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Abstract

The problem of information fusion appears in many
forms in vision. Tasks such as motion estimation, mul-
timodal registration, tracking, and robot localization, of-
ten require the synergy of estimates coming from multiple
sources. Most of the fusion algorithms, however, assume
a single source model and are not robust to outliers. If
the data to be fused follow different underlying models,
the traditional algorithms would produce poor estimates.
We present in this paper a nonparametric approach to
information fusion called Variable-Bandwidth Density-
based Fusion (VBDF). The fusion estimator is computed
as the location of the most significant mode of a density
function which takes into account the uncertainty of the
estimates to be fused. A movel mode detection scheme is
presented, which relies on variable-bandwidth mean shift
computed at multiple scales. We show that the proposed
estimator is consistent and conservative, while handling
naturally outliers in the data and multiple source models.
The new theory is tested for the task of multiple motion
estimation. Numerous experiments validate the theory
and provide very competitive results.

1 Introduction

Proper information fusion [16] is a critical step for many
vision tasks [19, 20, 21]. Fusion is also an important topic
across modalities, for applications such as collision warn-
ing and avoidance or speaker localization . Most often
a classical estimation framework such as the (extended)
Kalman filter [5] is employed to derive an estimate from
multiple sensor data.

We assume that each sensor measurement is character-
ized by its mean vector and a covariance matrix defining
the uncertainty of the mean. When the processing of
all measurements takes place at a single location, the fu-
sion is called centralized. In centralized fusion the sensor
measurement errors are usually considered independent
across sensors and time. A construction with improved
reliability and flexibility is provided by distributed fusion
[24], represented by a collection of processing nodes that
communicate with each other. Such architecture handles
the information in two steps: the sensor measurements
are evaluated first, then, the state information from a lo-
cal neighborhood is fused. A major topic in distributed

fusion is the handling of cross-correlation, which is diffi-
cult to evaluate. The Covariance Intersection algorithm
[18] provides a consistent and conservative solution to
this problem.

The distributed fusion architecture is suitable for the
task of motion estimation from image sequences. Indeed,
for motion estimation we also need two processing steps.
The assumption that some image property (such as the
brightness) is conserved locally in time only constraints
the component of the motion field in the direction of the
spatial image gradient. A second step is necessary to fuse
the initial motion estimates from a given neighborhood,
to exploit spatial coherence [7].

The connection between motion flow computation and
information fusion has been first recognized by Singh
and Allen [34]. By assuming a single source model
and statistical independence between the estimates to be
fused, they employed the best linear unbiased estimator
(BLUE) to combine local information. Later on, Simon-
celli, Adelson and Heeger [33, 32] developed a Bayesian
framework, which was also restricted to single motion
estimation.

This paper addresses a fundamental issue in dis-
tributed fusion: how to deal with multiple source models,
while maintaining a consistent and conservative approach
in handling cross-correlation. Our solution is robust,
nonparametric in nature, employing an adaptive kernel
density function that exploits the uncertainty of the ini-
tial estimates. The new technique is called Variable-
Bandwidth Density-based Fusion (VBDF). It defines the
fusion estimator as the location of the most significant
mode of the density function. The mode is computed
using a novel multiscale optimization framework based
on variable-bandwidth mean shift. Interestingly enough,
the VBDF expression is close to that of Covariance Inter-
section, although our formulation relies on kernel density
estimation theory.

We show that the application of the VBDF framework
to multiple motion computation yields very competitive
results. Many other vision tasks that require the fusion of
some initial estimates computed in a given neighborhood
(window) can benefit from our framework.

Section 2 formally introduces the fusion problem and
presents its most common solutions. Variable-bandwidth
kernel density estimation is discussed in section Section 3.
The VBDF estimator and its properties are presented



in Section 4. In Section 5 we discuss the application
of the new estimator to the optical flow problem, while
experiments and comparisons are presented in Section 6.

