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Abstract

Many vision problems can be cast as optimizing the con-
ditional probability density function p(C|I) where I is an
image and C is a vector of model parameters describ-
ing the image. Ideally, the density function p(C|I) would
be smooth and unimodal allowing local optimization tech-
niques, such as gradient descent or simplex, to converge
to an optimal solution quickly, while preserving significant
nonlinearities of the model. We propose to learn a condi-
tional probability density satisfying these desired properties
for the given training data set. To do this, we formulate a
novel regression problem that finds a function approximat-
ing the target density. Learning the regressor is challenging
due to the high dimensionality of model parameters, C, and
the complexity of relating the image and the model. Our
approach makes two contributions. First, we take a multi-
level refinement approach by learning a series of density
functions, each of which guides the solution of optimiza-
tion algorithms increasingly converging to the correct solu-
tion. Second, we propose a new data sampling algorithm
that takes into account the gradient information of the tar-
get function. We have applied this learning approach to
deformable shape segmentation and have achieved better
accuracy than the previous methods.

1. Introduction
Deformable shape segmentation is important to many

computer vision applications. Three typical examples are
shown in Figure 1: (A) a corpus callosum border is seg-
mented from a mid-sagittal MR image; (B) an endocardial
wall of the left ventricle is segmented from an echocardio-
gram; and (C) facial features are localized in a face image.

The object shape in an image I can be represented by
a set of continuous model parameters, C, which define the
shape and position of the object. Shape segmentation can be
considered as optimizing a conditional probability density
p(C|I), which represents the probability of the model pa-
rameters describing the target object in the image. In any at-
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Figure 1. Three examples of deformable shape segmentation and
localization: (A) corpus callosum border segmentation, (B) endo-
cardial wall segmentation, and (C) facial feature localization.

tempt to solve the above problem, there are two questions to
be answered: (i) How to construct the density p(C|I); and
(ii) How to find the optimal solution for the given p(C|I).

In general, finding the model that maximizes the prob-
ability is a difficult optimization problem due to the com-
plexity of image appearance and high dimensionality of the
model parameters. Usually, we can have an initial approxi-
mation to the correct solution that is provided by some prior
knowledge or via rigid object detection [17]. Optimization
techniques can then be used to refine the segmentation re-
sults. A variety of algorithms are proposed for this pur-
pose, such as active contour model (ACM) [9], active shape
model (ASM) [3] and active appearance model (AAM) [1].

It is natural to use general-purpose optimization tech-
niques such as gradient descent or simplex to find an opti-
mal solution. In order to guarantee the optimal convergence
of these kinds of algorithms, p(C|I) should be smooth and
have only one global maximum, which is the correct solu-
tion. Previous approaches have difficulty in guaranteeing
this goal.

A common way to construct p(C|I) is to learn this prob-
ability density from training data. The density p(C|I) can
be constructed by either through generative approaches or
discriminative approaches. A generative approach learns a
model p(I|C) from the ground truth examples and calcu-
lates p(C|I) using Bayes’ rule. Although the learned model
is sufficient to represent the ground truth examples, it can-
not guarantee the proper convergence of the local optimiza-
tion algorithms at the segmentation stage. When the model
C has only one parameter, a typical shape of the learned
p(C|I) is shown in Figure 2(A). The global maximum is
usually near the ground truth. However, it is not smooth and
it could have several local maximums. The cost functions
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Figure 2. The learned p(C|I) when C is one dimensional: (A) a
generative approach, (B) a classification approach, (C) the regres-
sion approach, and (D) the multi-level regression, the functions
defined on the feasible regions are drawn using thick lines. The
ground truth of the model is O.

used in energy minimization techniques, such as ACM [9],
also suffer the same problem. Thus, the initial solution has
to be close enough to the ground truth to make the local op-
timization algorithm effective. One example of discrimina-
tive approaches is the classification method, which directly
models p(C|I) by pooling together ground truth examples
as positives and the background examples, which are in the
complement set of the ground truth examples, as negatives
[17]. The learning focus is to build a model to distinguish
between foreground and background. The learned p(C|I)
is like a boxcar function around the ground truth, e.g., a 1D
example shown in Figure 2(B). This model does not pro-
vide useful gradient information for local optimization. As
a result, the solution is estimated by the exhaustive search,
which is computationally prohibitive when the dimension-
ality of the model C is high.

