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Abstract

We present an e�cient framework for the detection

and tracking of human faces with an active camera.

The Bhattacharyya coe�cient is employed as a simi-

larity measure between the color distribution of the face

model and face candidates. The proper derivation of

these distributions allows the use of the spatial gradient

of the Bhattacharyya coe�cient to guide a fast search

for the best face candidate. The optimization, which is

based on mean shift analysis, requires only a few itera-

tions to converge. Scale changes of the tracked face are

handled by exploiting the scale invariance of the simi-

larity measure and the luminance gradient computed on

the border of the hypothesized face region. The detec-

tion and tracking modules are almost identical, the dif-

ference being that the detection involves mean shift op-

timization with multiple initializations. Our dual-mode

implementation of the camera controller determines the

pan, tilt, and zoom camera to switch between smooth

pursuit and saccadic movements, as a function of the

target presence in the fovea region. The resulting sys-

tem runs in real-time on a standard PC, being robust to

partial occlusion, clutter, face scale variations, rotations

in depth, and fast changes in subject/camera position.

1 Introduction

The task of real-time detection and tracking of hu-

man faces is a key component of video surveillance and

monitoring systems [7]. It provides input to high-level

processing such as recognition [21], access control, or

re-identi�cation, or is used to initialize the analysis and

classi�cation of human activities [1, 13].

The head is one of the most easily recognizable hu-

man parts, having a relatively constant color compo-

sition in certain color sub-spaces [6, 27], a projection

of elliptical shape in the image frame, and distinct lo-

cal features. Although the illumination conditions can

thoroughly a�ect the face appearance [16] and occlu-

sions can modify its perceived shape, the color and

shape are the visual clues most often used in detect

and track faces [4, 5, 10, 11, 12, 15, 18, 22, 26] (see [24]

for a discussion).

To achieve robustness to out-of-plane rotations of the

head, the color distribution of a face model (target) is

employed instead of raw image pixels. The location of

the target in the new frame is predicted based on the

past trajectory, and a search is performed in its neigh-

borhood for image regions (target candidates) whose

distribution is similar to that of the model. In sin-

gle hypothesis tracking the best match determines the

new location estimate, however, more complex strate-

gies also exist to form multiple hypothesis [2].

The exhaustive search in the neighborhood of the

predicted target location for the best target candidate is

a computationally intensive process. Although the com-

puting machinery becomes faster and faster, the com-

plexity of the tracker is critical for most applications,

since only a small percentage of a computer resources

are allocated for tracking, the rest being reserved for

high level tasks. In addition, the face detector should

be fast enough to insure a fast tracker (re)initialization.

This paper presents a system that employs a new

framework for the e�cient detection and tracking of

faces with an active camera. We compute the Bhat-

tacharyya coe�cient as the similarity measure between

the face model (its color distribution derived in an in-

tensity normalized space) and the target candidates,

and use the spatial gradient of this measure to guide a

fast search for the best candidate. The optimization we

propose, based on mean shift analysis [8], achieves con-

vergence in only a few iterations, being thus well suited

for real-time tracking. To adapt to the scale changes

of the target we exploit the scale invariance property

of the Bhattacharyya coe�cient as well as the gradi-

ent information on the border of the hypothesized face

region.

The system operates either as a face detector, wait-

ing for a face to appear in the active frame, or as a

tracker, until the tracked face/head is completely oc-

cluded or exits the scene. The detection module is

based on the same principle as the tracker, employing

the mean shift optimization with multiple initializations

(in di�erent locations of the current image frame).

The active camera is driven by a two mode controller,

being capable of both smooth pursuit and fast saccades,

according to the position of the target in the current

frame. The resulting detection and tracking system was

tested on di�erent and multiple persons and proved to
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be robust to partial occlusion, signi�cant clutter, target

scale variations, rotations in depth, and fast changes in

camera and subject positions.

