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Abstract—Being able to segment the esophagus without user in-
teraction from 3-D CT data is of high value to radiologists during
oncological examinations of the mediastinum. The segmentation
can serve as a guideline and prevent confusion with pathological
tissue. However, limited contrast to surrounding structures and
versatile shape and appearance make segmentation a challenging
problem. This paper presents a multi-step method: First, a
detector that is trained to learn a discriminative model of the
appearance is combined with an explicit model of the distribution
of respiratory and esophageal air. In the next step, prior shape
knowledge is incorporated using a Markov chain model. We
follow a “detect and connect” approach to obtain the maximum
a posteriori estimate of the approximate esophagus shape from
hypothesis about the esophagus contour in axial image slices.
Finally, the surface of this approximation is non-rigidly deformed
to better fit the boundary of the organ. The method is compared
to an alternative approach that uses a particle filter instead of a
Markov chain to infer the approximate esophagus shape, to the
performance of a human observer and also to state of the art
methods, which are all semiautomatic. Cross-validation on 144
CT scans showed that the Markov chain based approach clearly
outperforms the particle filter. It segments the esophagus with
a mean error of 1.80 mm in less than 16 s on a standard PC.
This is only 1 mm above the inter observer variability and can
compete with the results of previously published semiautomatic
methods.

Index Terms—esophagus, segmentation, tubular structure,
Markov chain, tracking

I. INTRODUCTION

DURING oncological examinations of the chest, radiolo-
gists are particularly interested in the region around the

trachea and the esophagus [1]. These are natural gateways
into the body and therefore often surrounded by lymph nodes,
which need to be examined for all types of cancer. CT scans
of the thorax are common practice for diagnosis and in order
to assess whether treatment is effective. While the trachea is
clearly visible in CT, the esophagus is much harder to see
and can easily be confused with other structures, which is
one reason that makes the interpretation of the CT images
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tedious. An automatic segmentation can serve as a guideline
and provide valuable overview to a physician.

A segmentation is also useful for therapy planning. Atrial
fibrillation, which is a major cause of stroke, can be treated
with an ablation therapy in the heart. During this intervention,
however, there is a small risk of an atrial-esophageal fistula.
Then, air from the esophagus can enter the left atrium, which
normally leads to the death of the patient [2]. A preoperative
segmentation of the esophagus can be useful for intervention
planning.

Automatic esophagus segmentation is a challenging prob-
lem. The wall of the esophagus consists of muscle tissue,
which has a low contrast to vessels, other muscles and lymph
nodes. Shape and appearance can vary a lot. It appears solid if
it is empty, but it can also be filled with air, remains of orally
given contrast agent, or both. Even for a human, it is often
impossible to accurately delineate the boundaries given only
a single slice. Fig. 1 shows two examples along with manual
ground truth segmentation.

Up to now, the amount of publications on the topic is
limited. In [3], a method is described which combines a
spatial prior of the esophagus centerline with a histogram
based appearance model. The centerline is extracted using
a shortest path algorithm. Then, ellipses are fitted into axial
slices by optimizing an energy function that is again histogram
based and also has a regularization term for smooth transitions
between neighboring slices. The method is semiautomatic
and requires two manually placed points on the centerline
and also a segmentation of the left atrium and the aorta as
input. In [4], another semiautomatic segmentation method is
proposed which also uses a spatial prior of the esophagus
centerline. The prior is estimated relative to a set of axial
2-D contours of vertebrae, the trachea, the left main bronchi,
the aorta and the heart that were segmented manually in seven
reference slices. This is combined with a level set segmenta-
tion, which is initialized with the detected centerline. In [5],
contour lines that were manually drawn in axial slices are
interpolated in the frequency domain without using the image
itself. In [6], the user draws one contour in an axial slice,
and registration based on optical flow is used to propagate the
contour to neighboring slices. The segmentation error was not
evaluated quantitatively.

In the last years, discriminative learning has become popular
for object detection [7], [8], [9]. In [10], we proposed a model
based approach for esophagus segmentation which consists of
multiple sub-steps. First, elliptical candidates of the esophagus
contour are generated for each axial slice using a cascade of
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Fig. 1. Two axial slices with and without manual ground truth segmentation
displayed as white contours. In the right example, it is hardly possible to
accurately delineate the boundary given only one slice.

detectors based on discriminative learning techniques. This is
combined with prior knowledge of the esophagus shape which
is modeled with a Markov chain. This allows to efficiently
infer the most likely path through the axial slices. Finally,
a surface is generated and further refined using a detector
that was trained to find the esophagus boundary. In [11], we
extended this approach in multiple ways:

• A region of interest (ROI) detection step was added
to make the segmentation work fully automatically on
whole CT scans as they come from the scanner. In [10],
the ROI was selected manually. In order to make sure
that the esophagus is always inside, the ROI has to be
made relatively large, which makes the detection problem
harder because of the increased search space and more
clutter that is visible in the larger ROI.

• An explicit model of respiratory and esophageal air was
included because we noticed that esophageal air holes
rather distract the detector, even though they are a clear
hint to a human observer.

• An additional step was added after the first step of the
detection cascade. It differs from the first step of the cas-
cade only in the way the training examples are generated:
The false positive detections of the first detector are used
as negative training examples of the second.

• The quantitative results are considerably better, even
though the detection problem on the larger ROI is harder.

This paper presents the method of [10] including the exten-
sions of [11] in detail. It introduces a new variant of the
Condensation algorithm for particle filtering and compares
the Markov chain based “detect and connect” approach to the
particle filtering based tracking approach. Particle filtering is
commonly used for tracking over time, but can also track
tubular structures. New experiments were added, including
experiments on three additional databases. This enables a
better comparability with previously published methods.

We evaluated our method on a large set of CT scans. Manual
segmentations served as ground truth. Besides evaluating the
influence of model parameters, we also investigated the inter
observer variability of manual segmentations.

The paper is structured as follows: Section II describes
the region of interest detection, ellipse candidate detection,
path inference and surface generation steps of our method.
Section III presents experiments and results, and section IV
concludes the paper.
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Fig. 2. Overview of the system and the steps involved in ellipse detection.