In this paper, we construct p(C|I) with a desired shape
that guarantees the proper convergence of general-purpose
local optimization techniques. We learn p(C|I) from an-
notated training data by formulating a regression task. We
constrain the learned density p(C|I) to possess a desired
unimodal, smooth shape (such as the bell shape of a normal
density) in the model space, which can be used by local op-
timization algorithms to efficiently estimate the correct so-
lution. Figure 2(C) shows the ideal shape of the 1D p(C|I)
learned in this way.

We employ the boosting principle to learn our regressor
by selecting relative features to form an additive committee
of weak learners. Each weak leaner, based on a Haar-like
feature that can be computed rapidly, provides a rough fit-
ness measurement of the object to the image’s appearance.
The learned regressor computes a robust measurement of
fitness by integrating the measurements of selected weak
learners.

In most non-rigid segmentation applications, the model
C has many parameters, including both pose and shape pa-
rameters. It is challenging to learn a function p(C|I) via
regression that approximates the target density sufficiently
well in the whole parameter space due to insufficient sam-
pling in the high-dimensional model space. To address this
‘curse of dimensionality’, the number of training examples
should be exponential to the dimension of the model space
to guarantee training accuracy. Furthermore, appearance
variations and noisy imaging artifacts make the problem of

insufficient sampling worse by introducing complexity to
the regression input.

We make two contributions to tackle the learning chal-
lenges. First, we propose a multi-level approach that learns
a series of conditional densities, each of which is defined on
a feasible region instead of the whole parameter space. By
such a design, the regressors defined on feasible regions fo-
cus more and more on the region close to the ground truth.
A one dimensional multi-level example is shown in Figure
2(D). At the segmentation stage, we perform a series of lo-
cal optimizations based on the corresponding trained regres-
sors to refine the segmentation result.

Second, when learning an individual regressor, we pro-
pose a sampling algorithm for more effective training. The
algorithm samples the most important regions in the model
space for regression by leveraging the gradient informa-
tion of the target probability function, which is essential for
guiding the local optimization algorithms to find the correct
solution.

2. Previous work
In the previous model-based segmentation approaches,

a variety of algorithms have been proposed to efficiently
search for solutions in a high-dimensional model space.
Two typical examples are active shape model (ASM) [3]
and active appearance model (AAM) [1]. Our approach fo-
cuses on learning a density function with a desired shape
tailored for optimization algorithms. Both our approach
and AAM search based on a fitness measure of the cur-
rent hypothesis model. At a hypothesis point in the model
space, AAM determines a search direction, which is a vec-
tor, based on current match error via a ‘difference decompo-
sition’ method. While in our approach, the regressor gives
a scalar fitness measurement at a point and the search direc-
tion is determined from the measurements on local neigh-
borhood points.

To avoid searching in high dimensions, a shape can also
be directly inferred from image appearance by searching for
the most similar shape from a list of candidate shapes using
a sample-based statistical model [7] or a ranking method
[19]. This kind of approach needs a large set of training
examples for establishing the relationship between appear-
ance and shape. Also, it can only infer the non-rigid shape
variation and it relies on other algorithms to determine the
global rigid transformation of the shape.

The conditional probability density function can be also
constructed using an energy-based model via a convolu-
tional neural network[10]. This approach has been used for
detecting similarity transforms of objects [13]. It is unclear
how to extend this framework [10] to a high-dimensional
model space that includes the parameters for non-rigid de-
formation.

