector reveals the 2D motion and appear-
ance change of the target. In contrast to classical correlation-
based methods or SSD-based methods [2], [51], this
approach captures appearance changes in a natural and
principled way, and is robust to outliers caused by, for
example, partial occlusion or impulsive noise.

Assuming that the transformation of the candidate density
is onlya translation in the joint spatial-intensity space, the log-
likelihood of matching has the following form [14]:

Ly ¼
XN
r¼1

log pðxr þ yÞ ¼
XN
r¼1

log
1

nhd

Xn
i¼1

k
xr þ y� xi

h

��� ���2� �
;

ð25Þ

where Q ¼ fxr; r ¼ 1Ng is a sample drawn i.i.d. from the
target probability density q in the d-dimensional joint space,
fxi; i ¼ 1ng is the sample drawn from the candidate
density, y is the translation vector, and kð�Þ is the kernel
for density estimation from samples, e.g., Gaussian kernel,
with h its bandwidth parameter.

Derived from a mean shift procedure [17], we can
maximize this term using the following iterative formula:

y1 ¼
1

N

XN
r¼1

Pn
i¼1ðxi � xrÞk xrþy0�xi

h

�� ��2� �
Pn

i¼1 k
xrþy0�xi

h

�� ��2� � ; ð26Þ

where y0 is the previous translation vector, and y1 is the
updated vector. To start with, one can simply initialize y0 to
be 0. The iteration is terminated when the increment is
smaller than a threshold. A multiscale, coarse-to-fine image
pyramid is used in our implementation, with three levels
for the pyramid. The window size for the target model and
the candidate patch is 17� 17 for all levels.

To estimate the localization uncertainty, we perturb and
estimate the log-likelihoods of (25) in the vicinity of the

optimally matched location. Specifically, for each spatial
location ði; jÞ 2 No, whereNo is the neighborhood around the
optimal spatial location, we find the optimal shift in intensity
and record the corresponding log-likelihood Lði; jÞ. This can
be done using (26), but without updating the spatial translation
during the iteration.

According to the discussions in Section 4.1, we recover
the response distribution as RDði; jÞ ¼ expðkLði; jÞÞ, where
k is used to normalize RD to sum to 1.

Equation (22) or (24) can then be applied for the
estimation of the covariance. Fig. 3 depicts the uncertainty
calculated using (24).

4.2.2 Flow-Based Matching Using Nonparametric

Information Fusion

Our second matching algorithm is an adaptation of the
frame-to-frame motion estimation algorithm described in
[16], which is very competitive in terms of performance
evaluation using standard sequences. We present in the
sequel a brief summary of the algorithm.

The main idea is that the motion in a certain neighborhood
can be robustly estimated as the most significant mode of some
initial motion estimates (expressed by mean vectors and
associated covariance matrices). The most significant mode
is defined by mode tracking across scales, while the
underlying mechanism for mode detection relies on the
variable-bandwidth mean shift [15].

Assume a constant velocity model, the initial motion
estimates for each location of awindow of dimensionM �M
are computed through the traditional Least Squares [35]with
some lower bound on the covariance eigenvalues to avoid
instabilities, or through Biased Least Squares [24]. Then,
using a robust fusion framework, we determine the location
of the most significant mode in the two-dimensional velocity
space by performing mode tracking across scales.

In the current work, for each control point, we compute
initialestimatesusing17� 17windowsandfusetheresultson
5� 5 neighborhoods. A pyramid of three levels is employed
with covariance propagation across levels. Fig. 4 depicts the
uncertainty calculated at the bottom of the pyramid for the
contour points from two sequences, using (18).

The motion is always computed with reference to the
neighborhood of the control point in the first frame of the
sequence (i.e., the current frame is always compared to a
model extracted from the first frame). Thus, error accumu-
lation from frame to frame is avoided. Since we update the
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Fig. 3. The confidence ellipses corresponding to the local measurement uncertainty on each control point, estimated by the Bayesian matching
algorithm of Section 4.2.1 and (24).



location of the model at each frame, the motion estimation
process always starts with a good initialization. The overall
procedure is suitable for the tracking of periodic sequences
such as the heart ultrasound data. It resembles a template-
based matching algorithm, which benefits from the fast
computation of frame-to-frame motion.

