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Abstract
Statistical density estimation techniques are used in many
computer vision applications such as object tracking, back-
ground subtraction, motion estimation and segmentation.
The particle filter (Condensation) algorithm provides a gen-
eral framework for estimating the probability density func-
tions (pdf) of general non-linear and non-Gaussian systems.
However, since this algorithm is based on a Monte Carlo ap-
proach, where the density is represented by a set of random
samples, the number of samples is problematic, especially
for high dimensional problems. In this paper, we propose
an alternative to the classical particle filter in which the un-
derlying pdf is represented with a semi-parametric method
based on a mode finding algorithm using mean-shift. A mode
propagation technique is designed for this new representa-
tion for tracking applications. A quasi-random sampling
method [14] in the measurement stage is used to improve
performance, and sequential density approximation for the
measurements distribution is performed for efficient compu-
tation. We apply our algorithm to a high dimensional color-
based tracking problem, and demonstrate its performance by
showing competitive results with other trackers.

1 Introduction
Many visual features such as intensity, color, gradient, tex-
ture or motion are commonly modeled using density estima-
tion. Object tracking, background subtraction, segmentation,
and motion estimation are typical examples that involve sta-
tistical estimation and propagation of the underlying density.

Real-time object tracking is a challenging computer vi-
sion task. Tracking based on the mean-shift algorithm [5]
searches for the local maximum of the object appearance
model. However, because it is a deterministic algorithm, it
generally cannot recover from a failure. This problem can be
ameliorated by probabilistic trackers using the Kalman fil-
ter and its extensions [16, 17, 18], or more generally parti-
cle filters [8, 9, 12, 13, 15] that achieve robustness to clutter
and occlusion by maintaining multiple hypotheses in the state

space.
Particle filtering provides a convenient framework for es-

timating and propagating the density of state variables re-
gardless of the underlying distribution and the given system.
The particle filter can manage multi-modal density functions
effectively. Because the sampling must be sufficient to cap-
ture the variations in the state space, a very large number of
samples is often necessary to guarantee sufficient accuracy.

There have been many parametric density representations
proposed for tracking. In [11, 16], the authors suggest Gaus-
sian mixture models, but their method requires knowledge
of the number of components, which is difficult to know in
advance. Additionally, it is not appropriate if there are a
large number of modes in the underlying pdf or the num-
ber of modes changes frequently. A more elaborate target
model is described in [10], where a 3-component mixture for
the stable process, the outlier data and the wandering term
is designed to capture rapid temporal variations in the model.
Cham and Rehg [2] introduce a piecewise Gaussian represen-
tation to specify the tracker state, in which the selected Gaus-
sian components characterize the neighborhoods around the
modes. This idea is applied to multiple hypothesis tracking
in a high dimensional space body tracker, but the sampling
and the posterior computation are not straightforward. Ker-
nel density estimation [7] is a widely used non-parametric
approach in computer vision. Its major advantage is the flexi-
bility to represent very complicated densities effectively. But
its very high memory requirements and computational com-
plexity inhibit the use of this method.

This paper introduces a density approximation method-
ology that is an alternative to kernel density estimation, but
computationally as simple as parametric methods. It is based
on the mode finding algorithm [4, 6] by variable-bandwidth
mean-shift. The density is represented with a weighted sum
of Gaussians, whose number, weights, means and covari-
ances are automatically determined. Instead of a batch im-
plementation, we describe a much more efficient incremental
density approximation method.

We next discuss how this density approximation technique
is incorporated into the particle filter framework. Quasi-



random sampling [14] and kernel-based particles contribute
to decrease the required number of samples, allowing us to
address higher dimensional problems. The new kernel-based
particle filter algorithm is applied to video tracking, and its
performance is compared with the classical particle filter.

This paper is organized as follows. Section 2 describes
our mode detection and density approximation method. Sec-
tion 3 introduces the new mode propagation techniques in the
particle filter framework, and section 4 presents experiments
for object tracking in video.

2 Mode Detection and Density Ap-
proximation

In this section, we present the iterative procedure for mode
detection based on the variable-bandwidth mean-shift [6],
and the batch density approximation using the mode detec-
tion technique. Then, an efficient alternative method – incre-
mental approximation – is presented.

