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Abstract

In this paper, a common framework is outlined for nonlinear diffusion, adaptive smoothing, bilateral filtering
and mean shift procedure. Previously, the relationship between bilateral filtering and the nonlinear diffusion equa-
tion was explored by using a consistent adaptive smoothing formulation. However, both nonlinear diffusion and
adaptive smoothing were treated as local processes applying a ����� window at each iteration. Here, these two
approaches are extended to an arbitrary window, showing their equivalence and stressing the importance of using
large windows for edge-preserving smoothing. Subsequently, it follows that bilateral filtering is a particular choice
of weights in the extended diffusion process that is obtained from geometrical considerations. We then show that
kernel density estimation applied in the joint spatial-range domain yields a powerful processing paradigm - the mean
shift procedure, related to bilateral filtering but having additional flexibility. This establishes an attractive relation-
ship between the theory of statistics and that of diffusion and energy minimization. We experimentally compare the
discussed methods and give insights on their performance.

Keywords: Nonlinear Diffusion, Adaptive Smoothing, Bilateral filtering, Mean Shift Procedure.

1 Introduction

Nonlinear operations are becoming increasingly important in visual processing applications. Since they are

substantially more difficult to analyze, formulate and predict compared to linear operations, various innova-

tive approaches have been proposed independently for low-level computer vision tasks. The integration of

several approaches that rely on different mathematical tools (e.g., functional minimization, nonlinear PDEs,

statistics and data analysis) is essential for obtaining high-quality results in real-life applications.

This paper concentrates on edge-preserving smoothing. It extends previous work [1], [2] on the

relationship between nonlinear diffusion [19], [20], [26], adaptive smoothing [21], and bilateral filtering [24]

to establish a connection to the mean shift procedure [8, 9] in the joint spatial-range domain. Both nonlinear

diffusion and adaptive smoothing are generalized to encompass large neighborhoods, while the bilateral

filtering serves as a link between the extended nonlinear diffusion (i.e., nonlinear diffusion on extended

neighborhoods) and mean shift filtering.
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The paper is divided as follows. Section 2 emphasizes the importance of extended neighborhoods in

edge-preserving smoothing by analyzing smoothing on 1D 3-neighborhood, smoothing on 1D 5-neighborhood,

and adaptive smoothing on 1D 5-neighborhood. This leads to the formulation in Section 3 of the extended

nonlinear diffusion on 2D ( ���������	���	�
� )-neighborhood. In Section 4, it is shown that a specific choice

of weights in the extended nonlinear diffusion, that is based on geometrical considerations, leads to bilateral

filtering. By defining kernel density estimation in the spatial-range domain, we derive in Section 5 the mean

shift procedure for filtering and show its extended flexibility over bilateral filtering. In Section 6 experiments

and comparisons are presented, while in Section 7, conclusions are drawn based on the common framework

that unifies several fundamental approaches for low-level vision.

2 Importance of Extended Neighborhood

The extension of gradient based, edge-preserving smoothing to include information from non-nearest neigh-

boring pixels is natural and has been considered before in various contexts (e.g., [4, 24, 27]). Here, we start

from Saint-Marc–Chen–Medioni’s adaptive smoothing [21] that was reformulated in [2] for consistency with

the diffusion equation, and extend the approach from the original ���
� window to a window of arbitrary

size.

The adaptive smoothing approach is fundamental and intuitive. Given an image �������������� , where ����� � ��� � � � denotes space coordinates, an iteration of adaptive smoothing yields:� ���� � � ������!�#"  �$&%(' � "  �)*%(' � �+�,���*� � � �.- � � � ��/ �10 �,���"  �$&%(' � "  �)*%(' � 0 �,��� (1)

where the convolution mask 0 ����� is defined as:0 �,��� � � ��� � � �!�325476 8:9
;;=< �����>� � ��� � � � ;; ��@? � A (2)

where ? is the variance of the Gaussian mask. In [21], < �,���*� � �B� � � � is chosen to depend on the magnitude of

the gradient computed in a �C��� window:< �,��� � � ��� � � �D�FE G �H � � G �H � (3)

where, � G H � � G H � �!� 8JI � �,��� � � ��� � � �I � � � I � �,��� � � ��� � � �I � � A (4)

noting the similarity (see also [3], [18], [13] for further analogies) of the convolution mask with the diffu-

sion coefficient in anisotropic diffusion [19], [26], or more specifically, the total variation in Rudin–Osher–

Fatemi’s original work [20] that demonstrated how edge-preserving smoothing can be achieved from energy
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minimization.

