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a b s t r a c t 

Medical images constitute a source of information essential for disease diagnosis, treatment and follow- 

up. In addition, due to its patient-specific nature, imaging information represents a critical component 

required for advancing precision medicine into clinical practice. This manuscript describes recently de- 

veloped technologies for better handling of image information: photorealistic visualization of medical 

images with Cinematic Rendering, artificial agents for in-depth image understanding, support for mini- 

mally invasive procedures, and patient-specific computational models with enhanced predictive power. 

Throughout the manuscript we will analyze the capabilities of such technologies and extrapolate on their 

potential impact to advance the quality of medical care, while reducing its cost. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Medical imaging has impacted the practice of medicine during

he recent decades, contributing to greatly improved disease diag-

osis, treatment and follow-up. Image-guided, minimally invasive

rocedures are becoming more and more common in hospitals, re-

lacing conventional surgery and allowing faster recoveries with

ewer post-procedure complications. We anticipate that this trend

ill continue, medical imaging playing an increasingly important

ole towards moving precision medicine into clinical practice. By

eing able to characterize anatomy, physiology and metabolism

f the patient, medical imaging enables precise, personalized

rocedures and predictive, patient-specific therapy selection and

elivery. 

In this paper we highlight a number of technologies that will

ost likely contribute to the success of medical imaging for the

ears to come, helping medical care to advance, while reducing its

ost. In Section 2 we discuss Cinematic Rendering, a 3D visualiza-

ion technology that is capable of producing superb photorealistic

mages from traditional Computer Tomography (CT) or Magnetic

esonance (MR) volumes, thus potentially enhancing the conspicu-

ty of pathologies. Section 3 addresses the topic of next genera-

ion image understanding, which contributes to faster and more

eproducible image reading, benefiting from the recent advances

n machine learning and artificial intelligence. Furthermore, in
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ection 4 we discuss the real-time imaging needs in the operating

oom and focus on heart valve procedures, addressing both their

lanning and guidance. Finally, in Section 5 we present patient-

pecific computational models that contribute to advances in di-

gnosis, patient stratification, therapy selection and therapy opti-

ization. All images shown in the paper are images of real, living

atients. 

. Cinematic r endering: photorealistic visualization of medical 

mages 

Efficient clinical decisions and procedures require the rapid ap-

reciation of the relevant information contained within medical

mages. Even though medical image viewing based on multi-planar

econstruction (MPR) is still dominant in diagnostic imaging, the

ignificance of three-dimensional visualization of medical data is

ising. This is due to the fact that these methods allow much faster

nderstanding of spatial anatomical structures and have the poten-

ial to increase the sensitivity and specificity of medical images. Es-

ecially medical professionals who are not trained in planar image

iewing as well as patients benefit from such visualizations. 

Recent advances in computer graphics have made interactive

hysically-based volume visualization techniques possible. Such 

echniques reproduce complex illumination effects in computer-

enerated images by mimicking the real-world interaction of light

ith matter. The results are physically plausible images that are

ften easier for the human brain to interpret, since the brain is

rained to interpret the slightest shading cues to reconstruct shape

nd depth information. Such shading cues are often missing from

http://dx.doi.org/10.1016/j.media.2016.06.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.06.016&domain=pdf
mailto:tommaso.mansi@siemens.com
http://dx.doi.org/10.1016/j.media.2016.06.016
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Fig. 1. Cinematic Rendering. Left: Original computed tomography (CT) data; Right: Cinematic rendering of the same dataset. Data courtesy of Israelitisches Krankenhaus, 

Hamburg, Germany. 
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computer generated images based on more simple geometric cal-

culations such as ray casting. 

We developed a physically-based volume rendering method

called Cinematic Rendering ( Engel 2016; Paladini 2015 ) which

computes in real-time the interaction of visible photons with the

scanned patient anatomy. The algorithm uses a Monte Carlo path

tracing method to generate photorealistic or even hyper-realistic

images by light transport simulation along hundreds or thousands

of photons paths per pixel through the anatomy using a stochastic

process ( Fig. 1 ) 

In traditional volume ray casting, only emission and absorption

of radiant energy along a straight ray is considered. Radiant en-

ergy q e is emitted at each point x ′ along the ray up to a maximum

distance D . 

L ( x, ω ) = 

∫ D 

0 

e −τ ( x,x ′ ) q e 
(
x ′ 
)
dx ′ (1)

The emitted radiant energy at each point is absorbed accord-

ing to the Beer-Lambert law along the ray to the observer location

with absorption coefficients σ a . 