II. ESOPHAGUS SEGMENTATION

A. Region of interest detection

CT scans containing the thoracic esophagus typically show
at least the hole thorax and often also the abdominal region.
To simplify and accelerate the actual segmentation, a region
of interest (ROI) is automatically detected. The ROI is an axis
aligned cuboidal region that is rigidly attached to an anatomic
landmark. As landmark, the bifurcation of the trachea is used
because it is close to the esophagus and can be detected
robustly in CT as it is unique and rich in contrast. We follow
the approach of [12] to find this landmark. Instead of directly
constructing a single detector, a network of detectors for
salient axial slices and landmarks is used to constrain the
results to be anatomically reasonable. This helps to resolve
ambiguities and improves robustness. The size of the ROI
and the offset from the landmark was selected such that
the esophagus was always inside in all datasets that were
available for evaluation with a margin of at least 3 cm in
x and y direction, where the x axis points to the left and the
y axis to the back. The resulting cuboid has a cross section of
13.3× 15.6cm2. Along the z axis, which points upwards, the
size is set to 26 cm. This ROI is relatively large which assures
that the esophagus is not missed, but which also makes the
detection problem harder as the region contains more clutter.

B. Ellipse detection

In the first steps of our method, the contour of the esoph-
agus in an axial slice is approximated using an ellipse with
parameters e

e = (t, θ, s), (1)

where t = (x, y) is the center, θ is the rotation angle within
the slice, and s = (a, b) are the lengths of the semi major
and semi minor axes (a ≥ b). Using ellipses, we can get a
good approximation of the contour with only five degrees of
freedom.

For each axial slice, we want to find a set of ellipse
candidates e(i), i = 1 . . . N , which are hypothesis of the true
esophagus contour. Fig. 2 gives an overview of the ellipse
detection process. Instead of searching the five dimensional
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search space directly, we use a technique called marginal space
learning which has been proposed in [9]. The idea is to prune
large portions of the search space using classifiers that were
trained on marginal spaces, which are translation t only and
translation together with orientation (t, θ) in this case. The
classifiers form a cascade. At leach level, candidates with a
poor detection score are rejected, and the remaining ones are
propagated to the next level and augmented if the dimension
increases. Translation is detected by two classifiers T1 and T2
that differ in the examples they are trained with. They also take
into account the distribution of respiratory and esophageal air,
which is further explained in section II-B1. Finally, the set of
candidates is reduced in a clustering step.

As classifiers, we use probabilistic boosting trees (PBT) [8].
A PBT is a binary decision tree with a strong AdaBoost
classifier at each node.

In step T1, we only consider translation and train a classifier
to learn the probability

p(m = 1|H(t)) (2)

of whether there is an ellipse model instance with center t
given a feature vector H(t) that was extracted at position
t. Here, m is the binary class label which is either one for
“true” or zero for “false”, and H are 3-D Haar-like features.
These are combinations of simple cuboid filters similar to
the rectangle filters described in [7]. Although being simple,
these features are powerful because they can be computed very
efficiently with the help of an integral image, which allows to
search the whole volume exhaustively. A set of translation
candidates CT1 = {t1 . . . tNT1

} is generated from the NT1

positions with best detection score p(m = 1|H(t)).
In step T2, a second classifier is trained to also learn

p(m = 1|H(t)). (3)

Training requires two sets containing positive and negative ex-
amples. While the negative examples for the first classifier are
generated by random sampling and rejecting samples too close
to the ground truth annotations, the negatives of the second
classifier are the false positives of the first one. The second
classifier only considers the set CT1 and generates a new
set CT2 containing the NT2 top position candidates, where
NT1 > NT2. This significantly improves the accuracy because
the second one gets specialized on the difficult cases [11].

A third classifier is trained to learn the probability

p(m = 1|S(t, θ)) (4)

of a model instance given a vector S of steerable features [9]
that depend on rotation and translation. These are point
features like the image intensity, the gradient, and nonlinear
combinations of them which are evaluated on a regular grid of
size 7×7×3 that is placed at position t and rotated according
to θ. While these features are more expensive to compute
compared to the Haar-like features, rotation detection is still
efficient because only the set CT2 of position candidates needs
to be considered. The result is a set containing NTR rotation
and translation candidates.

A fourth classifier is trained on the full search space to learn

p(m = 1|S(t, θ, s)), (5)

again using steerable features, but now the sampling pattern is
also scaled according to s. It generates the final set of ellipse
candidates C = {e1 . . . eN}. Also for the last two classifiers,
the negative training examples are generated from the false
positives of the previous one.

1) Incorporating the distribution of air: In section II-B, the
detection only relies on local features. As described in [11],
this can lead to ambiguities in the presence of air bubbles in
the esophagus. To a human, air bubbles, which are easy to see
in CT, are a clear hint for the esophagus. But we observed
that instead of learning a correlation between air bubbles and
the esophagus, the classifier is rather distracted by esophageal
air. The reason is that locally, esophageal air looks similar to
respiratory air, which is a priori much more likely because the
lung and the trachea cover a larger volume. A human, however,
easily recognizes and excludes the respiratory organs.

We found that the detection performance can be improved
by adding the knowledge that respiratory air cannot belong to
the esophagus, while air elsewhere most likely does. This is
modeled by a binary mask B(t)

B(t) =

{
0 : t belongs to a respiratory organ
1 : else

(6)

and a probability map A(t) of the esophagus that is generated
from detected air holes. Respiratory air can be segmented
easily in CT because it forms one connected region. In the first
step, voxels with an attenuation coefficient below -625HU are
labeled as air. To also include vessels and airways inside the
lung, 2-D connected components in axial, sagittal and coronal
slices with an area below 9 cm2 are labeled as air as well.
Now all 3-D connected components marked as air that touch
the left, right, front or back border of the region of interest
are removed. The removed regions are labeled as 0 in B.
Elsewhere, B is set to 1. Regions filled with air that were
not removed probably belong to the esophagus. These regions
are marked in a second binary mask E(t)

E(t) =

{
1 : esophageal air at t
0 : else.

(7)

A similar method to detect air holes in the esophagus is
described in [13]. If now an axial slice of E contains exactly
one connected region marked as esophageal air, this is a very
strong hint for the esophagus. Then, the corresponding axial
slice of A is set to

A(t) = g(‖t− p‖2) (8)

g(r) = max

e− r2

σ2a − e−
w2

σ2a

1− e−
w2

σ2a

, 0

 , (9)

where p denotes the point of gravity of the region within the
slice and g is a Gaussian with standard deviation σa that is
deformed to have a maximum of 1 and limited support in
[−w,w]. We selected a value of 7 mm as σa and 10 mm as
w.