2.1 Smoothing on 1D 3-Neighborhood

It was suggested in [21] that equation (1) is an implementation of anisotropic diffusion. Briefly sketched,

lets consider the case of a one-dimensional signal � ��� � � and reformulate the averaging process as follows:� �� � � ���D��� � � � � � 9 � � � � � � � � ��� � ��� � � � � �3� � � (5)

with

� � � � � � ��� � ��� (6)

Therefore, it is possible to write the above iteration scheme as:� �� � � ��� 9 � � � ��� � � � � � � � � 9 � � 9 � � � � � � � � � � � � � � �
� � 9 � � � ��� � (7)

Taking � � ��� � ��� , this reduces to:� �� � � � � 9 � � � � �D��� � � � � � 9 � � 9 � � � � ��� � � � � � �3� � � (8)

which is a discrete approximation of the linear diffusion equation:I �I	� ����
 � ��� (9)

2.2 Smoothing on 1D 5-Neighborhood

The averaging process can be extended to include second-neighbors:� �� � � � � ��� � � � � � 9 � � � � � � � � � 9 � � � � � � � � ��� � ��
 � � � � �3� � � ��� � � � � � � � � (10)

with

� � � � � � � � � ��
 � ��� � � (11)

Taking � � ����� �30 � , � � ����
 �30 � , and � � � � 9 � 0 � 9 � 0 � this reduces to:� �� � � � � ��0 � � � � � � 9 � � � � � � � � � � � �
� � 9 � 0 � 9 � 0 � � � � � � � � 0 � � � � � � 9 � � � � � � � ��� � � (12)

rearrangement of terms leads to:� �� � � � � 9 � � � � �D�30 � � � � � � 9 � � 9 � � � � ��� � � � � � � � � � � 0 � � � � � � 9 � � 9 � � � � ��� � � � � � �3� � � (13)
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which is a discrete approximation of the linear diffusion equation:I �I�� �30 � 
 � � ��� 0 � 
 �� � � (14)

where 
 � denotes 
 over a grid containing only the nearest-neighbors, and 
 � denotes 
 over a grid

containing only the second-neighbors. Typically 0 ��� 0 � since nearest-neighbors have more influence than

second-neighbors.

2.3 Adaptive Smoothing on 1D 5-Neighborhood

When the weights are space-dependent, one should write the weighted averaging scheme (see [2] for adap-

tive smoothing on 1D 3-Neighborhood that results in consistency to the diffusion equation) as follows:� �� � � ���D� � � ��� � 9 � � � � ��� � �� � � � � � 9 � � � � � ��� � 9 � � � � ��� ���� � � � � � 9 � � (15)� � � � � � � � � � � � � � ��� � �3� � � � ��� � �� � � � � � �
� � � � � ��� � � � � � � ��� � �� � � � � � � � �
with

� ��� � 9 � � � � ��� ���� � � ��� � 9 � � � � ��� � �� � � � � ��� � � ��� � �
� � � � ��� � �� � � ��� � � � � � � ��� ���� � � (16)

Plugging (16) into (15) and rearranging leads to:� �� � � ��� 9 � � � � �D� � ��� � 9 � � � � ��� � �� � � � � � 9 � � 9 � � � � ��� � � ��� � 9 � � � � ��� � �� � � � � � 9 � � 9 � � � � ���� � ��� � �3� � � � ��� � �� � � � � � �3� � 9 � � � � ��� � � ��� � � � � � � ��� � �� � � � � � � � � 9 � � � � ��� (17)

or� �� � � ��� 9 � � � � �D� � ��� � � � � � � ��� � �� � � � � � � � � 9 � � � � ��� 9 � ��� � 9 � � � � ��� � �� � � � � ��� 9 � � � � 9 � ���� � ��� � �3� � � � ��� � �� � � � � � �3� � 9 � � � � � � 9 � ��� � 9 � � � � ��� � �� � � � � ��� 9 � � � � 9 � � � (18)

