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Abstract

Most of the energy of a multivariate feature is often contained in a low dimensional subspace. We exploit this

property for the efficient computation of a dissimilarity measure between features using an approximation of the

Bhattacharyya distance. We show that for normally distributed features the Bhattacharyya distance is a particular case

of the Jensen–Shannon divergence, and thus evaluation of this distance is equivalent to a statistical test about the

similarity of the two populations. The accuracy of the proposed approximation is tested for the task of texture

retrieval.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Visual features such as texture or color are of-

ten defined at the output of a window operator or

pixel-wise computations. From the ensemble of

outputs, statistical information about the variation

of the feature across a region (or the entire image)
can be obtained, most often described by a mean

vector and a covariance matrix.

The identification of visual features that pro-

vide sufficient discrimination between the image

classes in a database has recently received a lot of

attention, see (Antani et al., 1998; Comaniciu et al.,

2000; Cox et al., 1998; Flickner et al., 1995; Ma

and Manjunath, 1997; Ortega et al., 1997; Pent-

land et al., 1996; Smith and Chang, 1998). How-

ever, much less work has been devoted to finding

compact feature representations and efficient
computation methods for the dissimilarity mea-

sure used to infer the ranking of the features (Kelly

et al., 1996; Santini and Jain, 1999; Vasconcelos

and Lippman, 1999).

In this paper we focus on the properties of the

Bhattacharyya distance (Fukunaga, 1990, p. 99)

which allow a compact feature representation and

an efficient dissimilarity computation. Our work is
motivated by the observation that most of the

energy of a multivariate feature is frequently
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contained in a low dimensional subspace. We show

that when the features are normally distributed the

Bhattacharyya distance is equal to a specialized

version of the Jensen–Shannon divergence (Lin,

1991). As a result, the computation of the dis-

similarity measure is equivalent to a statistical test
for the similarity of the two populations.

As an application we investigate the task of

texture retrieval based on two commonly used

representations: the multiresolution simultaneous

autoregressive (MRSAR) model (Mao and Jain,

1992) and Gabor features (Manjunath and Ma,

1996). For two standard texture databases using

the approximated Bhattacharyya distance consis-
tently yielded a retrieval performance comparable

to that using the exact distance, and always better

than that using the traditional Mahalanobis dis-

tance. The proposed approximate computation

decreased the arithmetic complexity and the logi-

cal database size.

The paper is organized as follows. Section 2

presents the statistical motivation for using the
Bhattacharyya distance as dissimilarity measure.

In Section 3 the arithmetic complexity of the exact

Bhattacharyya distance and the size of the asso-

ciated logical data are discussed. The approximate

computation of the Bhattacharyya distance is de-

scribed in Section 4. Section 5 presents an experi-

mental evaluation of the proposed dissimilarity

measure.

2. Motivation for Bhattacharyya distance

In its general form, the Bhattacharyya distance

between two arbitrary distributions fpiðxÞgi¼1;2 is
defined as (Kailath, 1967)

d2B ¼ � log

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ðxÞp2ðxÞ

p
dx: ð1Þ

Although not a metric (it does not obey the tri-

angle inequality), the distance (1) is popular in

classification problems since it is closely related to

the Bayes error. Geometric interpretation of the

Bhattacharyya distance, its relation to the Fisher

measure of information, the statistical properties

of the sample estimates, and explicit forms for

various distributions are given in (Djouadi et al.,
1990; Kailath, 1967).

Our motivation for the use of the Bhattachar-

yya distance is given by its relationship to the

Jensen–Shannon divergence based statistical test

of the homogeneity between two distributions

(Lin, 1991)

JSðp1; p2Þ ¼
Z

p1ðxÞ log
p1ðxÞ

ðp1ðxÞ þ p2ðxÞÞ=2
dx

þ
Z

p2ðxÞ log
p2ðxÞ

ðp1ðxÞ þ p2ðxÞÞ=2
dx:

ð2Þ

We show in Appendix A that if the two distri-

butions are normal, Jensen–Shannon divergence

reduces to the Bhattacharyya distance (up to a

constant). Thus, we formulate the similarity prob-

lem as a goodness-of-fit test between the empiri-

cal distributions p1 and p2 and the homogeneous

model ðp1 þ p2Þ=2.
In a comparative study of similarity measures

Puzicha et al. (1997) found the Jensen–Shannon

divergence superior to the Cramer–von Mises and

Kolmogorov–Smirnov statistical tests. The Jen-

sen–Shannon divergence has also been used by

Ojala et al. (1996) for texture classification. More

recently, Vasconcelos and Lippman (2000) pre-

sented a discussion on similarity measures. They
show that most of the similarity functions are re-

lated to the Bayesian criterion.