We now define a combined probability map C(t) as

C(t) =
B(t) +A(t)

2
(10)
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(a) (b) (c) (d)
Fig. 3. Two examples of CT slices (a,c) along with their combined probability
map C(t) (b,d) generated from the distribution of air inside the volume. Left:
The air hole is a clear hint for the esophagus. Right: No air hole is present,
but respiratory air can be excluded.

and model the probability p(m = 1|C(t)) of observing the
esophagus at position t given the global distribution of air as
being proportional to C(t):

p(m = 1|C(t)) ∝ C(t). (11)

During position detection, we are finally interested in the
probability p(m = 1|H(t), C(t)) of observing the esophagus
at a certain location t given the Haar-like feature response
H(t) and the information from the global distribution of air
C(t). In order to simplify the notation, we will omit the
argument t in the remainder of this section. Using Bayes’
rule, this can be rewritten as

p(m = 1|H, C) =
p(H, C|m = 1)p(m = 1)

p(H, C)
. (12)

Now we assume that the feature vector H is statistically
independent from the distribution of air C. This is of course a
simplifying assumption. The feature vector H is affected by
the presence of air, and therefore H and C are to some extent
statistically dependent. But this dependency is not very strong
because H is extracted from a local neighborhood, while C
captures the global distribution of air. Locally, respiratory and
esophageal air look very similar, but globally, they can be well
distinguished. The assumption is further justified by the fact
that the map C does improve the performance as we will see,
which means that H does not contain too much information
about C. With this assumption, (12) can be transformed into

p(m = 1|H, C) =
p(H|m = 1)p(C|m = 1)p(m = 1)

p(H)p(C)
(13)

=
p(m = 1|H)p(m = 1|C)

p(m = 1)
, (14)

which is proportional to the product p(m = 1|H)C of the
classifier output and the probability map C. This means we can
integrate C into a translation detector simply by multiplying
it with the detection score. This is done for both detectors T1
and T2. In Fig. 3, the probability map C is visualized for two
axial CT slices.

Regions filled with respiratory air are not considered by the
detector. Therefore, we also do not generate negative training
examples from these regions. This makes the learning problem
easier because now air is a priori more likely to be part of the
esophagus.

The final detection score of an ellipse candidate e is now

Fig. 4. Factor graph of the Markov chain model.

modeled as being proportional to the product

p(m = 1|e) ∝ p(m = 1|H(t), C(t))

· p(m = 1|S(t, θ))p(m = 1|S(t, θ, s)) (15)

of the translation, the rotation and the scale detection score.
Here, we only take into account the score of the second trans-
lation detector T2 in order not to overemphasize translation.
Detector T1 is only used to reject most samples at an early
stage.

2) Clustering: In order to reduce subsequent search effort
and to detect modes in the distribution of the candidates
{e(1) . . . e(N)}, they are spatially clustered using an agglomer-
ative hierarchical average-linkage clustering algorithm until a
distance threshold dmax is reached. Two clusters are merged
if the mean radius of inter-cluster pairs of points is below
dmax. The result is a set of cluster centers {c(1) . . . c(K)}
with weights {σ(1) . . . σ(K)}, where the weight σ(k) of cluster
center k is the sum of detections scores p(m = 1|e) of its
members.

C. Path inference

1) First order Markov model: So far, the axial slices of
the volume image were treated separately. Shape knowledge is
incorporated into a Markov chain model [14] of the esophagus
and used to infer the most likely path through the axial slices.
A factor graph [15] of the Markov model used here is depicted
in Fig. 4. The variables c1 . . . cT correspond to the axial slices
of the image. Possible states of a variable ct are the ellipses
corresponding to the cluster centers c

(k)
t , k = 1 . . .Kt of slice

t. Note that the slice index t and the 2-D ellipse center t are
different variables. Each state variable ct is conditioned on the
observed image slice vt. The clique potentials (or factors) of
the observation cliques are denoted with Φt. They are set to
the scores of the cluster centers:

Φt(c
(k)
t ,vt) = σ

(k)
t . (16)

The clique potentials Ψt between adjacent state variables
ct, ct+1 represent the prior shape knowledge. They are set
to the transition distribution from one slice to another:

Ψt(ct, ct+1) = p(ct+1|ct). (17)

To simplify the transition distribution, it was assumed that
the transition of the translation parameters x, y is statistically
independent from the other parameters. The same was assumed
for the scale parameters. As the rotation parameter θ is not
well defined for approximately circular ellipses, the transition
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of rotation also depends on the scale parameters, but indepen-
dence was assumed for translation and scale parameters. With
these assumptions, the transition distribution can be factorized
and becomes

p(ct+1|ct) =p(tt+1|tt) (18)
·p(θt+1|θt, st) (19)
·p(st+1|st). (20)

The translation transition (18) is modeled as a 2-D normal
distribution

p(tt+1|tt) = N (∆tt|Σp,mp) (21)

with ∆tt = tt+1−tt, and the transition (20) of scale s = (a, b)
as a 4-D normal distribution

p(st+1|st) = N (st+1, st|Σs,ms). (22)

In (21) and (22), Σp and Σs are the covariance matrices,
and mp and ms are the mean vectors of the two normal
distributions.

The variance of the rotation transition is small for an
elongated ellipse because the esophagus is usually smooth and
not heavily twisted. However, the variance highly increases
for more circular ellipses. The reason is that θ takes arbitrary
values for a circle. This may results in big jumps of θ from
slice to slice even though the shape of the esophagus contour
hardly changes.

This is handled by modeling (19) with different normal
distributions for elongated and more circular ellipses. In total,
we use ten 1-D normal distributions, one for a certain interval
of circularity, which is measured by the ratio b

a of the length
of the semi minor and the semi major axis:

p(θt+1|θt, at, bt) ≈ N
(

∆θt

∣∣∣σr ( bt
at

)
,mr

(
bt
at

))
. (23)

Here, σr( ba ) is the standard deviation and mr(
b
a ) the mean

of the normal distribution that corresponds to the circularity
value b

a . Fig. 5 shows samples of rotation transitions along
with the circularity. It illustrates that (19) can be represented
with a Gaussian for a fixed circularity value.

This is an approximation because a normal distribution has
only one mode and unlimited support, but a rotation by 180◦

results into the same ellipse. It is however enough to only
consider the range of ∆θ between −90◦ and 90◦, where the
approximation works well.

The parameters of all normal distributions were estimated
from manually annotated data. The annotations are contours
of the esophagus drawn in each axial slice. For each slice, an
ellipse is fitted into the contour points. We use the method
described in [16] to non-iteratively compute the least squares
solution. The transitions from one slice to the next are treated
as samples and used to compute the mean vectors and covari-
ance matrices.

The a posteriori joint distribution of all states p(c1:T |v1:T )
is now given by the product of all factors of the factor graph.
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Fig. 5. Samples of rotation transitions from one axial slice to another of the
ellipses fitted to the ground truth annotations. For a fixed circularity value b
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,

the 1-D conditional probability density p(∆θ| b
a

) can be well approximated
with a normal distribution. The standard deviation is higher for high circularity
values. For b

a
= 1, the distribution is uniform in [−π

2
, π
2

).

