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Abstract. Automatic delineation of anatomical structures in 3-D vol-
umetric data is a challenging task due to the complexity of the object
appearance as well as the quantity of information to be processed. This
makes it increasingly difficult to encode prior knowledge about the ob-
ject segmentation in a traditional formulation as a perceptual grouping
task. We introduce a fast shape segmentation method for 3-D volumet-
ric data by extending the 2-D database-guided segmentation paradigm
which directly exploits expert annotations of the interest object in large
medical databases. Rather than dealing with 3-D data directly, we take
advantage of the observation that the information about position and
appearance of a 3-D shape can be characterized by a set of 2-D slices.
Cutting these multiple slices simultaneously from the 3-D shape allows
us to represent and process 3-D data as efficiently as 2-D images while
keeping most of the information about the 3-D shape. To cut slices consis-
tently for all shapes, an iterative 3-D non-rigid shape alignment method
is also proposed for building local coordinates for each shape. Features
from all the slices are jointly used to learn to discriminate between the
object appearance and background and to learn the association between
appearance and shape. The resulting procedure is able to perform shape
segmentation in only a few seconds. Extensive experiments on cardiac
ultrasound images demonstrate the algorithm’s accuracy and robustness
in the presence of large amounts of noise.

1 Introduction

Three dimensional imaging technologies such as ultrasound, MRI and X-ray are
developing rapidly. While 3-D volumetric data contain much richer information
than 2-D images, 3-D volumetric data is still not widely used in clinical diagnosis
mainly because quantitative analysis by human is much more time-consuming
than analyzing 2-D images. Thus, automatic segmentation of anatomical struc-
tures in 3-D volumetric data is extremely important to have a fast quantitative
analysis and to increase the use of volumetric data in clinical practice.

Segmentation of structures in 2-D images or 2-D video sequences has been
extensive studied [1, 2, 3, 4]. However, automatically processing 3-D volumetric
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data is much more challenging, due to the enormous amount of data and the re-
sulting computational complexity. In the traditional formulation, segmentation
is defined as a perceptual grouping task and solved through clustering or varia-
tional methods. However, as the difficulty of the desired segmentation increases,
it becomes harder to incorporate prior knowledge into the grouping task. The
3-D active appearance model (3-D AMM) [5, 6] extends the 2-D AAM into 3-D.
However, matching 3-D AAM to volumetric data is a non-linear optimization
problem which requires heavy computation and good initialization to avoid lo-
cal minima. Recently, segmentation methods based on prior knowledge learnt
from large annotated databases through boosting [7, 8, 9] show promising per-
formance on segmentation tasks with complex object appearance and noisy data.
The advantage of boosting is that it can implicitly encode the large amount of
prior knowledge relevant to the segmentation task and yield algorithms capable
of running in real-time for 2-D images. However, there is no trivial way to im-
plement it for 3-D volumetric data because the increase in dimension from two
to three will dramatically increase the complexity of the algorithm.

Contributions. The main contribution of this paper is to propose a fast 3-D
database-guided segmentation method that directly exploits expert annotation
of the interest object in large databases. The key is to transform the 3-D learn-
ing problem into several 2-D learning problems solved simultaneously. By cut-
ting multiple 2-D slices to represent a 3-D shape, the segmentation in 3-D is
extremely accelerated. Haar-like rectangle features are used for appearance rep-
resentation because they can be evaluated rapidly in 2-D by using the “integral
images”[8]. It is difficult to directly use 3-D features and an “integral volume”
due to the increased computational complexity. Also, the number of all possi-
ble 3-D features is much higher than the number of 2-D features, making the
feature selection through boosting very difficult. Our method converts the 3-D
problem into a 2-D problem while keeping most of the 3-D information. The
computational complexity for evaluating features in our method is similar to the
complexity for 2-D images. The 2-D features simultaneously obtained from all
2-D slices are used to solve two 3-D learning problems: 1. Shape detection, where
a classifier is trained to distinguish between object appearance and non-object
appearances (Section 3) and 2. Shape inference, where the association between an
object appearance and its 3-D shape is solved by selecting the relevant features
(Section 4).

The multiple slices of all 3-D shapes must be cut consistently according to
their local coordinate systems. The local coordinates of each shape will be put in
correspondence through shape alignment. Alignment of two 3-D shapes is in gen-
eral a very hard problem because the meshes annotated by experts do not have
pairwise correspondence. The task in our application is easier because some land-
marks such as the principal axis and a representative plane (denoted by the A4C
plane) are already known about the object of interest. The focus of this paper
is segmentation of the left ventricle in 3-D ultrasound heart images however the
method is general and can be applied to a wide range of anatomical object seg-
mentation in volumetric data. In Section 2 we introduce an iterative algorithm
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to efficiently solve the alignment problem. Section 3 presents the method for
shape detection followed by shape inference in Section 4 and experimental re-
sults in Section 5.