Regression and boosting [8, 6] are widely used for com-



puter vision applications [17, 7, 18, 20, 21]. Image-based
regression has been used to directly estimate the shape de-
formation [20, 21] and the output of the regressor is more
than one dimension. We only tackle a single-output regres-
sion problem, which is less complex than the regression
problem posed in [20, 21].

Multi-resolution approaches are widely used to improve
the efficiency and robustness of the segmentation algo-
rithms [9, 3, 1]. In a typical multi-resolution framework, an
image pyramid is built and the optimization is performed in
a coarse-to-fine manner. It is generally true that the local
maximums of p(C|I), e.g., the local maximums in Figure
2(C), will be smoothed out in the coarse level. However, the
useful details might also be lost if the resolution of image is
too low. To determine a proper resolution for optimization
is usually based on heuristics. We apply the coarse-to-fine
principal in a different way, in which a series of functions
with nested feasible regions are learned from a single reso-
lution image. By explicitly defining the shape of each func-
tion, the multi-level refinements are more controllable.

3. Regression using boosting method
We represent an object in an image I by a set of con-

tinuous model parameters C = (c1, . . . , cD), where D is
the dimensionality of C. In different applications, C can
contain parameters for rigid transformation, or parameters
for non-rigid shape deformation, or both. We use regression
to learn p(C|I). We determine a target density q(C|I) that
possesses a desired unimodal, smooth shape. This can be
achieved by defining q(C|I) as a normal density of C:

q(C|I) = N(C; µ(I), Σ), (1)

where µ(I) is the ground truth model for the training im-
age I and Σ is an appropriate covariance matrix. In order to
simplify computation, we assume the model parameters to
be independent. Thus Σ = diag(σ1, . . . , σD). If there is a
dependency among model parameters, a linear transforma-
tion can be applied to make them independent.

One additional benefit of using the normal distribution is
that it enables the learned regressor to focus on part of the
parameter space by setting Σ properly. We discuss how to
determine Σ based on an initial error range in section 4.

We apply regression to fit the density p(C|I) to the tar-
get density q(C|I). The density p(C|I) learned in this way
gives an image match score for each hypothesis model C.
This score reflects the distance between the hypothesis and
the ground truth.

For a given image I , let x(I, C) be a feature image ex-
tracted from the image I using a hypothesis model C. For
conciseness, we use x instead of x(I, C) when there is no
confusion in the given context. In section 3.2, we address
how to obtain x efficiently. Our goal is to find a function
F (x) that serves as the density p(C|I). We sample a set
of training examples from the input annotated images. A

training example is a pair (x(Ij , Cn), q(Cn|Ij)), where I
is a training image and Cn is a point in the model space.
We will discuss how to sample Cn in section 4.1. Regres-
sion minimizes the training error while solving the follow-
ing minimization problem:

F̂ (x) = arg min
F∈F

N∑

n=1

L(q(Cn|In), F (xn)), (2)

where N is the number of training examples, F is the set
of allowed regressors and L(◦, ◦) is the loss function that
penalizes the deviation of the regressor output F (x) from
the target probability density q(C|I).

3.1. Boosting
In the boosting method for regression, regressors take the

following form:

F (x) =
T∑

t=1

gt(x); gt(x) ∈ G, (3)

where each gt(x) is a weak learner and F (x) is a strong
(more accurate) learner. Further, it is assumed that a weak
learner g(x) lies in a dictionary set or weak-learner set G.

Boosting iteratively approximates the target function
q(C|I) by adding one more weak learner to the regression
output:

F ′(x) = F (x) + g(x). (4)

At each round of boosting, we select the learner ĝ that
most decreases the loss function, by the following greedy
choice:

ĝ = arg min
g∈G

N∑

n=1

L(q(Cn|In), F (xn) + g(xn)). (5)

In this paper, we used the quadratic loss function. The solu-
tion of (5) is simply the weak learner that best predicts the
current residuals P (Cn|In) − F (xn).