The maximum a posteriori (MAP) estimate

ĉ
(MAP)
1:T = argmax

c1:T

p(c1:T |v1:T )

= argmax
c1:T

Φ1(c1,v1)

T∏
t=2

Φt(ct,vt)Ψt−1(ct−1, ct)

(24)

can be computed efficiently using dynamic programming.
2) Second order Markov model: Alternatively, the shape

prior was modeled with a Markov chain that assumes a Markov
order of two for the transition of translation. The transition of
rotation and scale was handled as described in section II-C1
because we observed that the translation parameters are more
continuous compared to rotation and scale, and therefore
the shape prior should benefit most from a second order
assumption here. Furthermore, generalizing (22) and (23) to
a second order model leads to problems because of limited
training data. Now, the factor Ψt corresponding to the state
transition probability (17) becomes

Ψt(ct−1, ct, ct+1) =p(ct+1|ct, ct−1) (25)
=p(tt+1|tt, tt−1) (26)
·p(θt+1|θt, st) (27)
·p(st+1|st). (28)

The translation transition is again modeled using a normal
distribution, but now, also the second derivative

∆∆tt = ∆tt −∆tt−1 (29)

of t with respect to z is considered, which corresponds to the
curvature of the esophagus:

p(tt+1|tt, tt−1) = N (∆tt,∆∆tt|Σp2 ,mp2). (30)
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The MAP estimate

ĉ
(MAP)
1:T = argmax

c1:T

(
Φ1(c1,v1)Φ2(c2,v2)Ψ1(c1, c2) (31)

·
T∏
t=3

Φt(ct,vt)Ψt−1(ct−2, ct−1, ct)

)
(32)

can be computed in the same way as in the single order case.
3) Particle filtering: We furthermore investigated to model

and infer the esophagus path with a particle filter approach [17]
instead of using a Markov chain. Particle filtering, which
is also known as condensation, is popular for tracking
applications. Probability distributions are represented non-
parametrically with weighted samples which are called par-
ticles. In contrast to Kalman or extended Kalman filtering,
the distributions may be multimodal, which allows to model
different hypothesis of the true state. It is also becoming
popular for tracking of tubular structures [18], [19].

We formulate the problem of inferring the esophagus shape
in the framework of dynamic state estimation. Though the
problem is not dynamic, we treat the vertical axis z of the
volume image as time t. As before, an axial slice becomes
the observation vt. The unknown state at time t is the ellipse
parameter vector et. Given the observation density p(vt|et)
and the state transition density p(et+1|et), the probability
density p(et+1|v1:t+1) of the state at time t + 1 given all
previous observations can be computed recursively as

p(et+1|v1:t+1) =
p(vt+1|et+1)

∫
p(et+1|et)p(et|v1:t)det

p(vt+1|v1:t)
(33)

for a Markov order of one. Here, we use the notation v1:t

for the sequence v1 . . .vt. This is the core equation of
probabilistic dynamic state estimation. In the condensation
algorithm [20], the integral of (33) is computed by drawing
samples from the probability density p(et|v1:t) that is repre-
sented by a set St of particles

St =
{(

e
(i)
t , P

(i)
t

)
, i = 1 . . . I

}
. (34)

Each particle consists of a sample e
(i)
t and a weight P (i)

t . The
probability density p(et|v1:t) is approximated as

pSt(et|v1:t) =

I∑
i=1

P
(i)
t δ(et − e

(i)
t ), (35)

where δ is a window function. For particle filtering, it is
common practice to simply use the Dirac window δ because
the empiric probability density pSt is not evaluated but only
used for drawing samples or computing moments.

In the Condensation algorithm [20], the samples are noisily
propagated to the next time step using p(et+1|et) and then
weighted according to whether they fit to the new observation
vt+1 using p(vt+1|et+1). The algorithm is depicted in Fig. 6.

We found that the idea of marginal space learning can
be nicely integrated into the particle filtering framework by
factorizing both the observation density p(vt|et) and the state
transition density p(et+1|et), and expressing the factors of
the observation density using classifiers that were trained on
marginal spaces.

The observation density p(v|e) (to improve the readability,
the subscript t is omitted in this section if it is the same for
all variables) requires a generative model which is often not
available in the context of object detection in images. Using
Bayes’ rule

p(v|e) =
p(e|v)p(v)

p(e)
, (36)

it can be transformed to a discriminative model p(e|v) and
two priors for the image v and the parameter vector e. By
using Bayes’ rule once again, p(e|v) = p(t, θ, s|v) can be
factorized into

p(e|v) = p(t|v)p(θ|t,v)p(s|θ, t,v). (37)

For the state transition density p(et+1|et), we use the
factorization of (18). Together with (37), (33) can be rewritten
as

p(et+1|v1:t+1) ∝
1

p(et+1)
p(st+1|θt+1, tt+1,vt+1)

∫
st

p(st+1|st)

p(θt+1|tt+1,vt+1)

[∫
θt

p(θt+1|θt, st)

p(tt+1|vt+1)

(∫
tt

p(tt+1|tt)p(et|v1:t)

dtt

)
dθt

]
dst. (38)

Because p(v) and p(vt+1|v1:t) do not depend on the pa-
rameters e that are to be estimated, they can be treated like
constants. In (38), the integral of (33) over the state space
was replaced by three nested integral over the scale, rotation
and the translation subspace. Note that each weighted integral
is very similar to the weighted integral in (33). Like in one
iteration of the condensation algorithm, it can be carried out
by drawing, propagating and weighting samples. But instead
of propagating the samples across time, they are propagated
across dimension of the state space within a single time step.
This is especially useful for higher dimensional state spaces,
like 5-D in this case: Filling a 5-D state space with particles
would require a high number of particles. Here, we can reject
particles already after the first 2-D integration if the translation
parameters do not fit the new observation and concentrate on
particles with promising translation parameters. The same can
be done for the rotation parameters

Fig. 7 depicts the algorithm we used to compute (38). It is
formulated to solve our specific problem, but the principle is
always applicable if the state transition probability density (18)
and the observation probability density (36) can be factorized
and the factors are available.