Other measures such as the Fisher linear dis-

criminant function yield useful results only when

the two distributions have different means (Fuku-

naga, 1990, p. 132), whereas the Kullback diver-

gence (Cover and Thomas, 1991, p. 18) provides

in various instances lower performance than the
Bhattacharyya distance (Kailath, 1967). The

Bhattacharyya distance is a particular case of

the Chernoff distance (Fukunaga, 1990, p. 97).

While the latter in general provides a better bound

for the Bayesian error, it is more difficult to eval-

uate. The Chernoff and Bhattacharyya bounds

have been used recently in (Konishi et al., 1999) to

analyze the performance of edge detectors.
The expression (1) is defined for arbitrary dis-

tributions, however, we will assume in the sequel

that the distribution of the feature of interest is

unimodal, characterized by its mean vector l 2 Rp

and covariance matrix C 2 Rp	p. This is equivalent
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to describing each image as homogeneous relative

to the feature under consideration. When the fea-

ture distribution is a multivariate normal, the mean

vector and covariance matrix uniquely define it,

otherwise they provide an incomplete but most

often satisfactory representation. In (Xu et al.,
2000) we have discussed the multimodal case, cor-

responding to nonhomogeneous images.

3. Exact distance computation

For two p-dimensional normal distributions

characterized by lq, Cq and ld, Cd (subscripts q

and d were chosen for the intended application,

denoting query and database), the Bhattacharyya

distance (1) becomes

d2B ¼ 1

4
ðlq � ldÞ

TðCq þ CdÞ�1ðlq � ldÞ

þ 1

2
log

CqþCd

2

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCqjjCdj

p ð3Þ

where j � j is the determinant and T is the trans-

pose operator. The first term in (3) gives the class

separability due to the mean-difference, while the

second term gives class separability due to the

covariance-difference.

The efficient way to compute (3) is through
Cholesky factorization (Golub and VanLoan,

1996, p. 143). Since Cq and Cd are symmetric and

positive definite, their sum has the same property.

The case of singular matrices (which is less fre-

quent in practice) can be always avoided by re-

ducing the dimension of the feature space, and will

not be considered in the sequel. Hence, we can

write

Cq þ Cd ¼ LLT; ð4Þ
where L 2 Rp	p is lower triangular with positive

diagonal entries. Computing the inverse as

ðCq þ CdÞ�1 ¼ ðL�1ÞTL�1 ð5Þ
and introducing (4) and (5) into (3), yields

d2B ¼ 1

4
kL�1ðlq � ldÞk

2

2 þ
1

2
log

Qp
i¼1 l

2
ii

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCqjjCdj

p ; ð6Þ

where k � k2 is the Euclidean norm, fliigi¼1;...;p are
the diagonal elements of L, and ð

Qp
i¼1 l

2
iiÞ=2p is the

determinant of ðCq þ CdÞ=2.
Since the determinant for the query jCqj is

computed only once and the determinant for a
database entry jCdj is computed off-line, the online
computation of each Bhattacharyya distance ac-

cording to expression (6) requires about

• p2=2 flops to obtain the sum Cq þ Cd;

• ðp3=3Þ þ ðp2=2Þ flops for the Cholesky factoriza-
tion (Golub and VanLoan, 1996, p. 144);

• p2 flops to compute the vector L�1ðlq � ldÞ
through backward substitution.

Hence, the computation of the dissimilarity

measure (6) involves a total of ðp3=3Þ þ 2p2 flops.
Each entry in the logical database should contain

the mean vector ld, the covariance matrix Cd, and

the value of the determinant jCdj, which means

about p2=2 floating point numbers, due to the
symmetry of Cd.