The organization of the paper is as follows. Section 2

presents the Bhattacharyya coe�cient as a color-based

similarity measure. The derivation of the color his-

tograms which incorporate spatial information is given

in Section 3. Section 4 formulates the optimization

problem for face localization in the neighborhood of

a predicted location. The tracking process and scale

adaptation scheme are discussed in Section 5. Section

6 describes the details of face detection for tracker ini-

tialization. The detection and tracking experiments are

presented in Section 7 and some conclusions are drawn

in Section 8.

2 A SimilarityMeasure for Color-Based

Matching
As stated before, the single hypothesis tracking as-

sumes the search of a neighborhood of the predicted

target location in the current frame for the face candi-

date that is the most similar to the face model. The

similarity measure we develop is based on color infor-

mation. The feature z representing the color of the face

model is assumed to have a density function qz, while

the face candidate centered at location y has the feature

distributed according to pz(y). Then, the problem is to

�nd the discrete location y whose associated density

pz(y) is the closest to the target density qz.

We estimate the similarity between two densities ac-

cording to the Bhattacharyya coe�cient, whose general

form is de�ned by [17]

�(y) � � [p(y); q] =

Z p
pz(y)qz dz : (1)

The similarity measure (1) is valid for arbitrary den-

sities, being invariant to the scale of the target 1. We

implicitly assume that the color distribution of the tar-

get is invariant to scale, although the quantization ef-

fects We recently showed [9] that the metric derived

from the Bhattacharyya coe�cient is superior to other

measures such as histogram intersection [23], Bhat-

tacharyya distance, Fisher linear discriminant or Kull-

back divergence. Some theoretical properties of the

Bhattacharyya coe�cient such as its relation to the

Fisher measure of information and explicit forms for

various distributions are given in [17].

The evaluation of (1) from sample data assumes

the estimation of the densities p and q. Due to the

computational complexity constraint we use the den-

sity estimates derived from a simple histogram formu-

lation. The discrete density q̂ = fq̂ugu=1:::m (with

1In practice, the uncertainty in the density estimates is inu-

enced by the number of available samples, i.e., is scale dependent.

P
m

u=1
q̂u = 1) is estimated from the m-bin histogram

of the face model, while p̂(y) = fp̂u(y)gu=1:::m (withP
m

u=1
p̂u = 1) is estimated at a given location y from

the m-bin histogram of the face candidate. Therefore,

the sample estimate of the Bhattacharyya coe�cient is

given by

�̂(y) � � [p̂(y); q̂] =

mX
u=1

p
p̂u(y)q̂u: (2)

3 Including Spatial Information in

Color Histograms
This section shows how to build from image regions

color histograms that incorporate spatial information.

We assume the existence of a known image region con-

taining the face model and multiple image regions rep-

resenting the face candidates.

Face Model Let us denote by fx?
i
g
i=1:::n

the

pixel locations of the face model, centered at 0. Let

b : R2 ! f1 : : :mg be function which associates to the

pixel at location x
?

i
the index b(x?

i
) of the histogram

bin corresponding to the color of that pixel. The prob-

ability of the color u in the face model is computed by

employing a convex and monotonic decreasing function

k : [0;1) ! R which assigns a smaller weight to the

locations farther from the center of the face 2. This

weighting increases the robustness of the estimation,

since the peripheral pixels are the least reliable, being

often a�ected by occlusions (clutter) or background. By

assuming that the generic coordinates x and y are nor-

malized with hx and hy, respectively, we can write

q̂u = C

nX
i=1

k(kx?
i
k2)� [b(x?

i
)� u] ; (3)

where � is the Kronecker delta function. The normal-

ization constant

C =
1P

n

i=1
k(kx?

i
k2)

; (4)

results from the condition
P

m

u=1
q̂u = 1 and by taking

into account that the summation of delta functions for

u = 1 : : :m is equal to one.