τ
(
x, x ′ 

)
= 

∫ x ′ 

x 

σa ( t ) dt (2)

Single scattering is usually modelled in traditional volume ren-

dering using a surface shading model that considers local gradient

information of the volume data (local illumination). While this in-

tegral can be easily solved numerically using a Riemann integral,

the method neglects complex light paths with multiple scattering

events and extinction of light (global illumination). 

In contrast, the Monte Carlo path tracing integration method

solves the following multi-dimensional and non-continuous ren-

dering equation: 

L ( x, ω ) = 

∫ D 

0 

e −τ ( x,x ′ ) σS 

(
x ′ 
)[∫ 

�4 π

p 
(
ω , ω 

′ )L i 
(
x ′ , ω 

′ )d ω 

′ 
]

dx ′ (3)

Eq. (3) determines the radiant flux (radiance) L at distance x re-

ceived from the direction ω along a ray. We have to integrate the

radiance scattered into that direction from all possible directions

ω 

′ at all points along the ray up to a maximum distance D . The

optical properties of a relevant tissue are defined using the phase

function p ( ω , ω 

′ ), which describes the fraction of light travelling

along a direction ω 

′ being scattering into the direction ω. L i ( x 
′ , ω 

′ )
is the radiance arriving a distance x ′ from direction ω 

′ . In prac-

tice, we model scattering in different tissue types using a Henyey-

Greenstein phase function and compute shading of implicit sur-

faces using a BRDF (bidirectional reflectance distribution function).
Radiance scattering into the direction ω is also absorbed and

cattered out of the direction ω. This is modelled using the opti-

al depth τ , with extinction coefficient σt = σs + σa , defined as the

um of scattering ( σ s ) and absorption ( σ a ) coefficients: 

(
x, x ′ 

)
= 

∫ x ′ 

x 

σt ( t ) dt (4)

Note that, in contrast to out-scattering, absorption and in-

cattering, emission was omitted in the rendering equation for

implicity. Since the rendering equation cannot be computed an-

lytically, solving the integral numerically would involve sampling

he function at many distances, each with many directions. Addi-

ionally, L i must be computed with the same rendering equation

o allow multiple scatter events. Since this would be computation-

lly too complex, the Monte Carlo method allows us to compute

he radiance at random positions along the ray with light being

n-scattered from random directions. By averaging many of such

onte Carlo samples into a single image we can progressively gen-

rate a smooth final result. By means of multiple sampling, the

onvergence of the method can be accelerated considerably. 

The medical data is illuminated using image-based lighting by

igh-dynamic range lighting environments, which can either be

aptured photographically or generated synthetically. Photograph-

cally captured lighting leads to a very natural appearance of the

ata when compared to images created using the traditional ray

asting method. Such natural lighting in combination with the ac-

urate simulation of photon scattering and absorption, leads to

hotorealistic images (see Fig. 1 ) that resemble many shading ef-

ects that can be observed in nature, such as soft shadows, ambi-

nt occlusion, volumetric scattering and subsurface photon inter-

ction. By modelling a virtual camera with variable aperture, focal

ength and exposure, additional effects such as depth-of-field and

otion blur can be produced. Motion blur allows movies gener-

ted using our key frame animation engine to be smoother during

ast camera movements while, similar to photography, depth-of-

eld effects allow to focus the attention of a viewer on a particular

tructures. 

Beyond photorealism the algorithm also permits to visualize

nvisible or hidden processes such as the propagation of electri-

al activation on the heart surface or metabolic processes in the

ody. Such hyper-realistic images are created by modelling visi-

le light photon emission from voxels affected by electrical acti-

ation, increased metabolism indicated by Positron Emission To-

ography (PET) or the detection of chemical compounds such as

onosodium urate from a dual-energy CT scan ( Fig. 2 ). 

The combination of different imaging modalities in a single pic-

ure, such as PET, MR and CT as well as simulated and computed
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Fig. 2. Gout visualization. Modelling photon emission from urate detection by a 

dual-energy CT scan. 
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ata provides important flexibility to show the spatial relation of

natomical structures and functional data (see Fig. 3 ). 

Another important application of Cinematic Rendering is the vi-

ualization of dynamic processes from 4D CT or MR scans in com-

ination with time-dependent data from simulations. All such data

ources can be combined frame-by-frame and played using an ani-

ation engine to create photorealistic movies which allow convey-

ng an effective clinical message to the target audience. 