Shrinkage [4, 5] is a technique for reducing overfitting in
boosting methods. The idea is very simple: after each round
of boosting, we scale the newly selected learner g(x) by a
shrinkage factor γ ∈ [0, 1]. The resulting update rule is

F ′(x) = F (x) + γĝ(x), (6)

where ĝ is the optimal solution found in equation 5. We
found that a modest choice of γ = 0.5 gives good results.

The feature image associated with a model

For a hypothesis model C, the corresponding image patches
are sampled from the image I to obtain the feature image
x(I, C). We use a set of image patches associated with the
current shape C to represent x. Suppose that each shape
is represented by M control points, M + 1 subimages are
extracted from the image as shown in Figure 3. Each subim-
age has its position, orientation and scale. The first subim-
age, indicated by the red box in Figure 3, contains the whole
object. Its configuration is determined by the object pose.
This image patch contains global information to indicate the
fitness of the pose parameters. The remaining subimages,



Figure 3. The feature image x associated with a hypothesis model
C. The contour represented by the model C is plotted as blue line.
The subimage enclosed by the red box contains global fitness in-
formation. The subimges enclosed by the green boxes contains the
local fitness information. The image x is composed by subimages
with normalized orientation as shown on the right.

indicated by the green boxes in Figure 3, correspond to
the control points, where the configurations are determined
by the position, local orientation and scale of the control
points. These patches contain local information which is
useful for measuring the fitness of the local shape.

How to use the global and local information effectively
is application specific. In previous approaches, heuristic
rules were used to make decisions [3, 1], such as whether
there are strong edges at boundaries or whether the object
has an overall unique appearance. In our learning-based ap-
proach, we let the algorithm decide which information is
most useful by selecting weak learners that mostly decease
the regression error. Thus, we form the feature image x to
contain both local and global information.

3.2. Weak learner

The dictionary set G contains weak learner candidates,
each of which gives a rough fitness measurement of an ob-
ject shape to the image’s appearance. Intuitively, this set
must be sufficiently large to enable rendering of the highly
complex output function F (x), through a linear combina-
tion of weak learners. Also the computational cost of the
feature image x and each g(x) must be low enough for fast
evaluation of F (x). We propose an efficient way of com-
puting g(x) from the image I with the model C.

A weak learner g(x) is associated with a Haar filter fea-
ture h(x). Each Haar filter h(x) is constrained to be within
a subimage of x. It has its own attributes: type, window po-
sition, and window size. One can generate a huge number
of Haar filters by varying the filter attributes.

All these filters can be evaluated efficiently by pre-
computing an integral image. See [17] for details. We can
use a set of pre-computed integral images with different ori-
entations to compute h(x), eliminating the need to resam-
pling x at run time. This enables the computation of a weak
learner very efficiently.

We use the piecewise linear functions as the elements of
the dictionary set. A piecewise linear function that is asso-
ciated with a feature function models the feature response
in a piecewise fashion:

g(x) = aj−1+
h(x) − ηj−1

ηj − ηj−1
(aj−aj−1); h(x) ∈ (ηj−1, ηj ],

(7)where {ηj ; j = 0, . . . , J} divide the range of the feature re-
sponse equally with η0 = min(h(x)) and ηJ = max(h(x))
and {aj ; j = 0, . . . , J} are the values of the function at
the corresponding nodes. At each boosting round, {aj} is
computed through solving a linear equation for an optimal
least-square solution.

4. Multi-level regression and gradient-based
sampling

It is hard to fit a strong learner, F (x), to q(C|I) across
the entire model space due to the complexity of the im-
age appearance and the lack of sufficient training examples
for representing the high-dimensional model space. Even if
F (x) approximates q(C|I) well, the gradient magnitude of
F (x) may be too small in some regions of the model space
to facilitate the fast convergence of local optimization algo-
rithms.