4. Approximate distance computation

The Bhattacharyya distance (3) is symmetric in

Cq and Cd, but the search in the database involves

repeated computation of (3) with the same Cq and

different Cds. To reduce the logical database size,

the Cds should be stored as efficiently as possible.

Often the feature vectors belong to a subspace and

the complexity of the retrieval process can be de-
creased if the effective dimension of the feature is

taken into account.

The underlying structure of a multivariate fea-

ture is revealed by principal component analysis,

e.g., singular value decomposition (SVD) of its

covariance matrix. Let SVD of the matrices Cq

and Cd be

Cq ¼ URUT and Cd ¼ VKVT; ð7Þ

where U 2 Rp	p and V 2 Rp	p are orthogonal

matrices, R ¼ diagðr1; . . . ; rpÞ 2 Rp	p and K ¼
diagðk1; . . . ; kpÞ 2 Rp	p are diagonal, the singular

values (SVs) frigi¼1;...;p and fkigi¼1;...;p being strictly
positive and in a decreasing order.
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When the effective dimensionality of the feature

in the database is r, the last p � r SVs of Cd are

small, we can make a first approximation by as-

suming that they are all equal to a value k com-

puted as their geometric mean,

ki  k ¼
Yp
j¼rþ1

kj

 ! 1
p�r

i ¼ r þ 1; . . . ; p: ð8Þ

It is easy to see that (8) preserves the determinant

of Cd (which is equal to
Qp

i¼1 ki). The geometric

interpretation is that the hyperellipsoid Ed defined
by Ed ¼ fCdx : kxk2 ¼ 1g, is replaced by another

hyperellipsoid with the same volume, but having

the values of the last p � r semi-axes equal to k.
The approximation (8) is expected to introduce

only small changes in the matrix Cd. For example,

when r ¼ 1, a 3D ellipsoid having K ¼ diagð8; 2; 1Þ
(Fig. 1(a)) becomes the ellipsoid having K ¼
diagð8; 1:41; 1:41Þ in Fig. 1(b).

Denoting by I p the identity matrix of order p,

by fvigi¼1;...;p the columns of V , and using the or-

thogonality of V we have
Pp

i¼1 viv
T
i ¼ Ip. Then

Cd 
Xr
i¼1

kiviv
T
i þ k

Xp
i¼rþ1

viv
T
i

¼ kI p þ
Xr
i¼1

ðki � kÞvivTi ¼ kIp þ V rWVT
r

¼ kI p þW rW
T
r ; ð9Þ

where W ¼ diagðw1; . . . ;wrÞ 2 Rr	r has positive en-

tries wi ¼ ki � k for i ¼ 1; . . . ; r, V r ¼ ½v1; . . . ; vr� 2
Rp	r, and

W r ¼ V rW
1
2 2 Rp	r: ð10Þ

Using (9) and the orthogonality of U we can write

the sum of the two covariance matrices as

Cq þ Cd  URUT þ kIp þW rW
T
r

¼ UCUT þW rW
T
r ¼ C c þW rW

T
r ;

ð11Þ

where C ¼ diagðc1; . . . ; cpÞ 2 Rp	p with ci ¼ ri þ k
for i ¼ 1; . . . ; p.

The relation (11) shows that Cq þ Cd can be

approximated as a sum of a full rank matrix

C c ¼ UCUT and a rank r correction W rW
T
r . The

following two sections will exploit this decompo-

sition to approximate the two terms of the Bhat-

tacharyya distance (3).

4.1. First Bhattacharyya term

The first term of (3) requires the inverse

ðCq þ CdÞ�1. A rank r correction to a matrix re-

sults in a rank r correction of the inverse expressed

by the Sherman–Morrison–Woodbury formula

(Golub and VanLoan, 1996, p. 50)