2 Previous Work in Information
Fusion

In this section we discuss the information fusion prob-
lem and show that its solution depends on how much we
know about about cross-correlation. Let x; and X5 be
two estimates that are to be fused together to yield an
“optimal” estimate x. The error covariances are defined
by

Pi_j :E [(x—f(i)(x—&j)w (1)
for i = 1,2 and 57 = 1,2. To simplify notation denote
P11 = P1 and P22 = Pz.

If the cross-correlation can be ignored, ie., Pi1s =
PJ, = 0, the best linear unbiased estimator (BLUE) is
also called Simple Convex Combination [10] and is ex-
pressed by

xcc = Pcco (P;lfq + P;lfig) (2)

Poo = (Pl 4+ P07 (3)

When the initial estimates are correlated (P12 = Pg; #
0) and the noise correlation can be measured, the
BLUE estimator (Xpc, Ppe) is derived according to Bar-
Shalom and Campo [4] using Kalman formulation. The
most general case of BLUE estimation also assumes prior
knowledge of the covariance of x [23].

A conservative approach to information fusion has
been proposed by Julier and Uhlman in the form of Co-
variance Intersection algorithm [18]. Their objective was
to obtain a consistent estimator of the covariance matrix
when two random variables are linearly combined and
their cross-correlation is unknown. Consistency means
that the estimated covariance is always an upper-bound,
in the positive definite sense, of the true covariance, no
matter what the cross-correlation level is. The intersec-
tion is characterized by the convex combination of the
covariances

xcr = Peor (wP;l)Aq + (1 — w)P;l)ACQ) (4)

-1

Pcr= (wP;' 4+ (1 —w)Py") (5)

where w € [0,1]. The parameter w is chosen to optimize
the trace or determinant of Pog.

Covariance Intersection has a very suggestive geomet-
rical interpretation: if one plots the covariance ellipses
P, Py and Ppe (as given by the Bar-Shalom/Campo
formulation) for all choices of P15, then P g always lies
within the intersection of P; and Ps. It results that a
strategy that computes a Po; that encloses the inter-
section region is consistent even for unknown Pi3. It

has been shown in [18] that the difference between Py
and the true covariance of x is a semipositive matrix.
More recently, Chong and Mori [10] examined the perfor-
mance of Covariance Intersection, while Chen, Arambel
and Mehra [9] analyze the optimality of the algorithm.

Observe that the Covariance Intersection can be gen-
eralized to the fusion of n estimates as

Xcr =Pcr Y wiP;'% (6)

i=1

PC[ = (iwipil> (7)

with Y7 | w; = 1. In equations (6) and (7) the weights
w; are also chosen to minimize the trace or determinant
of PC]-

Although very important from theoretical viewpoint,
Covariance Intersection has two major weaknesses: it as-
sumes a single source model and is not robust to out-
liers. In the next sections we show that these problems
can be overcome by using adaptive kernel density estima-
tion. The new VBDF estimator is defined as the sample
mode of a density function constructed using kernels with
variable-bandwidth.

3 Adaptive Density Estimation

Adaptive density estimation with variable kernel band-
width [8] has been only recently applied in computer vi-
sion [12, 14]. The motivation for variable-bandwidth is to
improve the performance of kernel estimators by adapt-
ing the kernel scaling and orientation to the local data
statistics .

Let x;,, ¢ = 1...n, be n data points in the d-
dimensional space R?. By selecting a different bandwidth
matrix H; = H(x;) (assumed full rank) for each x; we
define the sample point density estimator

1 o 1 1
£ = Sy 2 TH e (57 o)
B 8)

D? (x,x;, H;) = (X—Xi)TH;l(X—Xi) (9)

is the Mahalanobis distance from x to x;. The variable-

bandwidth mean shift vector at location x is given by
[11]

m,(x) = Hy(x) Zwi(x)Hjlxi -x (10)

where Hj;, is the data-weighted harmonic mean of the
bandwidth matrices computed at x

Hj(x) = <Z wi(x)H;1>

(11)



and

We){p (— D? (x,x;, H,))

1
2
s Wexp (-iD2? (x,x;,H;))

wi(x) =

(12)

are weights satisfying > | w;(x) = 1. It can be shown
that the iterative computation of the mean shift vector
(10) always moves the point x to a location where the
density (8) is higher or equal to the density at the previ-
ous location. As a result, an iterative hill-climbing pro-
cedure is defined, which converges to a stationary point
(i.e., zero gradient) of the underlying density. We will
give the convergence proof for the variable-bandwidth
mean shift in the journal version of this paper.