which is a consistent implementation of the nonlinear diffusion equation:I �I�� � 
 � � 0 � � � ��� � � � 
 � � � � 
 � � 0 � � � �5� � � � 
 � � � � (19)

where we have used 0 instead of � , since the variable 0 was adopted in (14) instead of � in (9). Thus,

the weights 0 � � � � � � � � , 0 � � � � � � � � are the nonlinear diffusion coefficients in the nearest-neighbors grid or

second-neighbor grid, respectively, typically taken as:0 ��� � � � ��� � � �D�
	 ��� 
 ��� � � � � ��� � � � � � � (20)
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where � 
 ��� � � � is the gradient magnitude on either the nearest-neighbors grid or the second-neighbors grid,

respectively, and 	 ��� 
 ��� � � � � is an “edge-stopping” function. This function is chosen to satisfy 	 � � � ���
when � ��� so that the diffusion is stopped across edges. Thus, a fundamental link between the nonlinear

diffusion equation and edge-preserving smoothing filters is noticed (in addition to the interesting relation-

ships between nonlinear PDEs and morphological filters that have been explored in [5], [25], [17], [14], for

example). This link will be extended in the next Section to ( �����
� �����	�3� )-neighborhood, and will lead

to constructing the bilateral filter as a basic mechanism for the mean shift procedure.

3 Generalized Adaptive Smoothing and Nonlinear Diffusion on Extended
Neighborhood

Adaptive smoothing was introduced in [21] as a local process applying a � ��� window at each iteration, as

defined in (1). However, it is natural to extend this definition to an arbitrary, ( ��� �3������� �3� ) window�� ���� � � ������D� "  ��$&%(' � "  ��)*%(' � �� ����� � � � �.- � � � ��/ �10 �,���"  ��$&%(' � "  ��)>%(' � 0 �,��� � (21)

where �� is a three-element vector that describes color images. In the rest of this Section, the extended

nonlinear diffusion is derived using the generalization of adaptive smoothing outlined in (21).

First, it is instructive to derive the extended nonlinear diffusion in one-dimension. Considering adap-

tive smoothing on 1D ( ��� � � )-neighborhood, it is possible to generalize (15) by using vector notation

to: � �� � � � �D� 8 �� � ' � � � � � �	��� A�
 �� �� ' � � � � � � � � � � � � 8 �� �  �� � � � ���	��� A�
 �� ��  �� � (22)

where �� ��
 � � � � � � � ��� is the unity vector, “ 
 ” denotes the dot product, �� � ' � ��
 � � � 9 � � � � � � 9 � ��� � � � � � � � � � 9� � � , �� �  �� ��
 � � � � � � � � � � � � � � � � � � � � �F� � � , �� � ' � ��
 � � � 9 � � � � � � 9 � � � � � � � � � � � � 9 � � � , �� �  �� �
 � � � �3� � � � � � � � � � � � � � � � � � � � , � � � � and � � � � are scalars, � � ��� being the gray-level intensity at the point

of interest � . In color images, � becomes a three-element vector, as in (21), but this extension is avoided in

(22) for the purpose of clarity and is deferred until the final expression for the two-dimensional case. By

analogy to (16), or adaptive smoothing in 1D 3-neighborhood outlined in [2], normalization of the weights

can be written in vector notation as:8 �� � ' � � � � ��� ��� A 
 �� � � � � � � 8 �� �  �� � � � � � ��� A 
 �� � � � (23)

and by analogy to (18), or (13) of [2], we obtain:� �� � � � � 9 � � � ���D� 8 �� �  �� � � � � � ��� A 
�� �� ��  �� 9 � � � ���	���� 9 8 �� � ' � � � � � � ��� A 
�� � � � � �	�� 9 �� �� ' � � � (24)
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which is an implementation of the nonlinear diffusion equation:I � � � �I	� � �
 
 � �0 � ��� �
 � � ��� � � (25)

where �
 � 
 
 ' � � 
 ' �  �B� � � � � 
 � � is a vector containing gradients taken at different neighboring config-

urations (i.e., nearest-neighbors, second-neighbors, etc.) and �0 � 
 0 ' � � 0 ' �  �5� � � � � 0 � � are the nonlinear

diffusion coefficients. It is also possible to write (25) as:I � � � �I�� � �� ' � 
 ) � 0 ) � � � 
 ) � � ��� � � (26)

expanding the vector notation used in (25).