ðC c þW rW
T
r Þ

�1 ¼ C�1
c � C�1

c W r

	 ðI r þWT
r C

�1
c W rÞ�1WT

r C
�1
c

ð12Þ

with I r being the identity matrix of order r. Since

C�1
c ¼ UC�1UT, the right side of the relation (12)

becomes

UC�1
2½I p � ZcðI r þ ZT

c ZcÞ�1ZT
c �C�1

2UT; ð13Þ

where Zc 2 Rp	r is given by

Zc ¼ C�1
2UTW r ¼ C�1

2UTV rW
1
2 ¼ C�1

2ZW
1
2; ð14Þ

where

Z ¼ UTV r 2 Rp	r: ð15Þ
Finally, defining the vectors n ¼ C�1

2UTðlq � ldÞ
and m ¼ ZT

c n, the first term of the Bhattacharyya
distance (3) is approximated by

d2B1  1
4
½nTn � mTðI r þ ZT

c ZcÞ�1m�: ð16Þ

The matrix inversion in (16) is solved through

Cholesky factorization. Since ðI r þ ZT
c ZcÞ 2 Rr	r,

the amount of computation is negligible for r � p.

Fig. 1. The employed approximation changes the shape of the

original ellipsoid (a) to that of the ellipsoid (b). The volume

remains the same.

230 D. Comaniciu et al. / Pattern Recognition Letters 24 (2003) 227–236



Hence, the online computation of (16) requires

about

• 2rp2 flops to obtain the matrix Z;
• 2p2 flops to derive the vector n.

All the other operations, such as the derivation

of Zc or m involve a number of flops of order rp

which again are negligible. In conclusion, for

r � p the approximate computation of the first

term d2B1 of the Bhattacharyya distance requires

about 2rp2 þ 2p2 flops.

4.2. Second Bhattacharyya term

To obtain the second term of the Bhattacharyya

distance (3) we need the SVs of Cq þ Cd. By using

(10), (11), and (15) we have

Cq þ Cd  UCUT þ V rWVT
r ¼ UðC þ ZWZTÞUT

¼ U C

 
þ
Xr
i¼1

wiziz
T
i

!
UT; ð17Þ

where zi are the columns of Z with kzik2 ¼ 1, for

i ¼ 1; . . . ; r. From the last relation it results that

the SVs of Cq þ Cd are approximately given by the

SVs of the symmetric positive definite matrix
B 2 Rp	p

B ¼ C þ
Xr
i¼1

wiziz
T
i ; ð18Þ

whose expression contains r rank one updating

steps. It was shown (Golub, 1973; Golub and

VanLoan, 1996, p. 443), that the p SVs of a rank
one updated matrix C þ wzzT, with C ¼
diagðc1; . . . ; cpÞ 2 Rp	p and z ¼ ðz1; . . . ; zpÞT 2 Rp,

are the zeros of the secular equation

f ðfÞ � 1þ w
Xp
j¼1

z2j
cj � f

¼ 0: ð19Þ

The secular equation (19) appears in the context of

symmetric eigenvalue problems (Dongarra and
Sorensen, 1987) and can be solved through a fast,

quadratically convergent procedure, as described

in (Barlow, 1993; Bunch et al., 1978).

Based on the above formulation, we solve r

secular equations to find the set of SVs

fbijgi¼1;...;r; j¼1;...;p of the matrices

Bi ¼ bBB i�1 þ wiziz
T
i ; i ¼ 1; . . . ; r; ð20Þ

where bBB0 ¼ C and bBB i�1 ¼ diagðbi�1;1; . . . ; bi�1;pÞ
for i > 1. Finally, the SVs bj of B are approxi-
mated as

bj  brj; j ¼ 1; . . . ; p; ð21Þ

which means that we compute r updates of the

SVs, but neglect the updating of the singular vec-
tors.

The second term of Bhattacharyya distance (3)

is then given by

d2B2 
1

2
log

Qp
j¼1 bj

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCqkCdj

p : ð22Þ

The number of flops necessary to find all sets fbijg
is not significant, having the order of rp (Bunch

et al., 1978).

Therefore, in the case of r � p the arithmetic
complexity of the approximate computation of the

complete Bhattacharyya distance remains 2rp2 þ
2p2 flops. Each entry in the logical database should
contain the mean vector ld, the matrix V r, the SVs

k1; . . . ; kr, and the value of the determinant jCdj,
which means about ðr þ 1Þp floating point num-

bers. Compare this with ðp3=3Þ þ 2p2 flops and

p2=2 floating point numbers required by the full
computation.