The factors of (37) are now modeled as being proportional
to the scores of the three detectors trained on the marginal
spaces of translation, rotation, and scale

p(t|v) ∝ p(m = 1|H(t), C(t)) (39)
p(θ|t,v) ∝ p(m = 1|S(t, θ)) (40)

p(s|θ, t,v) ∝ p(m = 1|S(t, θ, s)), (41)
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1: Input: Old particle set

St =
{(

e
(i)
t , P

(i)
t

)
, i = 1 . . . I

}
of time step t

2: Construct the new particle set

St+1 =
{(

e
(i)
t+1, P

(i)
t+1

)
, i = 1 . . . I

}
of the next time step from St as follows:

3: for i=1. . . I do
4: Construct the particle

(
e
(i)
t+1, P

(i)
t+1

)
:

5: Select a sample e
(j)
t with probability P (j)

t

6: Predict by sampling from p(et+1|e(j)t ) to choose
the sample e

(i)
t+1 of the next time step

7: Weight the new sample by setting

P
(i)
t+1 = p(vt+1|e(i)t+1)

8: end for
9: Normalize the weights s. th.

∑I
i=1 P

(i)
t+1 = 1

10: Output: New particle set St+1

Fig. 6. One iteration of the original Condensation algorithm [20].

and the prior p(e) is assumed to be uniform. In contrast to
the Markov chain approach, only a single translation detector
is used here. A second one could be integrated by adding a
fourth integral in equation (38).

Finally, we are interested in the MAP estimate

ê
(MAP)
1:T = argmax

e1:T

p(e1:T |v1:T ). (42)

This estimate can be easily obtained [17] from p(eT |v1:T ) by
finding the history e1:T of the particle

ê
(MAP)
T = argmax

eT

p(eT |v1:T ) (43)

with the highest weight in the last time step T .

D. Surface generation

After the MAP estimate of the path has been detected, the
sequence of ellipses is converted into a triangular mesh repre-
sentation by sampling the ellipses and connecting neighboring
point sets with a triangle strip.

The cross-section of the esophagus is generally not an el-
lipse, and the path obtained in section II-C often contains some
inaccuracies. Therefore, the mesh model is further refined to
better fit the surface of the organ.

A PBT classifier was trained to learn the boundary of the
esophagus. The classifier uses steerable features as proposed
in [9]. As for ellipse detection, the steerable features are
sampled on a regular grid, but now with a size of 5× 5× 9.
For each mesh vertex, the sampling pattern is placed so that
the vertex is in the center of the pattern and the longest axis
points in direction of the mesh normal. Now the pattern is
moved along the normal to find the maximal detector response
and the new position of the vertex. Finally, the surface is

1: Input: Old particle set

St =
{(

e
(i)
t = (t

(i)
t , θ

(i)
t , s

(i)
t ), P

(i)
t

)
, i = 1 . . . I

}
of time step t

2: STEP 1: Construct a first intermediate set of
sub-particles

St+1,1 =
{(

t
(i)
t+1, P

(i)
t+1,1

)
, i = 1 . . . I

}
from the old particle set St:

3: for i=1. . . I do
4: Construct the sub-particle

(
t
(i)
t+1, P

(i)
t+1,1

)
:

5: Select a sample e
(j)
t with probability P (j)

t

6: Predict by sampling from
p(tt+1|e(j)t ) = p(tt+1|t(j)t ) to choose t

(i)
t+1

7: Weight the new sample by setting
P

(i)
t+1,1 = p(t

(i)
t+1|vt+1)

8: end for
9: Normalize the weights s. th.

∑I
i=1 P

(i)
t+1,1 = 1

10: STEP 2: Construct a second intermediate set of
sub-particles

St+1,2 =
{(

(t
(i)
t+1, θ

(i)
t+1), P

(i)
t+1,2

)
, i = 1 . . . I

}
from the first intermediate set St+1,1:

11: for i=1. . . I do
12: Construct the sub-particle

(
(t

(i)
t+1, θ

(i)
t+1), P

(i)
t+1,2

)
:

13: Select a sample t
(j)
t+1 with probability P (j)

t+1,1

14: Predict by first finding the full particle predecessor
e
(k)
t of sub-particle t

(j)
t+1 and then sampling from

p(θt+1|e(k)t ) = p(θt+1|θ(k)t , s
(k)
t ) to find θ(i)t+1

15: Weight with P (i)
t+1,2 = p(θ

(i)
t+1|t

(i)
t+1,vt+1)

16: end for
17: Normalize the weights s. th.

∑I
i=1 P

(i)
t+1,2 = 1

18: STEP 3: Construct the particle set of the next time
step

St+1 =
{(

e
(i)
t+1, P

(i)
t+1

)
, i = 1 . . . I

}
from the second intermediate set St+1,2:

19: for i=1. . . I do
20: Construct the particle

(
e
(i)
t+1, P

(i)
t+1

)
:

21: Select a sample (t
(j)
t+1, θ

(j)
t+1) with probability

P
(j)
t+1,2

22: Predict by first finding the full particle predecessor
e
(k)
t of sub-particle (t

(j)
t+1, θ

(j)
t+1) and then sampling

from p(st+1|e(k)t ) = p(st+1|s(k)t ) to find s
(i)
t+1

23: Weight with P (i)
t+1 = p(s

(i)
t+1|θ

(i)
t+1, t

(i)
t+1,vt+1)

24: end for
25: Normalize the weights s. th.

∑I
i=1 P

(i)
t+1 = 1

26: Output: New particle set St+1.

Fig. 7. One iteration of our variant of the Condensation algorithm for the
problem of ellipse tracking.
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deformed smoothedoriginal

Fig. 8. Example of one boundary refinement iteration shown for a section of
the esophagus. Left: The ellipses obtained in the path inference step, connected
with triangle strips. Middle: Surface after displacing the vertices along their
normals according to the classifier output. Right: Smoothed surface.

Scanner type Number of datasets
Biograph 64 1
Definition AS+ 1
Sensation 10 25
Sensation 16 6
Sensation 64 110
Volume Zoom 1

TABLE I
CT SCANNERS USED FOR DATA ACQUISITION.

passed through a Laplacian smoothing filter. Smoothing is
necessary because the vertices are displaced independently
from each other. This process of deformation and smoothing
is repeated for a certain number of iterations that is varied in
the experiments.

Fig. 8 shows the first iteration of boundary refinement for
a section of an inferred path.

Fig. 9 summarizes the detection pipeline and shows example
output for each step.

III. RESULTS

A. Results of cross-validation

The method has been evaluated on 144 CT scans of the
thoracic or the thoracic and abdominal region. No patient was
included twice. The voxel spacing in x and y direction was in
the range of 0.7 mm to 0.8 mm. The spacing in (longitudinal)
z direction was 5 mm. After ROI detection, the volumes were
resampled to a voxel spacing of 0.7× 0.7× 5mm3. The data
was acquired using six different CT scanner types listed in
TABLE I. Out of the 144 datasets, 143 were reconstructed
using soft tissue kernels, and one was reconstructed using a
lung kernel (B70f). The filter kernels are listed in TABLE II.
The accelerating voltage was 120kV in all cases, and the
tube current ranged from 94mA to 575mA with a mean and
standard deviation of 293.79 ± 87.25 mA.