Second, the generalization of adaptive smoothing in two-dimensions written in (21) leads to the ex-

tended nonlinear diffusion in two-dimensions by simple analogy to (25). Taking matrices instead of vectors

for 
 , 0 , and using a three-element vector �� instead of a scalar � to represent color images leads to the

extended nonlinear diffusion: I �� � � ��� � � �I	� ���
 
 � �0 � � ��� � � ���
 �� � � ��� � � � � � (27)

where “ 
 ” denotes the scalar product between two matrices, and �
 , �0 are � ��� � � � ��� ��� � � � matrices that

correspond to different neighbor combinations with respect to the center pixel of interest. The generalized

adaptive smoothing (21) is a discrete approximation of the extended nonlinear diffusion (27). It is noted

that in practice, � need not be taken too large (i.e., ���F� ), otherwise the generalized adaptive smoothing

becomes an inaccurate representation of the extended diffusion equation.

4 Bilateral Filtering

The idea of combining space and color for computer vision tasks has been explored in several works

(e.g., [15], [23], [22], [16], [30], [6]) and consequently, related digital filters have been proposed in [24], [7].

In this Section, the Kimmel–Malladi–Sochen approach [15], [23] of using the geometry of spatial-color

space to perform edge-preserving smoothing is used to systematically choose the weights of the extended

nonlinear diffusion that yields bilateral filtering. Properties of bilateral filtering can be found in the refer-

ences [24], [1], [2], [12], [11], [22]. In [22], it was shown that the bilateral filter is closely related to the

short time kernel of the Beltrami [23].

Bilateral filtering was introduced [24] as a nonlinear filter which combines domain and range filtering.

Given an input image �� ���� � , using a continuous representation notation as in [24], the output image �� ������ is
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obtained by: �� ���� �D�����' � ���' � �� � �� � � � �� � ������ � �� � �� � � �� ������ � < ��
���' � ���' � � � �� � ������ � �� � �� � � �� ������ � < �� � (28)

where �� � � � �5� � � � , �� � � � ��� � � � are space variables and �� � � �	� � �	
 � �	� � is the intensity. The convolution

mask is the product of the functions � and � , which represent ‘closeness’ (in the domain) and ‘similarity’ (in

the range), respectively.

It was demonstrated in [2] that a discrete version of Gaussian bilateral filtering can be written as

follows: �� ���� � � ������D� "  ��$&%(' � "  ��)*%(' � �� �����>� � � �.- � � � ��/ �10 �,���"  ��$&%(' � "  ��)>%(' � 0 �,��� � (29)

with the weights given by:0 �,��� ���� � �� �D��254 6 � 9 � �� 9 ���� ��
� �� � 25476 � 9 � � � �� � 9 � ������ � ��
� �� � � (30)

where � is the window size of the filter. Since (29) and the generalized adaptive smoothing (21) are equiva-

lent, what remains to be shown is an explanation for the origin of the weights given in (30).

In color images, it was demonstrated in [15], [23] that the image can be represented as a �
� surface

embedded in the �
� spatial-color space and denoising can be achieved by using the Beltrami flow. For

representing the geometry of the �
� � � ��� ��� � G ��� � space, it is simple and logical to define the local measure

as < � � � < � � � < � � ��� � � < � � � < G � � < � � � � (31)

which is the geometric arclength in the hybrid spatial-color space. Thus, the distance measure in (2) is given

by: ;;; < �,��� � � � � � � � ;;; � ��� � � � � � � �� ��� � � � � � � � G � � � � � � � (32)

In [1], [2] a rigorous analysis was worked out, by defining the generalized intensity in the �
� spatio-

color space, for what can be intuitively conjectured; namely, plugging (32) into (2) yields:0 ����� ���� � �� �D��254 6 8 9 � �� 9 �� � ��
� �� A 254 6 8 9 � � � �� � 9 � ���� � � ��
� �� A � (33)

where � � � ��� ��� , �� is the location of the pixel of interest, �� is the location of a pixel in its vicinity inside

the window, and � � ������ 9 � � �� ��� � � � � � � � �
� � G � � � � � � � � � (34)
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noting that in (31), the RGB color space was chosen in defining the geometric arclength for illustrative pur-

poses, but different color spaces of interest such as the CIE Luv or CIE Lab can be chosen for � , depending

on the application.