5 EXPLOITING UNCERTAINTY FOR SHAPE

ALIGNMENT

To build an accurate PCA shape model, one needs an
aligned training set. Without proper alignment, trivial global
transformations (such as translation) may dominate the
model. Of course, what types of variations are trivial
depends on the application.

In this work, the training set is aligned using the iterative
Procrustes analysis approachdescribed byCootes andTaylor
[19] to cancel out global translation, rotation, and scaling.
PCA is then performed to obtain the initial shape model.
Therefore, before fusing the measured set of control points
(Section 4.2) with the updated shape model (Section 3), we
need to first align the measured point set with the model. In
this section, we discuss the exploitation of heteroscedastic
uncertainties during this alignment process.

5.1 Maximum-Likelihood Fusion with Alignment

We will borrow terms from Kendall et al. [32] and call an
un-aligned control point set a preshape while referring to an
aligned set as a shape. With a common reference, the
assemblage of all possible shapes forms the shape space [32].2

Ideally, we should jointly optimize the alignment trans-
form inside the fusion formulation of Section 2. Fig. 5
illustrates this idea: Given a measurement point X with
covariance CX, and the model NðM;CMÞ in a subspace, we
would like to find the optimal transform T � and the pointXM

(and its covariance CXM) which has maximum-likelihood of
generatingNðM;CMÞ andNðX�;CX

�Þ, whereX� ¼ T �ðXÞ.
Unlike traditional Procrustes analysis formulations [47],

[20], the problem here involves covariance matrices on both
sides. To our best knowledge, it does not have a close-form
solution over the similarity transform set. The global
optimal can be sought numerically, but the computation
will be expensive.

We resort to a two-step optimization approach, with
close-form solutions for both steps. This scheme can be
explained on Fig. 5: The first step is to go from X to X�, i.e.,
to find the optimal transform from X to M, using
information in Cx. The second step is to go from X� to
XM , using additional information from CM . We will call the
first step the alignment step and second the constraining step.

5.2 Shape Alignment with Uncertainty

The problem of matching two (or more) point patterns is a
classical one andwas addressed as early as in the 1960s (for a
list of papers see [20, p. 83]). Also known as the orthogonal
Procrustes problem,most of its various solutions had implied
either isotropic uncertainties on the point patterns or
anisotropic weighting of the axes of the coordinate system
[6]. Our goal, however, is to consider the component
uncertainties during the transform of the preshape and its
covariance matrix toward the model mean. We minimize

d2 ¼ ðm� x0ÞTC0
x
�1ðm� x0Þ; ð27Þ

where x0 ¼ T ðxÞ and C0
x ¼ T ðCxÞ.

When T is the similarity transform, we have x0 ¼ Rxþ t,
where t is the translation vector with two free parameters
and R is a block diagonal matrix, with each block being

R ¼ a �b
b a

� �
ð28Þ
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Fig. 4. The confidence ellipses corresponding to the local measurement uncertainty on each control point, estimated by the Flow algorithm of

Section 4.2.2 and (18).

2. This definition of shape space is in agreement with that of Cootes and
Taylor [19], but somewhat different from that of Blake and Isard ([9, p. 74])
which is defined as a linear subspace of the preshape space.

Fig. 5. Invariance manifold for shape alignment. Under invariant
transforms, the pre-shape X traverses a manifold, C, illustrated by the
thick curve. In general, C will not intersect the model subspace F (the
slanted axis containing the model centroid M).



with the vector of free parameters r ¼ ða; bÞT , encapsulating
rotation and scaling factors.

A subtly different formulation was solved in [19], [56],
where the weight matrix is not a function of the
transformation. We can rewrite (27) in the form of [19],
[56] so that their results can be borrowed directly:

d2 ¼ðR�1ðm� tÞ � xÞTC�1
x ðR�1ðm� tÞ � xÞ

¼ðT �1ðmÞ � xÞTC�1
x ðT �1ðmÞ � xÞ:

ð29Þ

When measurement uncertainties are estimated for
different control points xi independently, Cx becomes
block-diagonal with 2� 2 Ci on the diagonal and a close-
form solution can be concisely written as follows:

�rr
�tt

� �
¼

P
C�1

i Yi;
P

C�1
iP

Y T
i C�1

i Yi;
P

Y T
i C�1

i

� ��1 P
C�1

i xiP
Y T
i C�1

i xi

� �
; ð30Þ

where �rr ¼ ð�aa; �bbÞT , Yi ¼ mi; Jmið Þ, and

J ¼ 0 �1
1 0

� �
:

Finally, we recover the rotation and scaling matrix R,
and the translation vector t, as follows:

R ¼ �aa ��bb
�bb �aa

� ��1

; t ¼ �R�tt: ð31Þ

Fig. 6 illustrates shape alignment without and with
considering uncertainties in point locations. Intuitively, the
latter trusts the points with higher confidence during the
alignment more.