Face Candidates Let us denote by fxigi=1:::nh
the pixel locations of the face candidate, centered at y

in the current frame. Employing the same weighting

function k, the probability of the color u in the face

candidate is given by

p̂u(y) = Ch

nhX
i=1

k

 y � xi

h


2
!
� [b(xi)� u] : (5)

The scale of the face candidate (i.e., the number of pix-

els) is determined by the constant h which plays the

2The function k is called a kernel pro�le when used in the

context of density estimation [9].
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same role as the bandwidth (radius) in the case of ker-

nel density estimation [8]. By imposing the condition

that
P

m

u=1
p̂u = 1 we obtain the normalization constant

Ch =
1P

nh

i=1
k(ky�xi

h
k2)

: (6)

Observe that Ch does not depend on y, since the pixel

locations xi belong to a regular lattice, y being one of

the lattice nodes. Thus, Ch can be precalculated for a

given kernel and di�erent values of h.

4 Optimization Problem for Face Local-

ization
The search for the new face location in the current

frame starts at the predicted location ŷ
0
of the face

computed from the previous frame. Therefore, we com-

pute �rst the color probabilities fp̂u(ŷ0)gu=1:::m of the

face candidate at location ŷ
0
in the current frame.

To maximize the Bhattacharyya coe�cient (2), we

start with the Taylor expansion of �̂(y) around the val-

ues p̂u(ŷ0), which yields

�̂(y) �
1

2

mX
u=1

p
p̂u(ŷ0)q̂u +

1

2

mX
u=1

p̂u(y)

s
q̂u

p̂u(ŷ0)
(7)

Introducing now (5) in (7) we obtain

�̂(y) �
1

2

mX
u=1

p
p̂u(ŷ0)q̂u +

Ch

2

nhX
i=1

wik

 y � xi

h


2
!

(8)
where

wi =

mX
u=1

� [b(xi)� u]

s
q̂u

p̂u(ŷ0)
: (9)

Hence, to maximize (2) the second term in equation

(8) has to be maximized, the �rst term being indepen-

dent of y. The second term represents the density esti-

mate computed with kernel pro�le k at y in the current

frame, with the data being weighted by wi (9). The

maximization can be e�ciently achieved based on the

mean shift iterations (see [8]), using the following algo-

rithm. Figure 1 shows a block diagram of the algorithm.

Location Optimization

Given the distribution fq̂ugu=1:::m of the face model

and the predicted location ŷ
0
of the face:

1. Compute the distribution fp̂u(ŷ0)gu=1:::m, and

evaluate
�̂(ŷ

0
) =

P
m

u=1

p
p̂u(ŷ0)q̂u :

2. Derive the weights fwigi=1:::nh according to (9).

3. Derive the new location of the face [8]

ŷ
1
=

P
nh

i=1
xiwig

� ŷ0
�xi

h

2�
P

nh

i=1
wig

� ŷ0
�xi

h

2� : (10)

Update fp̂u(ŷ1)gu=1:::m, and evaluate

�̂(ŷ
1
) =

P
m

u=1

p
p̂u(ŷ1)q̂u :

4. While �̂(ŷ
1
) < �̂(ŷ

0
)

Do ŷ
1
 1

2
(ŷ

0
+ ŷ

1
).

5. If kŷ
1
� ŷ

0
k < � Stop.

Otherwise Set ŷ
0
 ŷ

1
and go to Step 1.

Figure 1: Block diagram of the algorithm for location
optimization that maximizes the Bhattacharyya coe�-
cient.

The optimization from above employs the mean shift

vector in Step 3 to increase the value of the approx-

imated Bhattacharyya coe�cient ~�(y), given by the

right side of equation (7). Since this operation does

not necessarily increase the value of �̂(y), the test in-

cluded in Step 4 is needed to validate the new location

of the face. However, practical experiments (tracking

di�erent faces, for long periods of time) showed that the

Bhattacharyya coe�cient computed at the location ŷ
1

de�ned by (10) was almost always larger than the coef-

�cient corresponding to ŷ
0
. The termination threshold

� used in Step 5 is derived by constraining the vectors

representing ŷ
0
and ŷ

1
to have the same integer coor-

dinates.