2.1 Batch Density Approximation
Denote by ��� ( 	�

��������� ) a set of means of Gaussians in���

and by ��� a symmetric positive definite ����� covariance
matrix associated with the corresponding Gaussian. Let each
Gaussian have a weight ��� with � ��"!�# ���$
%� . The sample
point density estimator computed at point � is given by&')( ��*�
 �(,+.- * �0/21 �3 �4!)# � �5 ��� 5 # /61 exp 798 �+;: 1 ( �=<>� � <2� � *@?

(1)
where : 1 ( ��<>� � <2� � *�A ( �B8C� � *>D=��E #� ( �F8C� � * (2)

is the Mahalanobis distance from � to � � . As one can see, the
density at � is obtained as the average of Gaussian densities
centered at each data point � � and having the covariance � � .

The variable-bandwidth mean-shift vector is defined byG ( ��*HA �JI ( ��* �3 �4!�#9K � ( �L*>� E #� �L�;8M�
ON �3 �"!�# K � ( �L*>� E #�QP E # N �3 �4!)# K � ( �L*�� E #� � � P 8M� (3)

where ��E #I ( ��*�
 �3 �"!�#LR � ( �L*���E #� (4)

and the weights

R � ( �)*�
 � � 5 � � 5 E # /61 exp S>8 #1 : 1 ( �=<>� � <2� � *>T�U��4!)# �V� 5 ��� 5 E # /21 exp S 8 #1 : 1 ( �=<>�9�2<2���W* T (5)

satisfy � ��"!�# R � ( �L*X
Y� .It can be shown that by iteratively computing the mean-
shift vector (3) and translating the location � by G ( �)* , a
mode seeking algorithm is obtained which converges to a
stationary point of the density (1). Since the maxima of the
density are the only stable points of the iterative procedure,
the convergence usually occurs at a mode of the underlying
density. A formal check for the maximum involves the com-
putation of the Hessian matrix&Z ( �L*
 (,+.[ * E �0/61 �3 �"!�# � � 5 � � 5 E # /61 exp 7 8 �+;: 1 ( �=<>� � <2� � * ? ���E #� S ( � � 8C�L* ( � � 8C�L*2DM8M� � T ��E #� (6)

which should be negative definite (having all eigenvalues
negative).

Suppose that the approximate density has ��\ unique
modes of ]�_^ (̀ 
a�������>�9\ ) with associated weight ]�b^ and
covariance ]�c^ after the mode finding procedure. Since ]�c^
might be quite different from the actual covariance in the un-
derlying distribution, the Hessian matrix

&Z ^ of each mode is
used for the computation of ]� ^

]� ^ 
 ]�edf�g d^5 +.-�( 8 &Z E #^ * 5�hf�g d ( 8 &Z E #^ * (7)

The basic idea of equation (7) is to fit the covariance using
the curvature in the neighborhood of the mode.

The final density approximation is then given by

]'i( ��*�
 �(j+k- * �0/61 �kl3 �"!�# ]� �5 ]��� 5 # /61 exp 7;8 �+9: 1cm �=<n]� � < ]� �,o ?
(8)

and �9\�pq� is satisfied in most cases.

2.2 Incremental Density Approximation
The density approximation technique described in section 2.1
is accurate and memory efficient, but computationally expen-
sive because the mode detection procedure for � components
requires r ( � 1 * time. Moreover, for each sample point, a
large number of mean-shift iterations might be required to
converge. To overcome this computational costs, we suggest
an alternative method, an incremental density approximation,
described below.

Usually, a large number of samples are required to esti-
mate the density correctly, but there are only several modes
in the underlying density function. The incremental approxi-
mation algorithm is an empirical solution exploiting this fact.
Suppose � samples are to be used for the density approxima-
tion. We will process samples, ”one at a time.” If a kernel as-
sociated with each sample can be merged incrementally with
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others in the same mode, then the time to compute the mean-
shift vector will be decreased dramatically.