5.3 Model Constraining with Uncertainty

With the preshape aligned with the model, the shape with
maximum likelihood of being generated by the two
competing information sources, namely, the aligned shape
X� versus the (subspace) model M, can be obtained using
(14) of Section 2.

Because the complete fusion is performed on the aligned
shapes with a transformation T �, we need to transform the
fusion result back to the pre-shape space by T ��1 before the
prediction takes place for the next time step.

Fig. 7 shows a schematic diagram of the analysis steps
where the uncertainty of measurement and prediction is
propagated through all the steps. To take into account the
shape invariances, the complete fusion formulation is
implemented in two steps, separated by shape alignment.

6 IMPLEMENTATION, EVALUATION, AND ANALYSIS

In this section, we test the proposed framework using
synthetic sequences and real-world ultrasound heart
sequences.

Echocardiographydata collected from60patients areused
to form the training and the test sets. Both setsweremanually
traced by experts, and confirmedby a cardiologist, to provide
ground truth contours. Both apical two/four-chamber views
and parasternal long/short axis views are trained and tested.
Landmark points are assigned based on anatomic features
(e.g., the apex, the papillary muscles, etc.). We order the
control points in clockwise order, with the first point at the
mid inferior region for the short axis view and at the basal
septal/inferior region for apical views. Furthermore, the
mid-point for the apical view is assigned at the apex. We use
17 control points for the apical views and the long-axis view
and 18 for the short axis views. The algorithm can tolerate
some variability on the location of the landmark points,
partly due to the application of SA-PCA.
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Fig. 6. Shape alignment. (a) Without considering uncertainties in
localization and (b) with heteroscedastic [31], [28], [33] uncertainties.
The ellipses depicts the covariance on point locations, representing
information in a block-diagonal Cx.

Fig. 7. Uncertainty propagation during shape tracking. The small gray ellipses illustrate the location uncertainties. Notice that uncertainties are
transformed with the shape during alignment and fused with the model and the (predicted) prior information during likelihood estimation and tracking.



The training contours are aligned using the iterative
Procrustes analysis approachdescribed byCootes andTaylor
[19] to cancel out global translation, rotation, and scaling.
PCA is then performed and the dimensionality is reduced to
retain 80-97 percent of energy, separately tuned for each
model. Fig. 8 shows the most dominant eigenshapes for two
views trained on about 200 contours each for both single and
double-contours.Adouble-contour is treatedasa singlepoint
in a high-dimensional space and its model is trained in the
same way as a single contour model.

During testing, we assume manual initialization and use
the dynamic model to impose a temporal smoothness
constraint. Without prior knowledge regarding the possible
motion abnormalities for the current patient under study,
we employ a 0th-order dynamic model to represent the
uncertainty in system dynamics and set the relative
confidence of this model empirically. Although a more
sophisticated dynamic model encoding the periodicity in
heart motion may provide stronger predictive power, our
goal is to detect abnormal and unpredictable local motions
(e.g., hypokinetic, akinetic, or paradoxical motion of
regional heart muscles)—A strong predictive motion model
can also drown out subtle manifestations of regional wall
motion abnormalities. Since we take local motion measure-
ments in a coarse-to-fine fashion on a three-level pyramid,
our algorithm can track large motion without a strong prior
motion model. Our simple dynamic model suffices and
serves effectively as a temporal smoothness constraint.

At each tracking step, before the fusion step, the measure-
ment is aligned to themodel using the transformation of (31).
The covariance matrix is also transformed accordingly.