5 Tracking and Scale Adaptation
The face tracking process assumes for each frame

the execution of the location optimization algorithm de-

scribed in Figure 1. Thus, given the face model, the new

location of the face in the current frame maximizes the

value of Bhattacharyya coe�cient in the neighborhood

of the previous location estimate.
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To handle scale changes of the target, the scale in-

variance property of (2) is exploited. Thus, in addition

to the location optimization, a second search is per-

formed, this time function of the bandwidth h. More

speci�cally, the tracker looks for the bandwidth h that

determines the face region in the current frame associ-

ated with the largest Bhattacharyya coe�cient. This

task can be implemented e�ciently through a random

search for scale variations. We simply modify the band-

width h of the kernel pro�le with a random fraction

(limited to �50%), and let the mean shift based algo-

rithm to converge again.

The decision on scale and location is also based on

the luminance gradient [25, p.312] computed on the

border of the hypothesized face region. As suggested

in [4] the mean value of the gradient magnitude com-

puted on the face border, in a direction perpendicular

to the border is an important clue for face localization.

However, since highlights in the image can induce un-

reasonably large values of the local gradient, we use a

trimmed mean measure which calculates the mean only

for points between the 10th and 90th percentiles 3.

Finally, out of the three sets of results (coming

from three optimizations at di�erent scales) the sys-

tem chooses the bandwidth and location yielding the

largest combined color and gradient measure, denoted

by . The value of  is between 0 and 1 and is obtained

as the mean of the Bhattacharyya coe�cient value and

normalized gradient measure �. An IIR �lter is used to

derive the new bandwidth based on the current mea-

surements and old bandwidth.

6 Tracking Initialization

6.1 Face Model

The face model is the same for all experiments pre-

sented in this paper. It has been obtained from only

one subject, by computing the mean histogram of his

face instances recorded in the morning, afternoon and

at night. The o�ce where the experiments were per-

formed has a large window on one side, therefore, both

outdoor and indoor illumination condition were tested.

The histograms were computed in the intensity normal-

ized RG space [26, 27] with 128� 128 bins.

6.2 Face Detection

The face detector employs the same ideas as the

tracking procedure, however, it runs the location opti-

mization with di�erent initializations. For the current

settings of the system (320�240 pixel images with sub-
jects at a distance between 30cm to 3m from the cam-

3The behavior of the tracker in the presence of highlights or

other large gradient sources improved considerably with the use

of the trimmed mean.

Figure 2: Three people image and initialization ellipses
used for face detection.

era) we use �ve initial regions of elliptical shape with

semi-axes (normalization constants) (hx; hy) = (37; 51),

as shown in Figure 2. This arrangement guarantees that

at least one initial ellipse is in the basin of attraction of

a face of typical size.
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Figure 3: Values of the Bhattacharyya coe�cient cor-
responding to the image shown in Figure 2. One can
identify the three peaks of the surface, one for each face
in the image.

Figure 3 presents the surface obtained by computing

the Bhattacharyya coe�cient for the entire image from

Figure 2. One can easily identify the three peaks of the

surface, one for each face in the image. The advantage

of our method should be obvious from Figure 3. While

most of the tracking approaches based on regions must

perform an exhaustive search of the image (or a given

neighborhood) to �nd the maximum value of the sim-

ilarity measure, our algorithm exploits the gradient of

the surface to climb to the closest peak. With proper

multiple initializations, the highest peak is found very

fast.

6.3 Detection and Failure Thresholds

The thresholds that control the target detection and

tracking failure are dependent on the current environ-
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ment the tracker operates. Although we plan a detailed

analysis of the detection and failure events [14], at this

moment the two thresholds are fully adjustable by the

user according to the background and illumination con-

ditions. Their default values were set experimentally.

For all the results presented in the paper, detection was

hypothesized whenever the combined measure  was

larger than Td = 0:2 during the detection stage, while

tracking failure was declared whenever  was smaller

than Tf = 0:3.

7 Camera Control

The adequate control of the pan, tilt, and zoom cam-

era is an essential phase of the tracking process. The

camera should execute fast saccades in response to sud-

den and large movements of the target while providing

a smooth pursuit when the target is quasi-stationary

[19, 20]. We implemented this type of control which

resembles that of the human visual system. The fovea

subimage occupies laterally about 6 degrees of the cam-

era's 50 degrees �eld of view, at zero zoom.