Manual segmentations were available for all datasets. The
segmentations typically ranged from the thyroid gland down
to a level below the left atrium.

Filter kernel Number of datasets
B30f 2
B31f 24
B31s 1
B40f 6
B41f 110
B70f 1

TABLE II
FILTER KERNELS USED FOR IMAGE RECONSTRUCTION.

Classifier tree levels weak classifiers candidates
Translation 1 2 20 400
Translation 2 2 20 120
Rotation 2 20 50
Scale 2 20 200
Surface 5 20 n/a

TABLE III
PARAMETER SETTINGS FOR THE FIVE CLASSIFIERS OF THE DETECTION

PIPELINE: THE NUMBER OF LEVELS IN THE PBT CLASSIFIER, THE
NUMBER OF WEAK CLASSIFIERS PER ADABOOST NODE, AND THE

NUMBER OF CANDIDATES GENERATED.

Among the scans, 34 were taken from patients suffering
from lymphoma, which often causes enlarged lymph nodes
in the mediastinal region. In some datasets, the esophagus
contained remains of orally given contrast agent.

The accuracy was measured using threefold cross-
validation. For each fold, all five classifiers for translation
(2×), orientation, scale and surface were trained on the
training data, and the parameters of the Markov model were
estimated from the same training data. The remaining data was
used for testing. There was no overlap between training and
testing data. For evaluation, the detector was run in z direction
on the same interval covered by the manual annotation in order
not to introduce artificial errors because of different lengths
of the segmentations.

ROI detection succeeded in all of the 144 datasets, meaning
that the bifurcation of the trachea was always detected with a
reasonable accuracy. Due to the large ROI, the segmentation
method can tolerate normal anatomical variations and detec-
tion errors.

Method mean err.
in mm

Hausdorff dist.
in mm

P Proposed method 1.80 ± 1.17 12.62 ± 7.01
PB Proposed method, best 80% 1.34 ± 0.31 9.65 ± 3.07
NS No surface refinement 2.24 ± 1.08 12.93 ± 7.16
B Only binary air model B(t) 1.88 ± 1.24 13.00 ± 7.88
NA No air model 1.94 ± 1.39 13.06 ± 7.21
ST Single translation class. 2.07 ± 1.47 14.50 ± 8.92
NAT No air mdl., single trnsl. cls. 2.32 ± 1.87 15.02 ± 9.83
M0 Markov order 0 2.30 ± 1.49 17.29 ± 11.42
M2 Markov order 2 1.80 ± 1.15 12.65 ± 6.92
PF Particle filtering 5.39 ± 3.08 22.32 ± 7.97
IOV Inter observer variability 0.78 ± 0.17 7.29 ± 2.22

TABLE IV
RESULTS OF PERFORMANCE EVALUATION. SHOWN IS THE MEAN ERROR

AND THE MEAN HAUSDORFF DISTANCE ALONG WITH THE
CORRESPONDING STANDARD DEVIATIONS. FIRST ROW: THE PROPOSED

METHOD USES THE FIRST ORDER MARKOV CHAIN APPROACH. ROWS
2-10: PROPOSED METHOD WITH AT LEAST ONE PARAMETER OR

EXPERIMENTAL SETTING ALTERED.
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(a) (b) (c) (d) (e) (f)

Fig. 9. Example output for each step of the detection pipeline. (a): Score p(m = 1|H)C of the first classifier for position multiplied with the probability
map C. (b): Score p(m = 1|H)C of the second classifier for position multiplied with the probability map C, evaluated for the best candidates from stage
(a). (c): Candidate boxes after rotation and scale detection. The confidence of a box is color coded in HSV color space. Violet is lowest, red is highest score.
(d): Cluster centers after clustering and merging. (e): Result of the path inference step. (f): Final surface after refinement.
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Fig. 10. Mean segmentation error (a) and Hausdorff distance (b) of our
segmentation method and different variants. The length of an error bar is
two standard deviations. See text and TABLE IV for an explanation of the
abbreviations.

Unless otherwise stated, parameters of the classifiers were
set to the values displayed in TABLE III, the distance threshold
dmax was set to 8 mm, and surface refinement was iterated
two times.

TABLE IV and Fig. 10 show the results of performance
evaluation. Two error measures were computed: The mean
symmetric point-to-mesh distance, and the maximum symmet-

ric point-to-mesh distance, which is also known as Hausdorff
distance. Symmetric means that the distance between two
meshes remains the same if the meshes are swapped.

Our proposed method (P), which uses the Markov chain
model for path inference with a Markov order of one, seg-
ments the esophagus with a mean error of 1.80 mm and a
standard deviation of 1.17 mm. The data used for evaluation
also contains difficult and extreme cases. Here, our method
occasionally failed to properly find the esophagus boundary.
If the 20% most difficult cases are excluded (PB), the mean
error was 1.34 mm.

The surface refinement step has a significant impact on the
accuracy: If it is omitted (NS), the error raises to 2.24 mm.

To evaluate the effect of the soft probability map A(t), we
measured the accuracy when only the binary air model B(t)
is used (B). The resulting error is 1.88 mm, meaning that
A(t) improves the accuracy by 4.3%. If also B(t) is omitted
(NA), the error is 1.94 mm, which means that modelling the
distribution of air explicitly leads to an improvement of 7.2%.
Using a second classifier for translation improves performance
by 13%: If it is omitted (ST), the error raises to 2.07 mm.
Omitting both the air model and the second translation detector
(NAT) leads to an error of 2.32 mm.

In addition to a Markov order of one, we measured the
error for orders of zero (M0) and two (M2). An order of
zero means the detected ellipses in neighboring slices do
not influence each other. The second order Markov model
as described in section II-C2 also takes the curvature of
the esophagus into account. A Markov order of zero yields
an mean error of 2.30 mm, which shows that the Markov
model clearly improves detection performance by resolving
ambiguities. A Markov order of two does not further improve
the performance. Therefore, we propose to use an order of one
as it does not introduce unnecessary complexity.