While diagnostics will certainly still rely on traditional planar

econstruction based visualization methods, we have strong in-

ications that special diagnostic applications might benefit from

he flexibility and expressiveness of the new Cinematic Render-

ng technology. For instance, a robust demand for such visualiza-

ion methods can be seen for surgery planning and intraoperative

maging, where a good spatial understanding of the anatomy and

rocesses in the human body is required ( Fig. 4 ). 

Furthermore, the use of hyper-realistic imaging for anatomical

ducation of medical students as well as the general public is ob-

ious. And finally, such images are ideal for the efficient commu-

ication of findings, diagnoses and surgery results, either among

edical professionals or to patients, potentially increasing trust in

linical decisions and procedures. 
ig. 3. Human brain visualization. Left: Cinematic Rendering of a Magnetic Resonance (

nstitute, Leipzig, Germany. Right: Cinematic Rendering of three anatomical MR slices, fun

DTI) of the brain. The activation of the speech center captured by fMRI is modelled using
. Artificial intelligence and image understanding 

Handling the complexity of medical images involves under-

tanding thousands of anatomical classes and concepts, while nu-

erous relationships are necessary to symbolically represent the

henotypic structure of the human body ( FMA, 2012 ). There are

ultiple dimensions along which this information can be struc-

ured, for example one can look at the human anatomy from a re-

ional point of view (limbs, head), or constitutional point of view

lymphatic duct, skin) or system (nervous, cardiovascular, muscu-

oskeletal). Such ontology-based or symbolic representation is a

orm that is understandable by humans and it is also navigable,

arseable and interpretable by machine-based systems. 

Fast and robust anatomical concept extraction is a fundamen-

al task in medical image analysis that supports the entire work-

ow from diagnosis, patient stratification, therapy planning, inter-

ention and follow-up. Current state-of-the art solutions are based

n machine learning, being enabled by the availability of large an-

otated medical databases and the increased computational capa-

ilities ( Zheng and Comaniciu, 2014 ). Typical methods use exam-

le images of the anatomy of interest to learn a classifier that

ill be able to discriminate between inputs that contain the tar-

et anatomy or something else. Such classifiers can be used to au-

omatically label images, detect landmarks or segment the target

bject (see Fig. 5 ). 

For example, in the context of object detection, the classifier is

canned over all possible values of the parameter space (say trans-

ation T , rotation R and scale S ) to find the high probability re-

ions that will correspond to object location. This is done by using

 classifier that will approximate the probability p ( T , R , S | I ) for an

mage I , where the classifier is trained with object image features

or one class and non-object image features for the other class.

t runtime the object is determined by regions of the parameter

pace 〈 ̂  T , ˆ R , ˆ S 〉 with high probability: argmax T, R, S p(T , R, S| I) =
 ̂

 T , ˆ R , ˆ S 〉 . 
In the past years, we have developed technologies such as

arginal Space Learning (MSL) ( Zheng and Comaniciu, 2014 ) for

utomated and efficient scanning of medical images. The MSL

ethod consists in learning image-based classifiers in high prob-

bility marginal spaces of the object parameterization. A set

f classifiers are trained in stages: first in the translation hy-

otheses space �T ( I ), where I is the image, next the augmented

ranslation-orientation hypotheses space �T, R ( I ) and finally in
MR) image of the brain acquired with a 7T scanner. Data courtesy of Max Planck 

ctional MR Imaging (fMRI), and fiber data computed from Diffusion Tensor Imaging 

 light emission and results in the yellow glowing lighting effect on the anatomy. 
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Fig. 4. Polytrauma visualization. Cinematic Rendering of a polytrauma patient with multiple spinal and costal fractures. CT image data courtesy of Vancouver General 

Hospital, Canada. 

Fig. 5. Identifying and segmenting anatomical structures in a whole body CT scan 

(only partial views are shown). Tens of anatomical landmarks are being identified 

and multiple organs such as heart, lungs, liver, kidneys, spleen, prostate and bladder 

are segmented and quantified ( Seifert 2009 ). 
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the translation-orientation-scale hypotheses space �T, R, S ( I ). The

spaces are constructed by augmenting the high probability hy-

potheses with all the possible discrete values of the next param-

eter space such as: 

argma x T p( �T | I ) = � ˆ T 
Augment with discrete rotations −−−−−−−−−−−−−−−−−−−−−−−−→ 

� ˆ T ,R 
. 

argma x T,R p( � ˆ T ,R 
| I ) = � ˆ T , ̂ R 

Augment with discrete scales −−−−−−−−−−−−−−−−−−−−−→ 

� ˆ T , ̂ R ,S 
. 

argma x T,R,S p( � ˆ T , ̂ R ,S 
| I ) = � ˆ T , ̂ R , ̂ S 

. (5)

The MSL technique is generic and can be extended to any type

of parameterized spaces. We used MSL to automatically determine

hundreds of landmarks, segment, track and quantify all main or-

gans, delineate and index the vascular tree, brain structures and

the skeleton. 