4 VBDF Estimator

The VBDF estimator is defined as the location of the
most significant sample mode of the data. In this sec-
tion we present a multiscale framework for the detection
of the most significant mode, discuss the properties of
new estimator, and show performance comparisons of the
VBDF against the BLUE and Covariance Intersection al-
gorithms.

4.1 Computation Through Multiscale
Optimization

Assume that the data points x;, i = 1...n are each as-
sociated with a covariance matrix C; that quantifies un-
certainty . The location of the most significant mode is
obtained in a multiscale fashion, by tracking the mode of
the density function across scales. More specifically:

e We perform first mode detection using large band-
width matrices of the form H; = C; + oI, where
the parameter « is large with respect to the spread
of the points x;. The mode detection algorithm is
based on mean shift and involves the iterative com-
putation of expression (10) and translation of x by
m, (x) until convergence. At the largest scale, the
mode location does not depend on the initialization
(up to some numerical approximation error) since
for large a the density surface is unimodal.

e In the next stages, the detected mode is tracked
across scales by successively reducing the parame-
ter « and performing mode detection again. At each
scale the mode detection algorithm is initialized with
the convergence location from the previous scale.

Note that for the last mode detection procedure, the
bandwidth matrix associated with each data point is
equal to the point covariance matrix, i.e., H; = C;,
i = 1...n. Denote by X,, the location of the most sig-
nificant mode. Since the gradient at X,, is zero we have

m,(X,,) = 0 which means

X = Hp (Xm) Zwl(fcm)H;1X1 (13)
Hy (%) = <Zwi(f<m)Hz 1) (14)

4.2 Properties

Equations (13) and (14) define the VBDF estimator,
which has the following properties:

e The covariance (14) of the fusion estimate is a con-
vex combination of the covariances of initial esti-
mates. Thus, the expression of the new estimator
resembles that of Covariance Intersection, although
its derivation has a different motivation, based on
density estimation theory.

e The matrix Hy(X,,) is a consistent and conserva-
tive estimate of the true covariance matrix of X,,,
irrespective of the actual correlations between initial
estimates. The proof is similar to the consistency
proof of the Covariance Intersection [18].

e While the weights in the Covariance Intersection al-
gorithm are chosen by minimizing the trace or de-
terminant of the covariance, our criterion is based
on the most probable value of the data, i.e., the most
significant mode. This is a more appropriate crite-
rion, especially when the data is multimodal, i.e.,
the initial estimates belong to different source mod-
els. Such property is common for motion estimation
since the points in a local neighborhood may exhibit
multiple motions. The most significant mode corre-
sponds to the most relevant motion.

e The tracking of the density mode across scales in-
sures the detection of the most significant mode.
The use of the Gaussian kernel is essential for the
continuity of the modes across scales .

e Finally, by selecting the most significant mode, the
estimate is also robust to outliers.

4.3 Comparisons

In this subsection we compare experimentally the new
VBDF estimator against the BLUE and Covariance In-
tersection.

A synthetic input data is shown in Figure la and con-
sists of 8 initial bi-variate estimates expressed as location
and covariance. Each covariance is displayed as an ellipse
with 95% confidence. Observe that the input data has
a clearly identifiable structure of 5 measurements, while
the other 3 measurements can be considered outliers. In



addition, the uncertainty of the data is rather low and
the mean vectors are rather far apart from each other.
This creates a difficult mode estimation problem.