The algorithm proceeds as follows. When the Gaus-
sian kernel for the next sample is added to the current den-
sity function, the density will be updated by the variable-
bandwidth mean-shift. For example, if the component for thes

th sample is added to the current density function t'vuxw E #>y ,the density after the insertion is given by&' w ( ��*�
 � wz w �(j+k- * �0/61 5 � w{5 # /61 exp 7 8 �+;: 1 ( �=<2� w <2� w * ?}|( �~8 � wz w * �n��� h3 �"!�# t���(j+.- * �0/61 5 t��� 5 # /61 exp 7 8 �+ : 1 S��=< t� � < t� � T ?
(9)

where
z w 
 � w�4!�# � � , t� � and t� � are the weight and the

covariance associated with t� � in the current density respec-
tively, and � w E # is the number of modes after the

( s 8���* th
component insertion. In each step, the mode detection proce-
dure and covariance computation need to be applied, and the
new density function t' w ( ��* is estimated. After � steps, the
weight of each sample is adjusted to its original weight, and
the incremental density approximation can be obtained.

During the incremental procedure, two or more modes
which are close to each other in the underlying density may
be merged, and some of them may be lost by the final it-
eration. This situation should be avoided since it increases
the approximation error. We avoid this problem by using a
2-stage algorithm. In the first stage, the incremental den-
sity approximation technique is used with a small band-
width. This may result in several spurious modes which do
not exist in the underlying density. After the final step, let
each component in the approximate density be � ( t� � < t� � < t� � *
( 	B
���������� � ) where � (>� * is a Gaussian distribution hav-
ing a (weight, mean, covariance) triple. In the second stage,
the batch density approximation algorithm described in 2.1 is
performed with the t�L� ’s as starting points. The correct mode
locations and their covariance matrices can be computed ac-
curately in the second stage.

The 2-stage incremental algorithm is very efficient since
the intermediate and the final density function in the first
stage have a small number of modes ( � w p�� ).

2.3 Performance of Approximation
The accuracy of these approximations is demonstrated in
Figure 1. From a one-dimensional distribution composed of
five weighted Gaussians, 200 samples are drawn. Figure 1(a)
shows the result of kernel density estimation. The results of
batch approximation with variable-bandwidth mean-shift are
presented in Figure 1(b). The incremental approximation is
presented in Figure 1(c) and the number of modes in each
incremental step is shown in Figure 1(d).

Table 1 compares accuracy and speed of the approxima-
tions. Three different cases are tested 20 times each, and
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Figure 1: Comparisons between the kernel density es-
timation and its approximations (1D). For the approxi-
mation, 200 samples are drawn from the original dis-
tribution – � (�� � + <�� � < + * , � (�� � �v��<��.��<2�v* , � (j� �"����< + ��<2��* ,� (j� � + <6� � <�����* , and � (�� �4��<����n<2� + * . (a) kernel density esti-
mation (b) batch approximation (c) incremental approxima-
tion (d) number of modes in each incremental step

Mean Integrated Squared Error (MISE) and execution time
speedups are calculated. Denote by � w �0� the error between
the kernel density estimation and the original distribution,
and by �c�W��� ( � � �n� ) the error between the batch (incremen-
tal) approximation and the kernel density estimation. Both
density approximations produce small errors comparable to
kernel density estimation, and the incremental approximation
is much faster with errors comparable to the batch approxi-
mation.

Figure 2 shows that both approximation methods are accu-
rate enough to replace kernel density estimation in the multi-
dimensional case. In 2D, the incremental approximation also
has comparable accuracy to the batch approximation, but it
is practically much faster.

3 Mode Propagation through
Bayesian Filtering

In this section we will show how to use the approximation
technique to propagate the density modes in the particle filter
framework.

The particle filter [8] is a stochastic framework to prop-
agate the conditional density; it originated from statistics
and control theory. The algorithm combines the dynamical
models and measurement by sampling to propagate an entire
probability distribution for the state over time.

We next explain how the semi-parametric density repre-
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Table 1: Performance comparison between batch and incre-
mental approximation

MISE ( �~� � E�� ) speedup
case � w �0� �c�,�0� � � ��� (batch/incremental)

1 5.0772 1.4512 3.1007 8.3502
2 2.2909 0.5323 1.2463 7.0119
3 1.0138 0.6900 1.7869 6.2597

- case 1: � u���� 1 � # � �j1 y , � u���� ¡ � � #>¢ ��£ y , � u���� # � ��1 ¢ �W¤ y , � u4��� 1�� � � � #>¥6y ,� u���� # � ¢0# � ¡ 1 y
- case 2: � u���� # � � # 1�� � y , � u���� # � � � ��£ y , � u���� ¡ � � ¢ � �j¤ y , � u���� 1 � �j¦ � � #>¥6y ,� u���� # � � #6# ¦�� ¡ 1 y- case 3: � u���� # � �j1 � � # � y , � u���� # � ¡ ¢ �j¤ y , � u���� # � � ¥ � � #>¥2y , � u4��� 1 � � ¢2¢ �j¦ y ,� u���� # � �j¦ # � ¡2� y , � u4��� 1�� # � £�� # � y
sentation is incorporated into the particle filter, and how to
propagate the density through Bayesian filtering based on
variable-bandwidth mean-shift [6].