6.1 Performance Measures

We tested two distance measures: the Mean Sum of Squared
Distance (MSSD) [1] and theMeanAbsolute Distance (MAD)
[38]. With consistent results, we report only the MSSD in this
paper. For the sequence Si with m contours, fc1; . . . ; cmg,
where each contour cj has npoints fðxj;1; yj;1Þ; . . .; ðxj;n; yj;nÞg,
the distance to the ground truth S0

i is defined as MSSDi ¼
1
m

Pm
j¼1

1
n

Pn
k¼1 SDi;j;k and the mean spatial error deviation is

defined as �i ¼ 1
m

Pm
j¼1 �i;j, where

SDi;j;k ¼ ðxj;k � x0
j;kÞ

2 þ ðyj;k � y0j;kÞ
2

� �
ð32Þ

and �i;j is the sample standard deviation of SDi;j;k across k.
The overall performance measures for a particular

method are the averages of MSSDi and �i across the
whole test set of l sequences, MSSD and ���. As an

approximate measure of pixel errors, we use the square
root of MSSD. A critical difference between our distance
measures and those of [1] or [38] is that we have the
point correspondence through tracking. As a result, we
could capture tangent motion components along the
contour which can reveal crucial information about
cardiac function.

Five methods are compared. The first is a tracker without
shape constraint (“Unconstrained”), using either the Baye-
sian kernel tracker or the flow-based tracker (Section 4.2) to
track the control points independently. The second approach
is the same tracker but adding orthogonal PCA shape model
constraints, which represents the current approaches [29],
[19], [9] (“ShapeSpace”). The third is “ShapeSpace” but using
our SA-PCA model (“SAPCA”). The fourth approach is our
fusion framework using traditional PCA models (“F-PCA”).
The last is theproposed framework (“Proposed”),whichuses
both fusion and the SA-PCAmodels.

6.2 Tracking Synthetic Sequence

To ensure unbiased evaluation, we first use synthetic
sequences with known ground truth for performance
comparison. The sequences consist of a shrinking circular
ring moving right-downward for 20 frames (800� 720),
with portions of the ring disappearing in three frames out
of every six frames (Fig. 9). Three kinds of noise are added
to each frame: zero-mean Gaussian white noise (with
variance �2), multiplicative speckle noise (which changes
a pixel value I to I þ �I, where � is uniformly distributed
random noise with mean 0 and variance �2

�), and salt-and-
pepper noise (Table 1).3 The selection of noise is partially
motivated by the noise occurring in ultrasound images [12],
[41], but we are interested in not only ultrasound sequences
but also signals with general noise settings since the
proposed framework is general. Fig. 9 shows some screen
shots of the tracking results. Fig. 10 presents comparisons of
the four model-constraining approaches based on either the
Bayesian or the flow-based trackers. Observe the significant
and consistent improvements of the proposed approaches
over the existing “ShapeSpace” approach. As the shape
model, we have borrowed the model for the parasternal
short axis view (Fig. 8b).

It should be noted that the algorithms do not assume a
circular shape other than statistically exploiting the initial
contour when SAPCA is employed. SAPCA in this case did
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3. Since the multiplicative speckle noise is added on top of the Gaussian
noise, the increase of noise variance of the Gaussian also means increased
influence from the speckle noise.

Fig. 8. The dominant eigenshapes for: (a) and (b) single contour, (c) and (d) coupled contours, (a) and (c) apical views, (b) and (d) short axis views.

The dashed curves are the model mean.



not play a significant role since the model itself can

represent a circle very well, if not perfectly, and “F-PCA”

is quite close to “Proposed.” However, in general, this is not

the case (see the next experiment).
The Bayesian tracker has better performance than the

flow-based tracker. Nevertheless, the trade off is speed—it

is more than 100 times slower than the Flow tracker. In this

experiment, the number of iterations for (26) varies and can

reach 60, with an average around 20.

6.3 Tracking Echocardiography Sequences

Due to the portability of ultrasound machines and the

relatively low cost and wide availability of echocardiogram

exams, automatic processing and analysis of echocardiogra-

phy sequences is extremely valuable in aiding sensitive and

robust early detection of common heart diseases. Automatic

tracking of heart borders can reveal early signs of vascular

and myocardium dysfunctions. However, ultrasound is

noisier than other commonmedical imagingmodalities such

as MRI or CT. Echocardiogram is even worse due to the fast

motion of the heart muscle and respiratory interferences. It

usually exhibits spatially varying structural noise character-

istics such as signal drop-outs [41]. Our proposed framework

exploiting heteroscedastic measurement uncertainties is

ideal for tracking in echocardiography sequences.
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Fig. 9. Comparison of tracking results on synthetic sequences. (a) The initial contour. (b) The unconstrained tracking on the fourth frame with ellipses
depicting motion uncertainties. (c), (d), (e), and (f) The 12th and 20th frames tracked by different methods: (c) and (d) “ShapeSpace” method using
flow, (e) and (f) “Proposed” method using flow (noise level 3). (g) and (h) “Proposed” method using Bayesian tracker (noise level 8).