The same figure shows the VBDF estimate, having a
mean equal to (—0.3499,0.1949) and its covariance, rep-
resented by an ellipse of thick line (the VBDF ellipse
masks one of the input ellipses). We have also plotted
the trajectory of the mode tracking across scales. Each
small circle indicates the result of mode detection for one
scale.

In Figure 1b we compare our result with that of the
BLUE fusion ((2) and (3)) and Covariance Intersection
((6) and (7)). The kernel density estimate computed with
H,; = C;+?Iis shown in Figure 1c for different values of
a. A triangle marks the location of the most significant
mode across scales. The lower right figure is obtained
with H; = C; and corresponds to the VBDF estimate.

The following conclusions can be drawn:

e The BLUE estimate produces the most confident re-
sult, however, the presence of outliers in the data has
a strong, negative influence on this estimate. At the
same time the BLUE estimate can be overly confi-
dent by neglecting the cross-correlation.

e The Covariance Intersection is also negatively influ-
enced by outliers. We optimized the weights to min-
imize the trace of the covariance matrix. However,
since the optimization regards only the covariance
and not the location, the resulting estimate is rather
poor.

e The best result is produced (with less confidence) by
the VBDF algorithm. Note that by employing the
variable-bandwidth mean shift and mode tracking
across scales, we also rely on optimizing the weights.
Observe that (as expected) the VBDF algorithm has
not been influenced by outliers.

e A very important observation should be inferred
from Figure 1c. The most significant mode across
scales is not the highest mode computed with the
bandwidths H; = C;! Note the highest location on
the density landscape computed with H; = C; is
located at (0.2380,—1.333), which is different from
the VBDF estimate. This conclusion is in agreement
to our own intuition, that the most significant mode
should not be determined based solely on local infor-
mation. The multiscale algorithm makes the right
choice in selecting the right mode.

5 Estimation of Multiple Motion

This section presents the application of the VBDF esti-
mator to the computation of multiple motion. We start
with a short discussion on motion estimation, then ex-
plain how to compute the initial motion estimates and
how to fuse them.
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Figure 1:  VBDF Estimation. (a) Input data repre-
sented as ellipses with 95% confidence. Trajectory of
mode tracking across scales is shown. Ellipse correspond-
ing to the VBDF estimate is drawn with thick line. (b)
Fusion results overlayed on input data. Ellipses are rep-
resented with squares for BLUE estimate (smallest ellipse
in the figure), diamonds for Covariance Intersection, and
thick line for VBDF estimate. (c) Density surfaces cor-
responding to formula (8) with different values for « (see
text). A triangle marks the mode that is tracked across
scales. Lower right figure is the final result.



5.1 Previous Work in Motion Estimation

Detailed reviews on motion estimation are given by Ag-
garwal and Nandhakumar [1], Mitiche and Bouthemy
[30], and Nagel [31]. Three main approaches to motion
estimation can be identified, based on spatial gradient,
image correlation, and regularization of spatio-temporal
energy. The motion is commonly assumed to be locally
constant, affine, or quadratic.

Most of the techniques based on spatial gradient em-
brace a two step approach for the computation of motion
flow. An initial estimate of the flow is determined for
each image location using the brightness constancy. The
initial estimates are then fused locally in the hope for
a better fusion estimate. The presence of multiple mo-
tions, however, makes the second task difficult since the
initial estimates are generated by multiple and unknown
source models. Multiple motions can be generated by
objects moving with different velocities, but can also be
the result of transparency, highlights or shadows.

One of the most popular and efficient optical flow tech-
niques has been developed by Lucas and Kanade [26]
in the context of stereo vision. They neglected the un-
certainty of initial estimates and use (weighted) least
squares in a neighborhood to fuse them. Later on, We-
ber and Malik [36] employed the total least squares for
the same task. Simoncelli, Adelson and Heeger [33, 32]
improved the method by computing and using the un-
certainty of initial estimates. Nevertheless, they assume
that the initial estimates are independent and do not
model multiple motions. Black and Anandan [7] ap-
proached the motion estimation problem in a robust
framework, being able to deal with multiple motions.