The extended adaptive smoothing or equivalently, the extended nonlinear diffusion (27), along with

the choice of weights according to (33) yields precisely the Gaussian bilateral filter (29), (30) proposed

in [24]. Thus, bilateral filtering is obtained from the extended nonlinear diffusion, with the weights (i.e., the

nonlinear diffusivities) chosen according to the geometric arclength in the �
� spatio-color space defined by

(31).

5 Mean Shift-based Filtering

This section introduces the mean shift procedure as an iterative algorithm for local mode detection in the

joint spatial-range domain. The mean shift-based filtering is defined in the sequel followed by a discussion

on the relation to bilateral filtering.

Let us denote by � $ , - � � ������� a set of � data points in the < -dimensional space ��� . The multivariate

kernel density estimator with normal kernel and a symmetric positive definite < � < bandwidth matrix
�

,

computed at the point � is given by

�� ��� � � �
�	� ��
 � � �
� �

�� $&% � exp

� 9 �� < � ��� � � $ � � � � (35)

where < � ��� � � $ � � ��� ��� 9 � $ ��� � ' � ��� 9 � $ � (36)

is the Mahalanobis distance from � to � $ . By computing the gradient of �� ��� �

 �� ��� �!� � ' �

�	� ��
 � � �
� �
�� $&% � ��� $ 9 � � exp

� 9 �� < � ��� � � $ � � � � (37)

after some algebra we have

� ��� �!� � 
 �� ��� ��� ��� � (38)

where
� ��� ��� " �$&% � � $ exp �

9
�
� < � ��� � � $ � � ���" �$&% � exp �

9
�
� < � ��� � � $ � � � � 9

� (39)

is the mean shift vector. Observe that � ��� � is an estimator of the normalized gradient of the underlying

density. The repetitive computation of (39) followed by the translation of the kernel according to the mean

shift vector defines a procedure which leads to a local mode of the density [8, 9].
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Assume now that the data points � $ are the generalized pixels of the input image. This means the

vector components of � contain both the spatial lattice information � � ��� ��� � � � � and range information � ,

i.e.,

� $ � ��� �$ � � �$ � � (40)

with - � � ����� � . The dimension of vector � is � � � when only the intensity values are considered, � � �
for color images, or � � � in the multispectral case. Although a more complex form of the bandwidth can

be useful in certain applications, we will assume henceforth that the bandwidth matrix
�

is diagonal having

the diagonal terms equal to � �� for the spatial part and � �� for the range part. Using these notations, the mean

shift vector (39) can be expressed as

� ��� �!� " �$&% � � $ exp

� 9
� � ' ��� � ��	� �


� exp

� 9
� � ' ��� � ��	� ��

�" �$&% � exp

� 9
� � ' ��� � ��	� �


� exp

� 9
� � ' ��� � ��	� ��

�
9
� (41)

Denote by � ) � 
�� ��� � ��� �) � 
�� ��� � � �) � 
�� ��� � � the convergence point of the iterative mean shift procedure

initialized in � ) � ��� �) � � �) � � . By running the procedure for all / � � ������� , each data point is associated

to a local mode in the joint spatial-range domain. The mean shift-based filtered image � ) , / � � ������� is

defined by the range information carried by the point of convergence

� ) � ��� �) � � �) � 
�� ��� ��� (42)

The algorithm has been first published in [8] and achieves a high quality discontinuity-preserving filtering,

by identifying local modes in the joint domain. The novelty is that the kernel moves iteratively in both

spatial and range domains, in contrast to the methods discussed up to now, which maintain a fixed spatial

component.

A particular case of mean shift filtering related to bilateral filtering can be obtained by fixing the

spatial component of the vectors during iterations. The algorithm will again search for the local mode, but

only by evolving in the range domain. We call this variant, restricted mean shift filtering.