However, contrary to other tracking systems that

suspend the processing of visual information during the

saccades movements [3], our visual face tracker is suf-

�ciently robust to deal with the large amount of blur-

ring resulting from camera motion. As a result, the

visual tracking is a continuous process that is not inter-

rupted by the servo commands. Note that a standard

RS � 232C interface is used to communicate with the

SonyEV I �D30 camera.

8 User Interface

The user interface of the system (shown in Figure 4)

is developed in Java and employs a standard JNI (Java

Native Interface) to call fast native methods for video

acquisition and camera control. The visualization of the

tracked face can be selected as an upper-left window,

superimposed ellipse, centered window with black back-

ground, or the entire frame can be shown, after both the

subject and camera motions have been compensated.

9 Experiments

A �rst set of results are presented in Figure 5,

demonstrating face tracking along a sequence of 1059

frames. The subject's face has been detected within a

few frames after entering the �eld of view of the cam-

era (frame 42). The detected face is shown in the small

upper-left window. The camera is then tracking the

face during walking (frames 69 and 147) and turnings

(frames 99 and 177). The subject tries to escape the

tracker by performing fast lateral movements (frame

267) or hand waiving (frame 309). Observe the blur-

ring that accompanies the these movements, without

a�ecting the tracker. Next, the subject tries to hide

Figure 4: User interface.

behind a chair (frames 552 and 582), but only when

the head is completely occluded the tracker fails (frame

654). However, once the occlusion is terminated, the

face is immediately recovered. Finally, one can see the

scale adaptation working when the subject approaches

the camera.

The histogram of the number of mean shift iterations

necessary for each frame to perform all optimizations is

given in Figure 6. The mean number of iterations, 4:35

is very low, showing the low computational complexity

of the method. Figure 7 presents the evolution of the

combined measure  along the sequence from Figure 5.

Observe the value drops corresponding to the turnings,

fast motion, or occlusion of the target.

The separate plots for the Bhattacharyya coe�cient

and normalized gradient measure are given in Figure 8.

Observe that the gradient measure carries much less

information than the Bhattacharyya coe�cient. This

justi�es our approach in using the gradient informa-

tion only combined with color information, and only

for scale control.

Figure 9 shows samples from another tracking se-

quence demonstrating the detection of the subject

(frame 108) and tracking. The subject is walking

(frame 174 and 282) and turning while sitting on a

chair (frames 846, 1041, 1080). Note that the same
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face model has been used, although the subject has a

di�erent skin color.

The sequence presented in Figure 10 shows face de-

tection and tracking in a crowded environment. The

frames 747 and 780 underline potential problems caused

by the occlusion of the tracked face with another face.

The tracker is distracted and starts pursuing the new

face. Unfortunately, no safe solution exists for this

event, excepting a more complex characterization of the

tracked face and its permanent re-identi�cation. This

is however a computationally intensive process. Note

that Kalman �lter type prediction is almost useless in

this scenario, due to the random walk of the subjects.

Finally, the sequence from Figure 11 shows the ca-

pability of the tracker to handle scale changes, sub-

ject turnings (frame 150), in-plane rotations of the

head (frame 498), and foreground/background satura-

tion due to back-light (frame 576).

10 Conclusion
We presented a real-time system for the detection

and tracking of human faces with an active camera. The

core component of the system is based on a new track-

ing framework that involves low computational cost.

The paper demonstrated the robustness of the system

to scale variations, fast subject movements and cam-

era saccades, partial occlusion, out-of-plane rotations,

and crowded scenes. Our current work focuses on tech-

niques that prune the face candidates for cases when

the background color is similar to the skin color.
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Figure 5: Dorin sequence.
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sequence. The mean number of iterations is 4:35 per
frame.
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Figure 7: Combined measure  computed as the mean
of Bhattacharyya coe�cient � and normalized gradient
measure � for Dorin sequence.
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Figure 8: Bhattacharyya coe�cient � and normalized
gradient measure � for Dorin sequence.
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Figure 9: Ramesh sequence.
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Figure 10: People sequence.
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Figure 11: Cristina sequence.
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