2 Non-rigid Linear 3-D Shape Alignment for Training
Data

For all the shapes in the training database, the location, orientation, size, aspect
ratio and non-linear deformation vary a lot (See Figure 1). The variation among
these shapes must be eliminated to acquire their essential common characteristics
and build their local coordinates.

Suppose that we have a mean shape which is the average of all the train-
ing shapes after alignment, all the training shapes must be aligned to this
mean shape by transformations which will minimize the shapes variations. Ide-
ally, a non-linear transformation can reduce the variation to zero. However,
this transformation has to be searched at detection time. Thus, using an ideal
non-linear transformation will considerably increase the search space. In our
method, we only consider linear transformations, which provide a computa-
tionally feasible way to reduce the variation. The shape after the linear trans-
formation will be very close to the mean shape and we denote it by the
prototype of the original shape. The mean shape will be the average of all the
prototypes.

Each training shape is represented by a 3-D triangle mesh annotated by ex-
perts. The mesh can be represented by a set of points (vertices), denoted as
P 0 .= {Xi = [Xi, Yi, Zi]T ∈ �3}N

i=1 in world coordinates. N is the number of
vertices of each mesh. For each point X on a shape, the corresponding point
on the prototype shape is x ∈ �3 in its local coordinates. The prototype shape
is denoted as P

.= {xi = [xi, yi, zi]T ∈ �3}N
i=1. The mean shape is denoted as

P̄
.= {x̄i = [x̄i, ȳi, z̄i]T ∈ �3}N

i=1 = 1
M

∑
Pj . Among all the linear transforma-

tions, we assume that each shape is transformed to a prototype shape by rotat-
ing, translating, scaling and changing of aspect ratio. The linear transformation

=⇒
Fig. 1. Left: The location, orientation, size, aspect ratio and non-linear deformation
of the shapes in the training set vary a lot. Right: The shapes aligned by proposed
method.
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⇐⇒

Fig. 2. Left: A shape used for training in world coordinates. Right: The prototype
shape (black) and the mean shape (red) in their local coordinates.

between the original shape and its prototype (also between world coordinates
and local coordinates) can be expressed as,

X = RSx + T, (1)
x = R−1S−1(X − T ), (2)

where R ∈ SO(3) is a rotation matrix, S = diag[w, d, h] ∈ �3×3 is a scaling ma-
trix and T = [tx, ty, tz]T ∈ �3 is a translation vector. Figure 2 shows an example
of a shape, its prototype shape and the mean shape. For each of the samples in
the training set, the parameters of the transformation have to be estimated. A
total of 9 parameters are needed to represent such a linear transformation, i.e., 3
parameters for R, 3 parameters for S and 3 parameters for T . In our data set of
left ventricles, w and d are roughly equal. So we can simply set w = d to reduce
the total number of parameters to 8. h/w is defined to be the aspect ratio of the
shape.

If the vertices of two shapes have pairwise correspondence, the distance of two
shapes is defined as

dist(P1, P2)
.=

N∑

i=1

‖x1
i − x2

i ‖ (3)

The problem of aligning all the shapes can be written as the following opti-
mization problem:

{P̄ , Rj , Sj , Tj}M
j=1

.= argmin
M∑

j=1

dist(Pj , P̄ ) =
M∑

j=1

N∑

i=1

‖xj
i − x̄i‖ (4)

Most existing methods for aligning two sets of 3-D data such as the popular It-
erative Closest Point (ICP) [10] do not use any landmarks on the data. They also
usually only consider rigid motion and ignore the changing of aspect ratio. The
non-linear optimization in those methods is prone to local minima. For our prob-
lem domain, we know the extrema of the principal axis which pass through the
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center of the left ventricle and a plane named apical-four-chamber plane (A4C
plane) which passes through all 4 chambers of the heart. However, our 3-D data
do not have pairwise correspondences. So the optimized mean shape and trans-
formation parameters {P̄ , Rj , Sj , Tj}M

j=1 still cannot have a closed-form solution.
We introduce an iterative linear method to solve the optimization problem.

– Step 1: In the first step, the principal axis which links the two apexes of the
shape is aligned to the z-axis. For each shape, the rotation matrix Ra needed
for this transformation is,

Ra
.= R2R

T
1 , R1 = [v,w,v × w], R2 = [u,w,u × w], w = v × u, (5)

where u is the normalized principal axis vector and v = [0, 0, 1]T .
– Step 2: After the first step, all the shapes still have different angles of ro-

tation along the z-axis. For each shape of a left ventricle, the A4C plane
can determine the rotation along the z-axis. So in the second step, we rotate
each mesh along its principal axis by certain degree so that the A4C plane
of the left ventricle matches the x-z plane. The rotation is denoted as Rz,

Rz
.=

⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤

⎦ , (6)

where θ is the angle between the A4C plane and the x-z plane. The estimated
rotation matrix of each shape should be R = Ra ∗ Rz.