Recent advances in machine learning and artificial intelligence

have created end-to-end learning architectures where all stages of

the processing are jointly optimized. For example, representation

learning with Deep Neural Networks (DNN) enables automatic ex-

traction of representative image features without the need of fea-

ture engineering ( Zheng 2015 ). DNN allow learning complex pat-

terns from very large heterogeneous image databases. We have

recently introduced Marginal Space Deep Learning (MSDL)

( Ghesu 2016a ) that combines the strength of automated fea-

ture design of DNN with efficient learning in marginal spaces.
n MSDL ( Fig. 6 ) the classifier is trained directly on parame-

erized image patches and used to estimate the probability dis-

ribution: R ( �( I) ; w, b ) ≈ p(�(I ) | I ) where R is a deep neural

etwork response function parameterized by the weights w and

iases b of each layer. In addition, more efficient scanning of

L networks is achieved through network approximation (sparsi-

cation) techniques by minimizing the residual ||R ( �( I) ; w, b ) −
 ( �( I) ; w s , b s ) || , where w s and b s are the weight and bias

f the approximated sparse network R ( �( I) ; w s , b s ) . As a re-

ult, R ( �( I) ; w s , b s ) has much fewer parameters and/or ac-

ess much less data from the image making possible scan-

ing for parameterized objects in 3D or 4D images. With

SDL, we have shown significant performance improvements in

erms of both accuracy and speed on aortic valve detection

n volumetric ultrasound and landmark detection in CT scans

 Ghesu 2016a ). 

With the goal to add more intelligence into image analysis, our

ecent work has focused on artificial intelligence agents that can

e trained using Deep Reinforcement Learning (DRL) techniques

o simultaneously model both the object appearance and the ob-

ect search strategy as a unified behavior ( Ghesu 2016b ). The idea

s to train an agent that can navigate within an image to find an

natomy of interest. In other words, the agent learns automatically

ptimal paths that converge to the target object, thus eliminating

he need for exhaustive search ( Ghesu 2016b ). 

A typical Reinforcement Learning (RL) technique is modeled as

 Markov Decision Process (MDP) defined on the tuple ( S , A , Tr, r,

), where S represents a finite set of agent states, A represents a

nite set of actions that the agent can perform to interact with the

nvironment, Tr: S x A x S→ [0,1] is a stochastic transition func-

ion between two states by performing a specific action, r: S x A
 S→ R is the scalar reward expected after a state transition and

is a future rewards discount factor. One target in RL is to find an

ptimal of the action-value function Q 

∗( s, a ) : S x A → R that cor-

esponds to the maximum expected future rewards when perform-

ng action a in state s : Q 

∗( s, a ) = max 
π

E[ r t | s t = s, a t = a, π ] where

represent an action policy that determines the behavior of the

gent. For object detection, such an agent can be trained by hav-

ng S as the current estimates of the object parameters given the

mage (e.g. spatial coordinates), A the discrete steps of parameter

hanges and a reward system that is related to how close the agent

ets to the target by performing the actions. Given the model def-

nition, a DNN can be trained to approximate the optimal action-

alue function Q ∗ directly from the image values parameterized by

he current state or object parameters. The optimal action-value

unction implicitly defines the optimal policy π∗ which guides

he agent in finding the target object. This paradigm, where the

gent simultaneously learns an object model and how to use the
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Fig. 6. Marginal Space Deep Learning. Left: Learning in increasingly dimensional spaces focused on high probability regions with deep neural sparse networks. Right: Example 

of aortic-valve detection in volumetric ultrasound. 

Fig. 7. Artificial agent for landmark detection. Left: Interaction of an artificial agent with the environment for detecting anatomical landmarks: Current state is defined by 

the image window and the agent performs the optimal action according to the learned behavior, which results in a new state and reward feedback. Right: 2D and 3D paths 

for detecting anatomical landmarks (in blue: starting point of the agent, red: target). 
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odel, can be extended to a wide variety of image parsing actions

 Fig. 7 ). 