We propose a multi-level regression to tackle this dif-
ficulty by training a series of regressors Fk(x), k =
1, . . . , K , each of which is defined on a feasible region Ωk

of the model space. The feasible region Ωk is defined as a
D-dimensional ellipsoid:

D∑

d=1

(cd − µd(I))2

r2
k,d

= 1 (8)

where Rk = (rk,1, . . . , rk,D) defines extreme values of
each dimension. Let R1 be the initial error range prior to
the local refinement, which can be determined by statisti-
cal analysis of the training data. The feasible regions of all
levels have the same center µ(I), which is the ground truth
model for the training image I . In the following discussion,
we let µ(I) be at the origin of the model space without loss
of generality.

To gradually decrease segmentation error level-by-level,
we construct nested feasible regions that shrink to the
ground truth:

Ω1 ⊃ Ω2 ⊃ . . . ⊃ ΩK � µ(I). (9)
At each level k, we set the target density qk(C|I) and train
Fk(x) to make sure that, in optimizing Fk(x) at the testing
stage, an initial solution in the region Ωk −Ωk+1 has a high
probability of being pushed into the next feasible region
Ωk+1. To achieve this goal, we design the function qk(C|I)
to exhibit a high gradient in the region Ωk −Ωk+1 and sam-
ple more training examples in this region. This leads to a
gradient-based sampling approach.

Next, we first illustrate the construction of feasible re-
gions and related gradient-based sampling strategy using a
1D example and then extend it to higher dimensions.

4.1. Multi-level regression in 1D
Figure 4 shows the plots of a 1D target function q(C|I)

and its gradient magnitude |∇q(C|I)|. From the figure we



(A) (B)
Figure 4. The plots of (A) 1D normal distribution q(C|I) and (B)
the corresponding gradient magnitude |∇q(C|I)|.

(A) (B)
Figure 5. The target q(C|I) (black line) and the learned p(C|I)
(red line) with (A) uniform sampling and (B) gradient-based sam-
pling.

observe that the gradient magnitude of q(C|I) reaches its
maximum at c1 = ±σ and gradually approaches zero when
c1 → ±∞ and c1 → 0.

Let σk be the standard deviation of the function qk(C|I)
and δ is a pre-specified constant (we empirically set δ =
1.7 for all experiments). We construct the nested feasible
regions as Ωk = [−σkδ, σkδ] with

σk = rk/δ, rk+1 = rk/δ2, (10)
where r1 is the extreme initial value. This construc-
tion is based on the fact that the region [−σkδ,−σk/δ] ∪
[σk/δ, σkδ], centered around the maxima of the gradient
magnitude (i.e., ±σk), contains large gradient magnitude.

Figure 5 compares two sampling strategies: uniform
sampling and sampling based on gradient magnitude. Only
six examples are used in the regression to simulate the spar-
sity of sampling in high dimensions. For the moment, we
assume that sampling outside of the feasible region is al-
lowed. The standard deviation is σ = 10. In the region
[−σδ,−σ/δ]∪ [σ/δ, σδ], the regressor learned by sampling
based on the gradient magnitude (Figure 5(B)) more faith-
fully captures the shape of the target density function than
that learned by uniform sampling (Figure 5(A)).

In summary, the learned regressor Fk(x) should fit the
target density qk(C|I) well enough in the region Ωk−Ωk+1

to provide good guidance in optimization. This is achieved
by selecting examples primarily in this region that is con-
structed to have high gradient magnitude. We use the
Metropolis sampling algorithm [12] to sample training ex-
amples in the feasible region Ωk with the sampling density
function |∇qk(C|I)|.
4.2. Multi-level regression in high dimension

As in 1D case, we design a series of target densities
with nested feasible regions. The shape of each target den-
sity qk(C|I) is defined by the covariance matrix Σk =
diag(σ1,k, . . . , σD,k). Determining the optimal covariance
matrices Σk is a hard problem; here we consider two simple
approaches.

The first approach is to learn a regressor for decreasing
a feasible region in all dimensions uniformly. Similar to
Eq. (10), this can be achieved by setting σk,d = rk,d/δ

(A) The three nested feasible regions defined by R1(black),
R2(red) and R3(green).

(B) The target probability density function q1(C|I).

(C) The sampling density function |∇q1(C|I)|.