3.1 Bayesian Filtering
The state variable � � ( §¨
 � ������� ) is characterized by its
probability density function estimated from the sequence of
measurements ©�� ( §�
 � �����2� ).

The process and measurement model are given by� � 
 ª ( � � E #.<2« � * (10)©k��
�¬ ( �9��<2­L��* (11)

where « � and ­ � are the process and a measurement noise,
respectively.
The conditional density of the state variable given the
measurements is propagated through prediction and update
stages by a Bayesian framework.® ( � � 5 ©v#6¯ � E #�*�
±° ® ( � � 5 � � E #�* ® ( � � E # 5 ©�#2¯ � E # *���� � E # (12)® ( �9� 5 ©k�>*�
 �s ® ( ©n� 5 �9��* ® ( �9� 5 © #2¯ � E # * (13)

where
s 
³² ® ( ©k� 5 �;��* ® ( �9� 5 © #6¯ � E # *>�n�9� is a normalization

constant independent of �L� . The posterior probability at time
step § , ® ( � � 5 © � * , is used as a prior in the next step.

3.2 Prediction
Suppose that the prior of the state variable � under the mea-
surement variable © at some time step is represented by a
weighted mixture of Gaussians. Our goal is to retain this
representation through the prediction and update stages, and
to represent the posterior probability in the next step with the
same form.

Denote by � �� ( 	$
´�������>� � ) a set of means in
�J�

and by� �� the corresponding covariance matrices at time step § . Let
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Figure 2: Comparison between the kernel density estima-
tion and its approximations (2D). The incremental approxi-
mation is about 11 times faster than the batch approximation
when 400 samples are drawn. (a) kernel density estimation
(b) batch approximation (MISE = �n� ���n��µ{�¨� � E ¤ ) (c) incre-
mental approximation (MISE = ��� + �n�v���¶� � E ¤ ) (d) number
of modes in each incremental step

each Gaussian have a weight � �� with � �k·�4!�# � �� 
%� , and let
the prior density function be given by® ( �9� E # 5 ©k� E # *H
�(j+k- * �0/61 �k· � h3 �4!�# � �� E #5 � �� E # 5 # /61 exp 7;8 �+;: 1 S��L� E # <2� �� E # <2� �� E # T�?

(14)

Suppose the motion model is assumed to be a linear func-
tion ª with Gaussian noise of covariance ¸ . We actually use
a zero-order function in our tracker because it is ordinarily
difficult to identify a correct dynamic model. The predicted
density function is then also a mixture of Gaussians® ( � � 5 © � E #�*X
 �(,+.- * �0/61 �n· � h3 �4!)# t� ��5 t� �� 5 # /21 exp 7 8 �+ : 1 S � � < t� �� < t� �� T ?

(15)
where t� �� , t� �� and t� �� are obtained from the modes of® ( � � E # 5 © � E #�* and the linear process equation (10).

3.3 Sampling
Sampling determines the speed and the accuracy of the par-
ticle filter since it directly affects the posterior probability
distribution. Instead of using the predicted density function
in equation (15) as the proposal distribution, we employ the
quasi-random sampling method [14] and the final proposal
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distribution is¹ ( � � 5 © � *H
 º(j+k- * �0/61 � · � h3 �4!�# t� ��5 t� �� 5 # /61 exp 7 8 �+ : 1 S � � < t� �� <�t� �� T�?| ( �~8 º *6» ( � � * (16)

where » ( �;��* is the uniform distribution in �9� and º is the
ratio for importance sampling.