Combining these types of learning techniques and classifiers

ith ontology based representation allows for semantic navigation

f all the available patient data ( Seifert 2011 ). In particular, ex-

anding end-to-end learning systems to include medical knowl-

dge with powerful learning-based representation and reasoning

ystems will allow building hierarchical representations dynami-

ally based on the current task. This will facilitate comprehen-

ive automated analysis and reporting based on integrated imaging

nd non-imaging information, past reports and embedded medical

nowledge. For instance, these methods will also enable integrated

nalysis of patient history with support for semantic search and

ase comparison by finding similar cases and treatments with re-

ated clinical knowledge and guidelines. Finally, the method facil-

tates knowledge sharing and population analytics. Such informa-

ion empowers the radiologist towards increased efficiency and re-

uced uncertainty. 

. Support for minimally-invasive procedures 

Progress in medical imaging technologies and image analysis

re making increasingly complex minimally invasive procedures

ossible. Techniques like heart valve repair or replacement can

ow be performed percutaneously, a relevant example being Tran-

catheter Aortic Valve Replacement (TAVR). Effective execution of

inimally invasive procedures strongly relies on medical imaging. 
t  
First, the devices need to be selected to fit patient’s anatomy. To

hat end, quantitative imaging is used to accurately measure the

natomy under consideration. For instance, the size of TAVR de-

ices is determined from the dimensions of the aortic root. This is

sually performed on CT data, but for patients suffering from kid-

ey failure, novel, full-volume, real-time 3D TEE (trans-esophageal

chocardiography) now enables the quantification of heart valves

nd blood flow without contrast agent. Fully exploiting this new

maging modality, we recently developed an advanced machine

earning technology to estimate a personalized model of the heart

alves ( Fig. 8 ). In brief, the algorithm, based on Marginal Space

earning, first detects the region of interest (ROI) where the valve

s located. Within that ROI, key anatomical landmarks are detected

nd a parameterized triangulated surface is fitted to model the

atient’s valve. The detectors of each stage of the algorithm are

rained from a large database of annotated images. The method is

eneric, and has been applied to other imaging modalities, like CT

 Ionasec 2010 ). 

Second, the operator needs image guidance to effectively de-

iver the device. Angiography is the modality of choice in the hy-

rid OR as it allows the visualization of catheters in real-time.

owever, soft tissues are hard to distinguish in these images. Ad-

anced navigation concepts based on augmented reality have thus

een investigated to enhance the angiography images with overlay

f the targeted organ. 3D preoperative images are registered to the

D scene (often facilitated by the injection of contrast) using pat-

ern matching, multi-organ registration or multi-view reconstruc-

ion. Supported by imaging technologies, new minimally invasive
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Fig. 8. Real-time 3D TEE and 3D Doppler. New TEE imaging allows full-volume, real-time visualization of cardiac anatomy (B-mode) and blood flow (color Doppler). For the 

first time, the clinician can visualize jointly the valve anatomy and potential insufficiency. 

Fig. 9. 3D TEE – Angiography fusion. Left: Real-time overlay on angiography image of the valve model estimated from 3D TEE image acquired at the same time (see Fig. 8 ); 

Right: Real-time overlay of the 3D Doppler generated by the 3D TEE probe. 
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procedures are emerging, like the recent transcatheter mitral valve

replacement repairs techniques, which in turns require unprece-

dented levels of registration accuracy and robustness to cope with

moving devices and image artifacts. 

The future will likely go towards real-time 3D guidance, as hy-

brid solutions combining angiography and 3D TEE are becoming

available. Through TEE probe pose estimation in the 3D space from

angiography images, real-time ultrasound images can be automati-

cally registered to the angiography space. User-defined landmarks,

anatomical models or the ultrasound images directly can then be

overlaid to the angiography image to guide the cardiologist to-

wards the target ( Fig. 9 ). To reach the accuracy and speed require-

ments for real-time intervention guidance, we recently introduced

a 3D TEE probe pose estimation based on deep learning ( Miao

2016 ), yielding high accuracy at a frame-rate of 15fps. 