TABLE 1
Noise Compositions and Levels for the Synthetic Sequences

Fig. 10. Performance comparison over noisy synthetic sequences. (a) Bayesian kernel tracking. (b) Flow-based tracking.



For systematic evaluation on real-world data, a set of
30 echocardiography sequences are used for testing, with
lengths ranging from18 to 90 frames, the frame sizes are from
480� 430 to 640� 480. Due to the practical requirement of
real-time performance, we use the flow-based matching
algorithm in our current system, which runs at 30 frames per
second on a 3GHz PC.

Fig. 11 shows the comparison of the four subspace shape
model constraining methods as well as the unconstrained
flow measurements. Our proposed method (“Proposed”)
significantly outperforms others, with an average MSSD of
7.4 (��� ¼ 12:3) as opposed to 24.3 (��� ¼ 35:4) by the current
model constraining approach (“ShapeSpace”). Our SA-PCA
model alone (“SAPCA”) already brought significant im-
provement, achieving an average MSSD of 20.4 (��� ¼ 32:8).
The fusion alone (“F-PCA”) had an average MSSD of 18.4
(��� ¼ 22:7). The combined use of fusion and SA-PCA (i.e.,
“Proposed”) has apparently brought out a significant
performance boost over each alone (Fig. 11a). Fig. 12 shows
some tracked sequences.

When the measurement process makes a large error in a
drop-out or high-noise region, the corresponding localiza-
tion uncertainty is usually high as well due to the lack of
trackable patterns. Our fusion can correct such errors to a
larger extent than what an orthogonal projection can do.
This is illustrated by an example in Fig. 13.

Our SA-PCA model is especially helpful for shapes that
differ significantly from the training set. Fig. 14 shows a
comparison of IPCA and SA-PCA. In this example, we
deliberately used a “wrong”model, i.e., we use themodel for
apical four chamber (A4C) views (see Fig. 8a) to constrain the
tracking of this parasternal long axis (PLA) view. PLA views
havedistinctivepatterns that arenot seen inapical views (e.g.,
the upper concave portion). The incremental PCA model,
taking in the initial contour (Fig. 14a), but with a very small
weight (< 0:01%), fails to follow suchdistinctive patterns and
has constrained the contours to a typicalA4Cshape (Fig. 14b).
SA-PCA yields a contour that fits much better to the true
border (Fig. 14c). Regarding the sensitivity with respect to �,
the interested reader is referred to [57].

6.4 Coupled Double-Contour versus Single Contour

Cardiologists oftenusewall thickening, if visible, in addition to
wall motion as a more reliable indicator for diagnosing
myocardium functions [41] because wall motion is often
susceptible to corruptions frompatientorprobemovementor
respiratory motion. Our framework can be directly applied
for coupled double-contour tracking by simply treating the
inner and the outer contours together as a single shape.

There have been various research efforts on multiple
contour segmentation and tracking incorporating topological
constraints. Recent examples includeWang et al.’s work [55],
where topology-preserving constraints are incorporated in a
support vector machine (SVM) regression setting, and
Goldenberg et al.’s [21] and Paragios’ [42] work based on
geometric variational approaches using geodesic active
surface or active region models. While all the above
approaches use explicit, “hard” constraints, our coupling is
implicit and probabilistic (governed by the training set) and,
thus, “soft.” To minimize the chance of inner/outer contour
crossing, we shall first make sure no crossing happens in the
training set. Additionally, with our complete constraint
using the model distribution using (9), we constrain not only
the mode but also the range of shape deformations; this, in turn,
can further reduce the probability of crossing.