3.4 Measurement
In the conventional particle filter, the measurement distribu-
tion ® ( ©n� 5 �9��* is completely dependent on the weight of each
particle. This representation for the density results in the de-
pletion of samples, and requires a lot of particles for accu-
rate estimation. Here, we explain how to parameterize the
measurement density with a mixture of Gaussians so that the
posterior density is also represented with a mixture of Gaus-
sians. If the measurement for each particle is assumed to be a
Gaussian kernel, the measurement density can be represented
by kernel density estimation. The kernel-based particle has
the advantage of allowing us to compute the density of all
points in the continuous space. This is a nice property espe-
cially for high dimensional problems because the number of
samples required for accurate estimation is smaller than the
classical particle filter algorithm. However, kernel density
estimation is slow and memory inefficient, and is not appli-
cable to real-time applications.

In order to avoid the inefficiency of kernel density esti-
mation, the density approximation technique introduced in
section 2 is used. In short, the mean-shift vector is computed
for each sample point and moves in the gradient ascent di-
rection until it converges to a local maximum. Then, we can
find all the modes that exist in the underlying density, and the
covariance matrices using the Hessian. This allows us to de-
crease the memory requirement to represent the underlying
distribution by using only a small number of Gaussians.

Either the batch or the incremental approximation can be
used, and the measurement is also a mixture of ¼ � Gaussians
in the state space at time step § as® ( ©n� 5 ½ � *�
 �(,+.- * �0/61C¾ ·3 �4!�# ¿ ��5.À �� 5 # /61 exp 7;8 �+;: 1 S ½ � < ½ �� < À �� T ?

(17)

where ¿ �� is the weight and
À �� is the covariance associated

with the mean
½ �� ( 	=
Á��������¼ � ). Note that

½
is another state

variable for the measurement equation.

3.5 Update
Since both the prediction and the measurement functions are
composed of a mixture of Gaussians, the posterior can be
also represented by a Gaussian mixture which is obtained by
the products of the Gaussian pairs between prediction and
measurement as seen in equation (13).

The products of two Gaussians, � (�Â # < G # <�Ã # * and� (�Â 1 < G 1 <�Ã 1 * , is also a Gaussian distribution � (�Â < G <�Ã�*
given by Â 
 Â # Â 1 (18)G 
 ( Ã E ## | Ã E #1 *0E # ( Ã E ## G # | Ã E #1 G 1 * (19)ÃÁ
 ( Ã E ## | Ã E #1 *�E # (20)

Therefore, when the prediction and the measurement have
Gaussian components � ( t� �� < t� �� < t� �� * ( 	¨
H���������;� E # * and� ( ¿ ^� < ½ ^ � < À ^ � * (̀±
Ä��������¼Å��* respectively, the product of
the two distribution is as follows.

N �k· � h3 �"!�# � ( t� �� < t� �� < t� �� * PÇÆÈ ¾ ·3^2!�# � ( ¿ ^� < ½ ^ � < À ^ � *�ÉÊ 

�k· � h3 �"!�# ¾ ·3^2!�# � ( t� �� ¿ ^� < G �Ë^� <�Ã �Ë^� * (21)

where G �Ë^� 
ÌÃ �Ë^� (>( t� �� *0E # � �� | ( À �� *�E # ½ �� * (22)Ã �Í^� 
 (2( t� �� *0E # | ( À ^ � *�E # *�E # (23)

The result of applying equation (21) is a weighted Gaussian
mixture, but the number of modes in equation (21) can be
reduced by the mode detection algorithm. Also, the covari-
ance matrix � �� for each detected mode location � �� should be
evaluated using the Hessian for accuracy. Therefore, the final
posterior distribution is given by® ( �;� 5 ©k��*X
 �(j+k- * �0/61 �k·3 �"!�# � ��5 � �� 5 # /61 exp 7 8 �+;: 1 S �;��<>� �� <6� �� T ?

(24)

where � � is the number of modes at time step § .
4 Experiments
In this section, we first discuss a one dimensional tracking
simulation, and then compare our algorithm’s performance
to the classical particle filter for object tracking in real video.

4.1 1D Simulation
For this experiment, the process model is given by the fol-
lowing equation,� � 
Q� |}Î2Ï4Ð ( R -�( §=8Ñ��*2* |ÓÒ # � � E # | « � (25)

where R 
Ô�vÕ�8 + , Ò #Ö
 � �Í� , and « �i× � ( ��< � < + * is the ran-
dom variable for the process noise. The measurement model
is given by a non-linear function©k�i
 Ò 1 ( � 1� | �;�>* | ­�� (26)
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where Ò 1 
 � � � and the observation noise ­)� is drawn from
a Gaussian distribution � ( �n< � < � �4�Ø* . One hundred particles
are drawn by the quasi-random sampling method, and the
density is estimated and propagated for each time step § ( �ÚÙ§ÛÙÌ�Ø� � ).
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Figure 3: The sequence of 1D tracking simulation. The
top of each figure shows the prior probability, the second is
the measurement function, and the last one is the posterior
probability. In the posterior pdf, the (red) vertical bar denotes
the true location of target.