5. Decision support through patient specific computational 

models 

While increasingly robust and accurate quantification methods

are being available, new solutions based on computational models

of human physiology are being investigated to extract more physi-

ological information from the images and facilitate patient-specific

planning through predictive algorithms. 
A first example is Fractional Flow Reserve (FFR), the current

old standard parameter that characterizes coronary stenosis sever-

ty. In standard of care, FFR is measured invasively using pres-

ure catheters. During the past years, we have developed non-

nvasive, image-based FFR methods (cFFR CFD ) based on CT im-

ges and reduced-order computational fluid dynamics (CFD) mod-

ls, making it possible to calculate FFR at the bed-side ( Sharma

012 ) with excellent performance. Furthermore, with the advances

n machine learning, we have demonstrated that it is now possible

o calculate FFR non-invasively in seconds on a standard worksta-

ion. Based on deep learning, the new approach consists in learn-

ng the CFD model directly from anatomical features ( Itu 2016 ).

irst, a database of 12,0 0 0 coronary geometries with more than

0 0 0,0 0 0 coronary segments was computed, with randomly po-

itioned stenosis. Second, a reduced-order CFD model was used

n all 12,0 0 0 geometries to calculate the resulting FFR. Both heart

nd systemic circulation models were included for proper bound-

ry conditions. Third, a deep-network (cFFR ML ) was trained to pre-

ict the FFR value given geometric features computed upstream, at

nd downstream the stenosis. Tested on 127 unseen lesions from

7 patients, cFFR ML could be calculated in 2.4 s in average, with

 correlation coefficient of 0.9994 (p < 0.001) and no bias with re-

pect to cFFR CFD . Compared to the invasive FFR value, cFFR ML sen-

itivity was 81.6%, specificity 83.9% and accuracy 83.2%, achieving

imilar performance as other non-invasive FFR methods ( Fig. 10 ). 
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Fig. 10. Testing deep learning based FFR. Left: cFFR CFD computed using reduced order CFD model; Right: cFFR ML values. The deep learning approach could capture the FFR 

values accurately, while reducing the calculations to seconds. 
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Fig. 11. Personalized CRT planning. Effect of ventricular pacing on cardiac elec- 

trophysiology as calculated by an individualized computational model of heart 

function. 
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Similarly, we have developed machine learning techniques to

stimate a patient-specific model of cardiac electrophysiology (EP)

or cardiac resynchronization therapy (CRT) planning ( Zettinig

014; Kayvanpour 2015 ). In particular, in ( Neumann 2016 ), we in-

roduce an intelligent agent trained following RL concepts to es-

imate cardiac electrical conductivities directly from 12-lead ECG.

ollowing the notations introduced in Section 2 , we defined the

L Markov Decision Process ( S , A , Tr, r, γ ) as follows. The states

 ∈ S are discretized objective values (absolute difference be-

ween target and current QRS duration and electrical axis). The

ctions a ∈ A are to increment and decrement the left endocar-

ial, right endocardial, and myocardial conduction velocity (six ac-

ions in total). In a first stage, the agent learns through random

xploratory simulations the state transition probabilities Tr , which

ncode how the model behaves when the electrical conductivities

hange. Given this knowledge, the best personalization strategy is

earned through RL. The reward r is defined such that at every step

 , starting from a state s t , the agent receives a negative reward for

ll actions a t ∈ A except for the one a t ∗ that leads it to the pa-

ameters for which the EP model best matches the observed ECG.

inally, the parameter γ was set to 0.9 or higher to favor long-

erm rewards (and thus global optimum). Tested on 83 consecutive

atients, the artificial agent could achieve similar goodness of fit

s a hand-crafted, state-of-the-art optimization method ( Neumann

016 ), while being 2.5 times faster. 

Such personalized models can be used for patient-specific ther-

py planning. For instance, a user could use the model to vir-

ually test different CRT pacing protocols ( Kayvanpour 2015 ). She

ould virtually place the CRT leads, program the virtual device,

nd update the model to visualize the impact of the CRT pacing on

ardiac function ( Fig. 11 ), thus increasing the confidence on the

herapy and the best strategy to apply to the patient under

onsideration. 

. Conclusion 

In this paper we discussed recent technologies that will most

ikely make an important impact on medical imaging. Techniques

ike Cinematic Rendering will help increasing the sensitivity and

pecificity of images, by enhancing the pathology conspicuity. Ad-

anced image understanding will streamline the image measure-

ents and image interpretation, by increasing the speed of read-

ng, while introducing more reproducibility in the system. The new
eart valve technologies, based for instance on 3D TEE/Doppler,

ill help a more precise characterization of the patient’s anatomy

n the OR, while the 3D TEE – Angiography Fusion will support

etter guidance. Finally, patient specific computational modelling

pens the door to a new generation of decision support systems

hat help clinical decision making not only by integrating and ana-

yzing data from different sources, but also by modelling both the

natomy and function of the patient, thus exhibiting enhanced pre-

ictive power. 
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