5. An experimental validation

We compared the performance of the approxi-

mate Bhattacharyya distance similarity measure

against the exact Bhattacharyya distance and the
traditionally employed Mahalanobis distance, in a

texture retrieval task. Two standard texture data-

bases, VisTex Texture Database (1995) and Bro-

datz (1966) were employed and to generate the

image classes the technique described in (Picard

et al., 1993) was used. The VisTex database con-

tained 1188 subimages representing 132 equally

populated classes. The Brodatz database contained
1008 subimages corresponding to 112 equally
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populated classes. Typical images are shown in

Fig. 2.

Two different texture representations were used

in the experiments. Similar to Picard et al. (1993)

we used 15-dimensional feature vectors to define a

MRSAR model (Mao and Jain, 1992). The mean
and covariance of these vectors were computed for

each query image and database entry. The second

representation employed was with Gabor features

similar to those described in (Manjunath and Ma,

1996). However, we also took into account the

cross-correlation between the filtered images. Thus,

each input image was processed at four scales and

six orientations to obtain 24 filtered images that
defined a 24-dimensional feature space. The mean

vector and the covariance matrix of the vectors in

the space were then computed. Fig. 3 shows that

indeed, most of the energy of both MRSAR (Fig.

3(a) and (b) for VisTex and Brodatz, respectively)

and Gabor (Fig. 3(c) for VisTex) features is con-

tained in a low dimensional space.

The Mahalanobis distance is a widely used

dissimilarity measure. In fact it can be obtained

from the Bhattacharyya distance by taking Cq ¼
Cd ¼ C ,

d2M ¼ ðlq � ldÞ
T
C�1ðlq � ldÞ: ð23Þ

To quantitatively assess the retrieval per-
formance over an entire database, the average

recognition rate (ARR) showing the average per-

centage of images from the class of the query

(maximum eight images) being among the first N

retrievals, was used (see Picard et al. (1993) for

details). Fig. 4 shows the retrieval performance

when MRSAR features are employed for retrievals

from the VisTex database. In Fig. 4(a) the dis-
similarity measure is the complete Bhattacharyya

distance and the Mahalanobis distance defined in

Fig. 3. The normalized range of the SVs of texture features for different databases. (a) 1188 vectors of SVs for the MRSAR features

from VisTex, (b) 1008 vectors of SVs for the MRSAR features from Brodatz, (c) 1188 vectors of SVs for the Gabor features from

VisTex.

Fig. 2. Examples of 128	 128 images from: (a) VisTex database; (b) Brodatz database.
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two ways, the common matrix being taken as that

of the query image C ¼ Cq or that of the database

entry C ¼ Cd. We provided both sets of results

since there is no theoretical rationale which of the

matrices Cq or Cd should be employed, the per-

formance depending on the specific database.
The retrieval performance for the same features

and database, when the approximated (r ¼ 1; 2)
Bhattacharyya distance is used, is shown in Fig.

4(b) and remains superior to that of Mahalanobis

distance. For rP 3 the performance for the ap-

proximated and full cases coincide. Retrieval ex-

amples are shown in Fig. 5 for r ¼ 2. The results

for the Brodatz database, shown in Fig. 6(a) and
(b), are similar. Note the higher values of ARR due

to the more homogeneous nature of this database.

It is interesting to observe that the retrieval per-

formance for r ¼ 2 can be better than in the case of

using the complete Bhattacharyya distance. The

reason is that the covariance matrix estimation is

affected by errors when the matrix dimension is

large. Therefore, the approximation of the covari-

ance matrix in a lower dimensional space might be
beneficial for the retrieval process. We, however,

cannot claim that this happens consistently.

For a third retrieval experiment we used the

Gabor features to describe the VisTex database

(Fig. 7). The number of dimensions for the ap-

proximation had to be increased to r ¼ 4 since the

Gabor features exhibit a lesser compaction prop-

erty (Fig. 3(c)). Observe that the selection of the
value of r for a given database should be per-

formed experimentally, since r depends on the

compactness of the features employed.

Fig. 5. Two retrieval examples (ordered from left–right, top–down) obtained with MRSAR features describing the VisTex database

and approximated Bhattacharyya distance with r ¼ 2. The first image in each case is the query image. (a) Beans: the sixth and eighth

retrievals are from the Coffee class. (b) Water: the eighth retrieval is from the Fabric class.