(D) The sampled points in the model space based on |∇q1(C|I)|.
Figure 6. Two sampling approaches. Left: the first approach.
Right: the second approach.

and rk+1,d = rk,d/δ2. This approach works well when
the elements in R1, which define the initial error range,
are roughly the same. However, in real applications, the
range of model parameters varies greatly. Typically, the er-
ror range of pose parameters is larger than the error range
of shape parameters; hence narrowing down the error ranges
in all dimensions at the same rate is usually inefficient. A
more practical solution is to first decrease error along the
dimensions with larger error ranges. For example, in [7],
the pose parameters are determined before estimating shape
parameters.

The second approach achieves this goal by allowing the
target function to have large gradient magnitude along the
dimensions with large error ranges. The learned regressor
thus focuses on decreasing error along these dimensions.
Let rmax

k be the largest element in Rk. We evolve σk,d and
rk,d as follows:

σk,d = rmax
k /δ, rk+1,d = rmax

k /δ2 if rk,d > rmax
k /δ2

σk,d = σmax, rk+1,d = rk,d otherwise
(11)

where σmax is a constant (typically a large value). The
condition σk,d = σmax means that the kth target density
varies little along the dth dimension and hence the learned
regressor Fk(x) makes no attempt to decrease the model
error along this direction. Geometrically, the feasible re-
gion gradually shrinks from a high-dimensional ellipsoid to
a sphere, and then shrinks uniformly thereafter.

We use a 2D example to illustrate the rationale of this
setting. Let R1 = (8, 2), where the error in the first di-
mension is much larger than that in the second one. For
both approaches mentioned above, Figure 6 shows the three



Figure 7. The 2D slices of F1(x)(left), F2(x)(middle), and
F3(x)(right) on a testing image.

feasible regions, the target function q1(C|I) for the first
level, the sampling density function |∇q1(C|I)|, and the
corresponding sampling results. Both approaches gradually
shrink the feasible region. The shape of the feasible region
remains consistent in the first approach while in the second
approach, it changes from an ellipse to a circle. Because
the first approach samples many points around the short
axis, this makes the regression less effective. The second
approach based on Eq. (11) is more effective.

5. Experiments
In all experiments, we used control points to represent

objects in the image. The training inputs are a set of images
and their associated annotations. In training, the general-
ized Procrustes analysis [3] is invoked to compute the mean
shape and rigid alignment of objects in the images. We then
apply the PCA to the aligned shape in order to build a shape
space, spanned by a reduced set of eigenvectors associated
with the largest eigenvalues λ. The initial error ranges of
the shape parameters are assumed to be 3

√
λ.

In testing, we used a standard simplex algorithm [14] as
the local optimization algorithm to maximize Fk(x). The
simplex method is insensitive to shallow maxima caused
by image noise and regression error. The learned Fk(x)’s
are used sequentially and the converged solution of the cur-
rent level is the initial value used in the next level. The
segmentation errors are measured as the average Euclidean
distance between corresponding control points of the seg-
mented shape and the ground truth.

5.1. Corpus callosum border segmentation
Segmentation of the corpus callosum structure in mid-

sagittal MR images is a common task in brain imaging [16].
In this data set, the corpus callosum has a clear border mak-
ing segmentation relatively easy. We collected a total of 148
mid-sagittal MR images with the corpus callosum border
annotated by experts using contours with 32 control points.
The corpus callosum roughly occupies 120× 50 pixels. We
used 74 images for training and the remaining 74 images
for testing.