The first benchmarking effort on the evaluation of
motion estimation algorithms has been conducted by
Barron, Fleet and Beuchemin [6]. Since then, most of
the newly proposed algorithms are compared using their
methodology. We will do the same in this work.

5.2 Initial Estimates

For a given image location we extract an initial motion
estimate from a very small NxN neighborhood using Bi-
ased Least Squares (BLS) [17, 27]

x=(ATA+p5I) 'A'b (15)
where A is the N2 x 2 matrix of spatial image gradients,
and b is the N2-dimensional vector of temporal images,
as in [35, p.196].

The BLS solution has a covariance matrix C that is
proportional to the variance o2 of the image noise. The
advantage of BLS is that it avoids instability problems
in the regular Least Squares solution by allowing a small
amount of bias. The technique is also called ridge re-
gression or Tikhonov reqularization and various solutions
have been proposed to compute the regularization pa-
rameter [ from the data [15].

5.3 Fusion

We combine the motion flow information in a local image
neighborhood of dimension n = M x M using the VBDF
estimator (13) and (14). Denoting by (%x;,C;),i=1...n
the initial flow estimates produced through BLS, their
fusion results in

K = C(%m) Y wi(km)C; 1% (16)
i=1

" -1

C(%m) = (Zwi(ﬁm)ql) (17)
i=1

where
1 1 ~ ~
Z?:l Wexp (—%_D2 (}A(m,}A(i, Cz))

and X,, is determined through mode tracking across
scales, as discussed in Section 4.1.

6 Experiments

A standard procedure was employed to construct
a three level image pyramid using a five-tap filter
[0.0625 0.25 0.375 0.25 0.0625]. For the derivative filters
in both spatial and temporal domain we used the simple
difference. As a result, the optical flow was computed
from only three frames, from coarse to fine. Initial flow
estimates were obtained in a neighborhood of 3 x 3 (i.e.,
N=3) and the regularization parameter § = 1. Esti-
mation errors were evaluated using the software [6] that
computes the average angular error u. and its standard
deviation o.. We only discuss flow estimated with a den-
sity of 100.

Our first test involved the sequence New-Sinusoidl in-
troduced by Bab-Hadiashar and Suter [3]. This sequence
(see Figure 2a) has spatial frequencies similar to Sinu-
soid! from [6] but has a central stationary square of 50
pixels, thus containing motion discontinuities. The cor-
rect flow for New-Sinusoid1 is shown in Figure 2b. The
robust motion estimation method described in [3] has er-
rors in the range (p, = 1.51 — 2.82, 0, = 5.86 — 8.82).

Using VBDF estimation we obtained a remarkable de-
crease in errors to (ge = 0.57,0. = 5.2) and the es-
timated motion has sharp boundaries (Figure 2c). In
Figure 2d we show the angular error multiplied by 100
(white corresponds to large errors). These results were
obtained with a 7 X 7 analysis window (i.e., M=7) and
variable bandwidth mean shift applied across 5 scales.
The noise variance used in BLS has been assumed to be
0% = 0.08, equal to that of the quantization noise. An
average number of 3 mean shift iterations per scale per
window were executed.
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Figure 2:  New-Sinusoidl sequence. (a) Frame 9. (b)
Correct flow. (¢) VBDF flow (u. = 0.57,0, = 5.2). (d)
Error corresponding to the new algorithm.