Fig. 4. Retrieval performance of MRSAR features describing the VisTex database, expressed as the ARR function of the number of

retrievals. (a) Results obtained by using the complete Bhattacharyya and differently definedMahalanobis distances, (b) results obtained

by approximating the Bhattacharyya distance.
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6. Conclusion

We have presented a technique for the efficient

computation of the dissimilarity between features,

based on the approximation of the Bhattacharyya

distance. The proposed methodology has a statis-

tical motivation and is appropriate for multivariate

features with unimodal distributions. We validated
the theory for the task of texture retrieval by em-

ploying standard texture databases.

Different extensions of the method to the mul-

timodal case are possible. Some of them were in-

vestigated in (Xu et al., 2000) The underlying

distribution of the vectors in the feature space can
be modeled with a finite mixture of multivariate

normal distributions whose expression is used in

the computation of the general Bhattacharyya

distance (1). In this case, the dissimilarity metric

results in a weighted sum of terms similar to (3).

Other approach would involve a nonparametric

strategy (Comaniciu and Meer, 1999) that com-

putes the general Bhattacharyya distance (1) di-
rectly from the data samples.
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Appendix A. Specialized Jensen–Shannon diver-

gence for multivariate normal distributions

Let us assume that fpiðxÞgi¼1;2 are two p-di-

mensional normal distributions

piðxÞ ¼
1

j2pC ij1=2
exp

�
� 1

2
ðx� liÞ

T
C�1

i ðx� liÞ

:

ðA:1Þ

Fig. 6. Retrieval performance of MRSAR features describing the Brodatz database, expressed as the ARR function of the number of

retrievals. (a) Results obtained by using the complete Bhattacharyya and differently definedMahalanobis distances, (b) results obtained

by approximating the Bhattacharyya distance.

Fig. 7. Retrieval performance of Gabor features describing the

VisTex database, expressed as the ARR function of the number

of retrievals. Results obtained by using the complete Bhatta-

charyya, approximated Bhattacharyya with r ¼ 4, and differ-

ently defined Mahalanobis distances.
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The Jensen–Shannon divergence (2) can be spe-

cialized to the normal case as

JSðp1; p2Þ ¼
Z

p1ðxÞ log
p1ðxÞ
rðxÞ dx

þ
Z

p2ðxÞ log
p2ðxÞ
rðxÞ dx; ðA:2Þ

where rðxÞ is the most likely normal source for the
homogeneous model ðp1 þ p2Þ=2, having the mean
l ¼ ðl1 þ l2Þ=2 and covariance C ¼ ðC1 þ C2Þ=2
(El-Yaniv et al., 1997).

Using (A.1) in (A.2) together with the identity

xTC�1x ¼ trC�1xxT, we first obtain

log
piðxÞ
rðxÞ ¼ 1

2
log

jC j
jC ij

� 1

2
trC�1

i ðx� liÞðx� liÞ
T

þ 1

2
trC�1ðx� lÞðx� lÞT ðA:3Þ

for i ¼ 1; 2, where tr denotes the trace of a matrix.
Performing the integration yieldsZ

piðxÞ log
piðxÞ
rðxÞ dx ¼ 1

2
log

jC j
jC ij

þ 1

2
trC iC

�1 � p
2

þ 1

2
trC�1ðli � lÞðli � lÞT:

ðA:4Þ

Summing (A.4) for i ¼ 1; 2 and substituting

l ¼ ðl1 þ l2Þ=2 and C ¼ ðC1 þ C2Þ=2 we obtain

JSðp1; p2Þ ¼ log
C1þC2

2

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jC1kC2j

p
þ 1

2
trðC1 þ C2Þ

C1 þ C2

2

� �1

� p þ 1

8
trC�1ðl1 � l2Þðl1 � l2Þ

T

þ 1

8
trC�1ðl2 � l1Þðl2 � l1Þ

T

¼ log
C1þC2

2

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jC1kC2j

p þ 1

2
ðl1 � l2Þ

T

	 ðC1 þ C2Þ�1ðl1 � l2Þ; ðA:5Þ

an expression equal (up to a constant scale) to that

of the Bhattacharyya distance (3).
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