The goal of our approach is to locally refine a model C.
In a 2D image, the model C has 4 pose and 6 shape pa-
rameters. The pose includes 2D translation, rotation, and
scale: (tx, ty, θ, s). The initial range of the pose is given as
[20, 20, π/9, 0.2], which means 20 pixels in translation, 20
degrees in rotation and 20% in scale. The six shape parame-

(A) ASM refine1 refine2 refine3
w/out noise 3.33±1.84 2.86±3.05 2.02±3.08 1.76±3.03

3.07±1.16 2.44±0.74 1.63±0.46 1.37±0.41
with noise 6.77±3.16 3.66±4.33 2.98±4.63 2.94±4.68

6.31±2.20 2.85±0.90 2.13±0.59 2.08±0.64

(B) ASM refine1 refine2
LV 26.20±17.64 11.09±4.31 10.07±4.52

23.43±12.03 10.43±3.11 9.41±3.06

(C) AAM Shape Inf. RankBoost Regression
AR face 5.94±2.81 5.16±1.26 4.24±1.09 3.86±0.97

5.50±1.69 4.99±1.06 4.09±0.88 3.72±0.77

Table 1. The mean and standard deviation of the segmentation er-
rors. In each cell, there are two rows: the first row reports the
mean and standard deviation obtained using all testing data and
the second row using 95% of testing data (excluding 5% outliers).

ters account for 85% of the total shape variation. In training,
three levels of regressors are trained to approximate the tar-
get functions with Σ defined in Eq. (11). We sampled 3000
examples from each image and set the maximum number of
weak learners in a regressor to be 500.

The learned Fk(x)’s on a testing data are shown in Fig-
ure 7. The overlayed wire-frame meshes are target func-
tions. Because Fk(x)’s are high dimensional functions, we
plotted the 2D slices by varying the 1st and the 5th param-
eters of the model in the feasible region while fixing the
remaining parameters as the ground truth, where the 1st is a
translation parameter and the 5th is a shape parameter cor-
responding to the largest eigenvalue. The regressors predict
the target density well, showing a conspicuous mode, and
they are ready to be used in a local optimization algorithm.

In testing, we randomly generated five starting contours
for each testing image. The initial shape parameters are set
to zero, i.e., using the mean shape. The initial pose param-
eters are randomly generated within the error range defined
in the training. The average error of 370 starting contours
is 12.65 pixels. The computational time of our approach is
roughly 3 seconds. We compared our approach with ASM.
The discussion in [2] explains that ASM works well when
the border is supported by strong edges1. We also applied
multi-resolution searching and carefully tuned the parame-
ters to achieve good performance.

Table 1(A) shows the mean and standard deviation of the
testing errors. The proposed approach improves the ASM
by 47% in terms of mean error. Figure 8(A1) is a plot of
the sorted errors, where points on the curve with the same
horizontal position do not correspond to a same testing case.
There are outliers in the final segmentation results. If we
exclude 5% of the testing data as outliers, then the proposed
approach improves the ASM by 55% in terms of mean error
and reduces the standard deviation too. Further, each level
improves the results from the previous level, proving the
effectiveness of the multi-level approach.

We then added noise to make the segmentation more
challenging. The Gaussian noise with zero mean and 0.2
variance was added to both the training and testing images

1We used the Matlab implementation of ASM by Dr. Hamarneh, which
is available at http://www.cs.sfu.ca/˜hamarneh/software/asm/index.html.
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Figure 8. Sorted errors of the experiment results: (A1) corpus cal-
losum border segmentation on noise free data, (A2) corpus callo-
sum border segmentation on noisy data, (B) LV segmentation, and
(C) facial feature localization.

Figure 9. Two segmentation results obtained by our algorithm. The
initial positions are yellow lines. The ground truths are red lines
and the segmentation results are green lines.

with an intensity range [0, 1]. Our algorithm and ASM were
retrained and tested using the same noise-free setting. The
results are shown in Table 1(A) and Figure 8(A2). ASM has
a poor performance because ASM cannot estimate accurate
intensity profiles normal to the object boundary due to the
noise. The performance of our algorithm suffers less since
the added noise is considered at the training stage, which
proves the effectiveness of the learning approach. Note
that in this experiment, the third level refinement cannot
improve the segmentation further due to information loss
caused by noise.