With a mean error of 5.39 mm, the particle filtering (PF)
approach described in section II-C3 performs poorly. The
resulting segmentation was usually completely off the true
esophagus. We observed that particle filtering is much more
prone to tracking loss compared to the Markov chain based
“detect and connect” approach. The reason is that in the
“detect and connect” approach, each slice is searched exhaus-
tively in the position detection step, while the particle filter
does not search exhaustively but only evaluates the particles.
Occasionally, the esophagus is hard to see on a number of
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Fig. 11. Mean segmentation error for different values of the number of surface refinement iterations (a), the distance threshold used for clustering (b), the
number NT1 of translation candidates of the first translation detector (c) and the number NT2 of translation candidates of the second translation detector.

slices. The PF often follows another structure, e.g. a vessel,
and no particles remain on the true esophagus. Once the PF
loses track, it usually does not recover. We observed that
the “detect and connect” approach recovers much better after
passing a difficult section.

In order to compare the performance of the detector to the
performance of a human, we did an experiment on the inter
observer variability (IOV): In ten datasets, the esophagus was
manually segmented a second time by another person, and
the second segmentations were treated like automatic ones.
The mean error was 0.78 mm with a standard deviation of
0.17 mm.

Next, we evaluated how the presence of contrast agent in
the esophagus affects the detector performance. For thorax-
abdomen scans, patients usually drink 1.5 l of contrast agent
over a 60 minutes period in preparation for the scan in order
to contrast the digestive system, especially the intestine that
is hard to see otherwise.

In 119 out of the 144 datasets, we did not see remains of
orally given contrast agent (CA) inside the esophagus. In 19
datasets, the esophagus contains only small amounts of CA,
and also only in some sections of the esophagus. Visually, the

CA hardly makes a difference. In 6 datasets, the esophagus is
filled with large amounts of contrast agent. The diameter of
the esophagus is greatly increased. These 6 cases look very
different from the remaining 138.

We don’t have the medical findings of our images and
therefore we neither do know from what a patient suffered and
why s/he was scanned nor details about the examination. But in
these 6 cases most likely 0.5 l of CA were administered when
the patient was already lying on the table, directly before s/he
was scanned. In combination with given Butylscopolamine,
larger amounts of CA remain in the esophagus. This is
typically done to contrast the upper digestive system and the
esophagus itself. Some of the 6 patients may have suffered
from achalasia, which means that the lower part of the
esophagus does not properly open. It is also possible that parts
of the esophagus were resected due to cancer and replaced with
intestine tissue.

We refer to the 119 datasets as “not contrasted” (NC), to the
19 datasets as “hardly contrasted” (HC) and to the 6 datasets
as “contrasted and dilated” (CD). The results can be found in
TABLE V. The performance of our proposed method on the
“not contrasted” and “hardly contrasted” datasets is similar
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Subgroup num.
datasets

mean err.
in mm

Hausdorff dist.
in mm

NC Not contrasted 119 1.62 ± 0.84 11.73 ± 6.44
HC Hardly contrasted 19 1.69 ± 0.68 12.00 ± 5.33
CD Contr. and dilated 6 5.75 ± 1.02 28.53 ± 1.88

TABLE V
DETECTOR PERFORMANCE DEPENDING ON WHETHER ORALLY GIVEN

CONTRAST AGENT IS VISIBLE IN THE ESOPHAGUS.

and better than the 1.80 mm average segmentation error. On
the six “contrasted and dilated” datasets, the performance is
much worse. The esophagus is greatly increased in diameter
in these cases and mostly bigger than the aorta. Furthermore,
the contrast agent leads to a unusual appearance. Here, the
automatic segmentation did not cover the whole cross section
of the esophagus.

Generally, machine learning methods often have problems
with rare extreme cases. We think that cases like these can be
handled in principle by our method as long as there are enough
examples in the training data, but we did not empirically verify
this.

We also evaluated how the mean error depends on different
parameter settings. The results can be seen in Fig. 11. When
the number of surface refinement iterations is varied (a), at
first the error steeply drops, reaches an optimum after 2-3
iterations, and rises again. We therefore kept the number of
iterations fixed to two, which gives not only good results but
is also computationally efficient. Fig. 11 (b) shows results
for different values of the distance threshold dmax used for
clustering. If this value is too low, the number of clusters
K will be high, and for dmax = 0 equal to the number
N of ellipse candidates. Then, clustering is unable to find
modes in the distribution of the ellipse candidates. On the
other hand, if dmax is too high, most or even all candidates
fall into the same cluster. In this case, there are no different
hypothesis about the esophagus contour in a slice any more,
and the Markov model becomes ineffective. Values between
6 mm and 8 mm performed best. In (c), the number of
candidates NT1 generated by the first translation detector is
varied. Selecting a too low value introduces the risk of missing
the true esophagus, while a very high value means that many
false alarms are propagated to further levels of the detection
cascade. A value of 400 is a reasonable choice. The number of
candidates NT2 generated by the second translation detector
(d) must be considerably lower than NT1, otherwise the stage
could be omitted. Low values are also computationally less
expensive because less candidates have to be examined in the
later stages of the cascade. But again a too low value bears
the risk of losing the true esophagus. Here, a value of 120 was
chosen.

B. Results on further datasets

We furthermore evaluated our method on other image
databases that are listed in TABLE VI together with databases
used for evaluation in [5], [4], [3]. The evaluation results are
shown in TABLE VII.

The first row of TABLE VII shows the results of cross-
validation of our method on the 144 datasets, referred to as

“thick slice” data, as described above. Rows 2-4 show the
performance of our method on three further test databases.
In these three experiments, our model was trained on all 144
volume images from the “thick slice” database. We did not
train on other databases because it is hard to obtain a sufficient
number of ground truth segmentations.

Our 144 datasets all have a slice spacing of 5 mm. To obtain
results on thin slice data, we evaluated our method on ten
high-resolution datasets with a slice thickness in the range of
0.5-0.8 mm (second row of TABLE VII). An expert-reviewed
ground truth segmentation was available for each of the ten
datasets. With a mean segmentation error of 2.76 mm, the per-
formance is considerably worse than the cross-validation error.
One reason is an outlier case with a very high segmentation
error caused by an air pocket of the lung that distracted the
detector. The images are also noisier, and no thin slice data
was included in the training set.

Next, our method was evaluated on publicly available data.
Since we are not aware of a public chest CT database with
images optimized for soft tissue, we selected a set of images
from the database of the Lung Image Database Consortium
(LIDC)1. We used all 28 volume images of the LIDC database
that show the thorax and have a slice thickness in the range of
3-5 mm except one. This was excluded because of a rotated
coordinate system, which is currently not handled by our
method. In order to reduce the effort for the manual annotation,
the data was not completely segmented. Instead, the contour
of the esophagus was manually drawn in six cross-sectional
slices and reviewed by an expert. Our method’s mean error
of 1.36 mm on this data is even better than the results of
cross-validation. One reason is that there are no extreme cases
among the datasets.