We performed the second test on Yosemite sequence
(Figure 3a). This synthetic sequence contains many chal-
lenges, including multiple motions and aliasing. Numer-
ous results have been reported on Yosemite involving
either the complete sequence, or the partial sequence,
with the sky and clouds discarded. For the complete se-
quence, our algorithm resulted in (u. = 4.25, 0, = 7.82)
for the middle frame. The estimated flow is shown
in Figure 4a and Figure 4b presents the angular er-
ror. The best results reported yet on complete Yosemite
at full density were obtained by Memin and Perez [28]
(e = 5.38,0. = 7.73), Alvarez, Weickert and Sanchez
[2] (e = 5.53,0. = 7.40) and Liu et al. [25] (pe =
7.52, 0. = 13.72).

In Figure 5 we show a fusion example for Yosemite
corresponding to the location (49,13) at the top of the
image pyramid. This location is situated at the border
between the sky and mountain. The initial location of
the mode detection algorithm is marked by a large dot.
The VBDF ellipse is drawn with a thick line.

For the skyless Yosemite we obtained (u. = 1.55, 0, =
1.65). According to our knowledge, the best results re-
ported for the skyless sequence were obtained by Memin
and Perez [29] (u. = 1.58,0. = 1.21), Bab-Hadiashar
and Suter [3] (g = 1.97,0. = 1.96) , and Lai and Ve-
muri [22] (e = 1.99,0. = 1.41). Recently, Farneback
[13] reported errors of (u. = 1.14, o, = 2.14), by process-
ing the entire Yosemite sequence at once. This, however,
involves large computational effort, memory space, and
delay in response.

In comparison to the techniques from above, our
method is simpler, easy to implement, and efficient, being
based on the detection of the most significant mode of the
density of some initial estimates. For Yosemite we used a

Figure 3: Test sequences (a) Yosemite, 9th frame. (b)
Tree Translating/Diverging, 20th frame. (c) SRI Tree,
10th frame.

15 x 15 analysis window and o2 = 0.08. In addition, the
distances between the initial flow vectors were weighted
according to the intensity difference between the corre-
sponding image pixels by a Gaussian kernel of standard
deviation equal to 12. This assured that we grouped to-
gether flow vectors similar in direction and magnitude
and coming from locations with similar intensity.

For the Translating Tree we obtained (pe = 0.19, 0. =
0.17) (see Figure 6a). The closest result is that of Lai
and Vemuri [22] (g = 0.40,0. = 0.28). Finally, for
the Diverging Tree (Figure 6b) our approach resulted in
(e = 1.10,0, = 0.73), a result which compares favorably
to the best available (. = 1.34,0. = 1.05), again from
Lai and Vemuri [22]. Resulting flow for the SRI sequence
is presented in Figure 7. Observe the sharp flow bound-
aries. The same parameters as in Yosemite were used for
these sequences, but without intensity weighting.

7 Discussions

This paper introduced the VBDF estimator as a power-
ful tool for information fusion based on adaptive density
estimation. We showed the ability of the new estima-
tor to deal with multiple source models and to handle
cross-correlation in a consistent way. We compared the
VBDF framework with the BLUE fusion and Covariance
Intersection and showed that the new estimator can be
used to construct a very effective motion computation
algorithm.

Finally, we underline the importance of mode tracking
accross scales, for the detection of the most sigificant
mode of a density function. In the context of motion
estimation, the most significant mode corresponds to the
most relevant motion in the local neighborhood. The
same concepts can be naturally extended to other vision
domains such as stereo, tracking, or robot localization.
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Figure 4: Results for Yosemite. (a) Flow obtained by
our method, including the sky, (p. = 4.25,0. = 7.82).
(b) Error corresponding to the new algorithm
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Figure 5: Ellipses with 95% confidence representing ini-
tial flow estimates for the location (49,13) of the top level
of Yosemite pyramid. A window of M =5 has been used
to collect 25 initial estimates. The starting point of the
algorithm is represented by a large dot in the center,
while the VBDF estimate is drawn with a thick line.

Figure 6: Results for Tree. (a) Flow for Translating
sequence, (pe = 0.19,0. = 0.17). (b) Flow for Diverging
sequence, (pe = 1.10,0, = 0.73).
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Figure 7: Results for SRI. Flow computed by our
method.
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