5.2. Endocardial wall segmentation
In this experiment, we focused on locating the endocar-

dial wall of the left ventricle (LV) in the apical four cham-
ber (A4C) view of echocardiogram. The LV appearance
varies significantly across patients and ultrasound images
often suffer from signal dropouts and speckle noise. There
is no clear edge at the endocardial wall. This combination
of factors makes automatic LV segmentation challenging.

In the experiment, we collected a total of 528 A4C im-
ages with the wall of the left ventricle annotated by experts
using contour with 17 control points. The LV roughly oc-

Figure 10. Two examples on which ASM fails while our algorithm
works well. The left column is the initial position. The middle
column is the result of ASM. The right column is the result of our
algorithm. The ground truths are the red lines and the initial con-
tours and the segmentation results are green lines. The segmenta-
tion errors are shown at the top of the images.

cupies 120 × 180 pixels. We used half of these data for
training and the remaining half for testing. In training, two
levels of regressors are trained. The model C has 4 pose
with initial error range [50, 50, π/9, 0.2] and 5 shape pa-
rameters account for 80% of the total shape variation.

In testing, we randomly generated a starting contour for
each testing image. The initial pose parameters were within
the error range defined in the training. The initial shape pa-
rameters were set to zero. The average initial error is 27.16
pixels. The ASM was also used for comparison. Some de-
tection results are shown in the Figure 10. The segmenta-
tion errors are shown in Table 1(B) and in Figure 8(B). The
learned regressors outperform the ASM by a large margin,
over 60% improvement.

5.3. Facial feature localization
In the third experiment, we tested our approach on fa-

cial feature localization using the AR face database [11]. A
face image from the database and its annotation of 22 fea-
ture points are shown in Figure 1(C). There are a total of
508 images with annotations2, including 76 males and 60
females with 4 expressions.

We used the exactly same training and testing set as in
[19]. In this experiment, half of the data were used for train-
ing and half for testing. Examples of the same subject were
not used in both training and testing data. The color images
were converted to gray-scale images. We also assumed that
the face pose is known. The focus is on localizing the non-
rigid shape component. The model space is defined by 10
shape parameters, which explain 86% of shape variations.
We sampled 1200 examples from an image and trained three
levels of regressors. The mean shape is used as the starting
point at the testing stage. The average initial error is 5.93
pixels.

2The annotations are provided by Dr. Cootes, which is available at
http://www.isbe.man.ac.uk/˜bim.



Figure 11. An example on which our algorithm works better than
AAM. The left is the initial position. The middle is the result of
AAM. The right column is the result of our algorithm. The ground
truth is red dots and the localization result is green dots.

We compared the performance of our algorithm to the al-
gorithms listed in [19]: AAM[15], shape inference[7], and
shape refinement based on rankboost [19]. An example of
localization is shown in figure 11. The localization errors of
the four algorithms are shown in Table 1(C) and in Figure
8(C). Comparing to shape inference and rankboost, which
only consider the candidate shapes in the training set, our
algorithm searches in the whole shape space. Again, our
approach records the best performance.

6. Discussion and Conclusion
We have presented a regression approach to learning a

conditional density function. The target function can be ar-
tificially constructed to be both smooth and unimodal and
hence easy to optimize. To learn the regressor, the boost-
ing principle has been employed to select relevant features.
We have also adopted a multi-level strategy to learn a series
of conditional density functions, each of which guides the
solution of optimization algorithms increasingly converging
to the correct solution. We have then proposed a gradient-
based sampling strategy to maximize the gradient contribu-
tions in the directions of largest variation. We have success-
fully applied our approach to segmenting corpora callosa,
tracing the endocardial wall of the left ventricle, and local-
izing facial feature points. Our results consistently outper-
form those obtained by state-of-the-art methods.

Like all discriminative learning approaches, our ap-
proach could suffer the problem of overfitting especially
when the variation of training data cannot totally cover that
of testing. Because of this, the trained regressor does not
have the desired unimodal shape on some testing data and
the local optimization algorithm fails to converge to the
ground truth. We will analyze the overfitting problem in
future work.
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