Finally, we were able to evaluate our method on a superset
of the data that was used for evaluation in [5]. We use a
superset because it is not known on which of the images
the method of [5] was evaluated on. We also did not have
the original ground truth data and manually annotated the
esophagus contour in four axial slices in each volume image.
Only four instead of six slices were annotated because the
images cover a shorter segment of the esophagus. These
annotations were reviewed by an expert as well. Even though
the data is a superset and the ground truth may be slightly
different, it still allows a relatively fair comparison. Our
method achieved a mean segmentation error of 1.82 mm and
a Dice coefficient of 0.72. In [5], a Dice coefficient in the
range of 0.60-0.84 is reported. The result depends on whether
the user draws two, three or five contours manually into axial
slices. While the result of [5] is better if five contours are
manually annotated, our automatic method outperforms [5]
with two manually drawn contours.

For comparison, the results stated in [4] and [3] are shown
in rows six and seven of TABLE VII. Our method performed
considerably better than the mean error of 2.6 mm reported
in [4] on three of four databases it was evaluated on. The Dice
coefficient reported in [3] is better than ours. However, the
comparability is limited because the methods of [5], [4], [3]

1https://imaging.nci.nih.gov
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Database num. datasets slice thickness in mm covered body region manual segmentation type
Thick slice 144 5 thorax or thorax-abdomen full
Thin slice 10 0.5-0.8 thorax or thorax-abdomen full
LIDC 27 3-5 thorax slice
Superset of Fieselmann et al. [5] 36 0.6-1.5 heart slice
Fieselmann et al. [5] 8 0.6-1.5 heart full
Kurugol et al. [4] 8 3.75 thorax full
Rousson et al. [3] 20 unknown heart full

TABLE VI
ROWS 1-4: DATASETS USED FOR EVALUATION IN THIS PAPER. ROWS 5-8: DATASETS USED FOR EVALUATION IN PRIOR WORK.

Method fully
automatic

test data training data cross-
validation

mean err.
in mm

Hausdorff dist.
in mm

Dice coeff.
Proposed method yes thick slice thick slice yes 1.80 ± 1.17 12.62 ± 7.01 0.74 ± 0.14
Proposed method yes thin slice thick slice no 2.76 ± 2.76 14.91 ± 15.47 0.67 ± 0.21
Proposed method yes LIDC thick slice no 1.36 ± 0.44 7.19 ± 2.78 0.73 ± 0.08
Proposed method yes superset of [5] thick slice no 1.82 ± 1.27 9.64 ± 6.24 0.72 ± 0.11
Fieselmann et al. [5] no Fieselmann et al. [5] n/a n/a unknown unknown 0.60-0.84∗
Kurugol et al. [4] no Kurugol et al. [4] Kurugol et al. [4] yes 2.6± 2.1 unknown unknown
Rousson et al. [3] no Rousson et al. [3] Rousson et al. [3] yes unknown unknown 0.80

TABLE VII
PERFORMANCE ON OTHER DATASETS AND COMPARISON WITH OTHER METHODS. ∗ : DEPENDING ON THE AMOUNT OF USER INTERACTION.

ROI prob. map ellipse path refinement totaldetec. generation detec. inference
6.96 1.13 7.40 0.40 · 10−3 0.34 15.83

TABLE VIII
COMPUTATION TIME IN SECONDS FOR DIFFERENT STEPS OF THE METHOD.

all require user interaction, while our method does not. In [5],
[3], the focus was on the section of the esophagus close to the
left atrium, which is relatively short. Given two points on the
centerline as used in [3], the trivial centerline estimate, which
is the linear interpolation of the points, can already be close
to the true centerline.

C. Examples and computational requirements

Fig. 12 shows examples of segmentation results of the
proposed method in blue along with the corresponding ground
truth in green. Axial cross sections of two volumes are shown
in (a) and (b). The yellow boxes show the result of the
path inference step. They are the tight bounding boxes of
the ellipses which approximate the esophagus contour. In (c),
four example segmentations are displayed in 3-D. These 3-D
images also visualize the size of the ROI. All shown datasets
were not included in the training data.

TABLE VIII shows the computational requirements of the
different steps of the proposed method. It was measured on
a single CT scan of the entire torso on a standard PC with a
2.20 GHz dual core CPU. With 6.96 s, ROI detection is the
second most time consuming step because the whole volume is
searched exhaustively. The remaining steps only consider the
ROI. Ellipse contour candidate detection including clustering
takes 7.40 s and is the most time consuming step. Generating
the probability map based on air and surface refinement
is comparatively inexpensive, and the time needed for path
inference is negligible. In total, segmenting the esophagus
from a CT volume takes less than 16 s.

IV. CONCLUSION

We have presented a fully automatic method for esophagus
segmentation from CT scans. An ROI is detected by finding
salient anatomical landmarks. A powerful detector that learned
a discriminative model of the appearance and an explicit model
of the distribution of air is combined with prior knowledge
about the esophagus shape. It is used to infer the approximate
contour of the esophagus by finding the maximum a posteriori
estimate. Two alternative methods for shape knowledge repre-
sentation and inference are compared: A “detect and connect”
approach using a Markov chain model, and a particle filter.
Finally, a surface is generated and further adapted to better fit
the boundary, again using discriminative learning.

The accuracy was measured using cross validation on 144
datasets. We found that the Markov chain based “detect
and connect” approach can well handle difficult regions and
resolve ambiguities. It clearly outperformed the particle filter,
which is much more prone to tracking loss. Explicitly mod-
elling respiratory and esophageal air to support the appearance
based detector improves the mean error by 7.2%. Our proposed
method segments the esophagus from a CT scan without user
interaction with a mean error of 1.80 mm in less than 16 s,
which is only 1 mm above the inter observer variability.

Apart from the ROI detection and explicitly modelling air,
the method is not specific to the esophagus and can easily
be adapted to other tubular structures like the spinal chord or
larger vessels.
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Fig. 12. Examples of segmentation results on unseen data. Axial slices are shown for two datasets (a), (b), and 3-D visualizations for four datasets (c). Blue
is the automatic segmentation, green is the ground truth, and the yellow boxes show the inferred path. The mean errors of the segmentations are 0.95 mm
(a), 0.88 mm (b). In subfigure (c) from left to right: 0.95 mm (same datasets as (a)), 1.15 mm, 0.99 mm and 0.95 mm. The bar in the top left slice indicates
the scale.
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