An important feature of mean shift filtering is that the image structure does not change during itera-

tions. The algorithm evolution is driven by the initial image structure. By contrast, both nonlinear diffusion

and bilateral filtering change the initial image structure and will converge to a flat image, if run until con-

vergence (although, this can be remedied in nonlinear diffusion by introducing an extra term to the diffusion

equation as in [20]). Neither nonlinear diffusion nor the bilateral filter, when performed repeatedly, seek the

local mode of the density. Therefore, it is expected that the meanshift mechanism will achieve better image

structure preservation, which is demonstrated in the next section. We note that the principles of mean shift

filtering were recently rediscovered in [29], where the algorithm is called local mode filtering.
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Figure 1: Original squirrel image

6 Experiments

We compare in this section the performance of a simple nonlinear diffusion (as in [19]), bilateral filtering,

and mean shift filtering. The comparison is performed on a the B/W squirrel image (Figure 1) in order to

observe the main features of the underlying mechanisms.

Nonlinear diffusion results with � � � ��� � are presented in Figure 2 after 10, 20, 50 and 100 iterations.

In Figure 3 and Figure 4 we show bilateral filtering with � � � � � � , ��� � � � � � and � � � � � � , ��� � � � � � ,
respectively, after 1, 2, 5 and 10 iterations. Restricted mean shift results (kernel moving in range domain)

are shown in Figure 5 for � � � � � � and � � � , ��� � � � � � and � � � � . The same parameters are used to generate

the unrestricted mean shift results (kernel moving in both domains), presented in Figure 6.

The following observations can be derived:

� Nonlinear diffusion obtains a pleasant result after 50 iterations, although many regions around the

squirrel tail are excessively smoothed, while the borders are not very well defined. The amount of

excessive smoothing increases at 100 iterations.

� Similar comments are valid for bilateral filtering. After 2 iterations a good compromise between the

amount of smoothing and preserved edges is reached. Nevertheless, excessive smoothing is present

around the tail regions. The gradual collapse of the processed data to a flat image is noticeable after

five iterations.

� Restricted mean shift filtering bears resemblance to the first two techniques in terms of quality of the

preserved edges.

� Unrestricted mean-shift is successful in achieving the sharpest boundaries among all the various ap-

proaches examined (see the quality of results in Figure 6c and d). The reason is that the local structure

is better exploited by letting the kernel to simultaneously move in both spatial and range domains.
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(a) (b)

(c) (d)

Figure 2: Nonlinear Diffusion with � � � ��� � . (a) 10 iterations. (b) 20 iterations. (c) 50 iterations. (d) 100
iterations.

(a) (b)

(c) (d)

Figure 3: Bilateral filtering with � � � � � � and � � � � � � � . (a) 1 iteration. (b) 2 iterations. (c) 5 iterations.
(d) 10 iterations.
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(a) (b)

(c) (d)

Figure 4: Bilateral filtering with � � � � � � and � � � � � � � . (a) 1 iteration. (b) 2 iterations. (c) 5 iterations.
(d) 10 iterations.

(a) (b)

(c) (d)

Figure 5: Restricted mean shift filtering. (a) � � � � � � , ��� � � � � � . (b) � � � � � � , ��� � � � � � . (c) � � � � � � ,� � � � � � � . (d) � � � � � � , ��� � � � � � .
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(a) (b)

(c) (d)

Figure 6: Mean shift filtering (unrestricted). (a) � � � � � � , � � � � � � � . (b) � � � � � � , � � � � � � � . (c)� � � � � � , � � � � � � � . (d) � � � � � � , � � � � � � � .
7 Conclusion

A common framework has been formulated for nonlinear diffusion [19], [20], [26], adaptive smoothing [21],

bilateral filtering [24], and the mean shift paradigm [9]. Emphasizing the importance of extended neighbor-

hoods, both nonlinear diffusion and adaptive smoothing can be generalized and unified to a single approach

that accomplishes edge-preserving smoothing by using ( ������� �	������� ) instead of � ��� window at each

iteration (i.e., an extended nonlinear diffusion). The extended nonlinear diffusion process can then be casted

into bilateral filtering by a specific choice of weights, based on geometrical considerations [15], [23]. The

bilateral mechanism is in turn related to a robust iterative procedure (i.e., the mean shift) which achieves

edge-preserving filtering by searching for local modes in the joint spatial-range domain. We have thus estab-

lished a noteworthy link between the nonlinear diffusion and the kernel methods from statistics. As a result,

various tools derived with statistical motivations such as bandwidth selection [10] could be interpreted and

exploited for parameter selection in the diffusion process.
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