For echocardiography, in many cases, the epicardium is
less visible than the endocardium (except for the case of
pericardial effusion for which the opposite is true!). Intui-
tively, a double-contour approach canpropagate information
from the endocardium to guide the localization of the
epicardium (or vice versa), thus achieving more robust
tracking of the two borders than tracking them indepen-
dently. Fig. 15 shows an example where the double-contour
approach clearly improves the performances by single
contours alone. Notice the complete appearance change on
the right, alongwith the large intensity shift at the base,which
is in large part to blame for the errors made by the single
contours. However, a statistically significant evaluation of
epicardial border localization is difficult due to the lack of
sufficient and reliable ground truth data: The localization
ambiguity and interexpert variability aremuch higher for the
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Fig. 11. Comparison of tracking results on real-world sequences. (a) The averaged MSSDs and standard deviations for different methods. (b) MSSD

curves for the 30 test sequences.



epicardial border than the endocardial border.A recent study
turned inonly inconclusive results and recommended theuse
of ground truth from registered magnetic resonance (MR)
images [29]. We suggest that another meaningful way to
evaluate is to compare final classification results (instead of
border locations) from themachine versus cardiologists. This
is among our future efforts.

7 CONCLUSIONS, DISCUSSIONS, AND FUTURE

WORK

This paper presented a joint information fusion framework to
track shapes under heteroscedastic uncertainties with a
strongly adapted subspace model constraint. Heteroscedas-
tic measurement uncertainties are considered during the
subspace shape model constraining process and it has been
shown to be a natural extension of the classical orthogonal
projection-based model constraining approach. Further-

more, we integrated this fusion formulation into the Kalman
tracking framework so that subspace models can be
incorporated in a unified and flexible way, allowing either
a subspace itself or a subspace model (i.e., a Gaussian
distribution) as the constraint. We discussed the issues of
measurement uncertainty estimation and presented two
methods for local motion and uncertainty estimation. When
invariant shape transformations are adopted during the
model construction step, measurement uncertainty is also
exploited during the shape alignment process. The proposed
frameworkwas evaluated using both synthetic data and real-
world echocardiography sequences. The results showed that,
with heteroscedastic uncertainties, the proposed fusion
frameworkwith a strongmodel adaptation yields significant
performance improvement over existing approaches.

Although our motivating application is the tracking of
echocardiography, the framework isgeneral andcanbeeasily
extended for other applications. For example, we have tested
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Fig. 12. Four tracking examples in rows, corresponding to the four common views of echocardiogram: parasternal long axis, parasternal short axis,
apical four chamber, and apical two chamber views, respectively. The frame numbers are 1, 16, 24, and 32; 1, 12, 67, and 81; 1, 12, 18, and 23; 1, 15,
23, and 30; respectively.



our framework directly for tracking the silhouette of a

moving human head. As the shape model, we just borrowed

the model of Fig. 8a, updated online through SAPCA. Initial

testing showed that our proposed framework is more robust

when the uncertainty information is fully exploited. Fig. 16

shows tracking results on two frameswith partial occlusions.
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Fig. 13. Performance comparison in handling large measurement errors. For the same frame we show: (a) “Unconstrained” flow, (b) “SAPCA,”
(c) “Proposed,” (d) by an expert, (e) “SAPCA” but only for endocardial border, and (f) “Proposed” but for endocardial border (also shown are the
uncertainty ellipses). Notice the stronger correction the “Proposed” brought over the local measurement errors for both single and double contours.

Fig. 14. SA-PCA versus incremental PCA. (a) The initial contour, (b) the 14th frame using an incremental PCA model [22], and (c) the same frame

using an SA-PCA model (� ¼ 0:5).

Fig. 15. Double versus single contours. (a) The initial contours, (b) seventh frame tracked by the double-contour, (c) seventh frame with the inner

contour, and (d) seventh frame with the outer contour.



This example indicates that our framework is not only
suitable for ultrasound signals with regional drop-out, but
alsopotentially applicable fordealingwithpartial occlusions.
Investigations are ongoing for application of the proposed
framework to this and other vision problems.

Extensions to 3D or 2D+T(time) are natural. Our method
might benefit from the addition of robust statistics tools
[26]. Another natural extension may be to exploit the
subspace constraint together with the heteroscedastic model
in a particle filter framework. Finally, there are extensive
research efforts on variational and level-set approaches and
Bayesian approach to shape learning, representation, and
extraction (e.g., [39]). An interesting future research topic is
the unification of different approaches to provide more
robust and efficient solutions.
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