As seen in Figure 3, the multi-modal densities are effec-
tively represented with the mixture of Gaussians, and the
state density is propagated through the measurement and up-
date stages. The same experiment was repeated 100 times,
and the Mean Squared Error (MSE) between the true and
the estimated target location was computed. The MSE and
the variance of our algorithm are 0.284 and 0.136 respec-
tively, which are better than the classical particle filter (MSE
= 0.340, variance = 0.294).

4.2 Object Tracking in Video

Color-based trackers such as [3, 5] search the image space
deterministically, and they might fall into a local mini-
mum. To overcome this limitation, the color-based multi-
hypothesis tracking was proposed in [13] which is based on
the particle filter. We have implemented the probabilistic
color-based tracker using the classical particle filter and the
kernel-based particle filter with the density approximation,
and compare their performance on tracking two objects – a
hand carrying a can – in this section.

For both trackers, the state is described by a 10 dimen-
sional vector which is the concatenation of two 5 dimensional

vectors representing two independent ellipses, one for each
object. (ÝÜ #.<2Þv#Ø<6ß Ü #.<2ß�Þv#�<>à.#.< Ü 1 <>Þ 1 <2ß Ü #Ø<6ßÝÞ 1 <2à 1 * (27)

where
Ü � and Þ � ( 	Û
á�n< + ) are the location of ellipses, ß Ü � is

the length of
Ü

-axis, ß�Þ � is the length of Þ -axis, and à � is the
rotation variable.

As stated previously, we do not assume any specific pro-
cess model, so that the next position of the tracked object is
predicted to be within the Gaussian noise area from the pre-
vious position. This assumption is natural for the motion of
objects in video, and simple to manage because it is linear.
So, the process model equation (10) can be rewritten as fol-
lows. �;�=
 �;� E # | «�� (28)

where « � is a zero mean Gaussian random variable.
The likelihood of each step is based on the similarity of

the normalized RGB histogram between the target and the
candidates. Supposed that the histogram of the target is de-
noted by â0ã ( 	�* ( 	=
ä�������>� ), where � is the number of bins
in the histogram and � ��4!�# â ã ( 	�*å

� . The Bhattacharyya
distance in equation (29) is used to measure the similarity
between two histograms

:çæ â ã <2â ( � � *Wè;
 N �~8 �3 �"!�#êé â ã ( 	@*>â ( � �0ë 	�* P #
/21

(29)

and the measurement function at time § is given by® ( ©k� 5 �9��*Xì exp S 8$í : 1 æ â ã <6â ( �9��*@è T (30)

where íî
Y� � is a constant.
Each sample itself is the mean of the particle, and all the

particles have equal weights. The covariance matrix is de-
termined by Abramson’s law [1] based on the probability
computed by equation (30). 400 particles are drawn from
the proposal distribution in equation (16), and the incremen-
tal density approximation method discussed in section 2.2 is
used to compute the measurement density.

The results for both trackers are shown in Figure 4. As
seen in the figure, the classical particle filter algorithm fails
in tracking early, probably due to the insufficient number of
samples, but our algorithm successfully tracks through the
whole sequence.

5 Conclusions
We proposed a method for approximating a density func-
tion, and practically speeding up the approximation proce-
dure. We incorporated these density approximation methods
into the particle filter framework, and developed a kernel-
based particle filter algorithm. The kernel-based particle fil-
tering needs a relatively small number of particles, and the
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a)(c)(e) are results of the classical particle filter,
and (b)(d)(f) are results of kernel-based particle filter at time§{
ï� � <�� ��� <��Ø� � . The classical particle filter loses the tar-
get, but our algorithm tracks successfully through the whole
sequence.

computational requirements are reduced by the incremental
approximation.

The various simulations show the effectiveness of the den-
sity approximation methods and the kernel-based particle fil-
tering, and our algorithm can outperform the classical parti-
cle filter for object tracking, using a small number of sam-
ples.
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