– Step 3: For all the meshes annotated by the experts, the vertices do not
have one-to-one correspondence between two meshes except the two apexes.
The points of the shape should correspond to the same physical points of
the left ventricle. However it is impossible to determine automatically which
points correspond the same physical points. So after we align the orientation
of each mesh, we just move the centroid of each mesh to the origin of the
coordinates and roughly evenly re-sample each mesh using polar coordinates.
The re-sampled points will approximately have pairwise correspondences.

– Step 4: The mean shape P̄ is calculated by P̄
.= 1

M

∑
Pj .

– Step 5: Finally, we need to align the position, scale and aspect ratio of all
the shapes. For each shape, the parameters of S and T can be determined
by solving the following equation,

⎡

⎢
⎢
⎢
⎢
⎣

∑N

i=1(x
2
i + y2

i ) 0
∑N

i=1(xi + yi) 0 0
0

∑N

i=1 z2
i 0 0

∑N

i=1 zi∑N

i=1 xi 0 N 0 0∑N

i=1 yi 0 0 N 0
0

∑N

i=1 zi 0 0 N

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

w
h
tx

ty

tz

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

∑N

i=1(xix̄i + yiȳi)∑N

i=1 ziz̄i∑N

i=1 x̄i∑N

i=1 ȳi∑N

i=1 z̄i

⎤

⎥
⎥
⎥
⎥
⎦

,

(7)
where x = [x, y, z]T , x̄ = [x̄, ȳ, z̄]T and the estimated S = diag[w, w, h],
T = [tx, ty, tz ].
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Steps 2 and 3 only need to be performed only once. Steps 1, 4 and 5 will be
iterated until the change of the parameters is below a threshold determined by
the working resolution.

After the convergence of the algorithm, the prototypes {P̄}M
j=1 of all shapes

and their local coordinate transformations {Rj, Sj , Tj}M
j=1 will be used to cut

the multiple slices.

3 3-D Object Detection

The detection method we are using is based on boosted cascade of simple fea-
tures, which has been widely used for real-time object detection[11, 8, 9]. How-
ever, most of such detection methods are only applied on 2-D images. Extending
those methods to 3-D is not trivial and several problems must be addressed.

3.1 Multi-slice Representation of 3-D Data

One of the most popular sets of features for object detection is the Haar-like
rectangular features, which can be computed very efficiently through the “inte-
gral images” [8]. However, in our problem domain, the enormous amount of 3-D
data makes computing these features difficult. For example, for an 24 × 24-pixel
2-D image, there are already more than 180 thousand possible rectangle features.
If we extend the rectangular features to cubical features, the number of possible
features will be several million. Also, computing an “integral volume” is much
slower than computing an integral image.

To avoid the difficulty in dealing with 3-D data directly, we first represent the
3-D data by 2-D slices simultaneously cut from the volume. These slices should
be perpendicular to the surface of the shape in order to make the slices sensitive
to the changing of the shape. So in the local coordinates we built in section 2 for
each shape, we cut its prototype into vertical slices through the z-axis at different
angles from the x− z plane and cut horizontal slices at different z. For example,
in Figure 3, there are two vertical slices at angle 0 and 90 degree from x − z
plane and one horizontal slice at z = 0. These three slices are already sufficient
for detection purposes because any changes in the location, orientation or aspect
ratio will cause large changes in at least one slice, since the slices coincide with
the three coordinate axes. However, for the shape inference in Section 4, more
slices are preferred to achieve better accuracy.

Rectangle features are computed simultaneously for each of the slice as shown
in Figure 4. Features from all the 2-D slices consist the feature vector for the
3-D volume. The “integral image” is adopted to accelerate the computation of
the features. The “integral mask” proposed in [9] is also needed to ensure correct
computation for invalid image regions.

Training a detection classifier requires positive and negative samples. For the
positive samples, the slices are obtained in local coordinates from the correct
transformation we obtained in section 2. Several positive examples are shown in
Figure 5 to demonstrate that the multiple slices capture the variations of the
3-D shapes. Some perturbation will be added to the correct transformation to
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Fig. 3. An example of the slices that represent the 3-D volume. Two vertical slices are
cut at 0 and 90 degree from the x − z plane. One horizontal slice is cut at z = 0.

Fig. 4. Rectangle features are computed independently for each of the slice. Features
from all the 2-D slices define the feature vector for the 3-D volume.

generate negative samples. Figure 6 shows positive samples and negative samples
generated from one volume.

3.2 3-D Shape Detection

The detection of a 3-D shape is equivalent to finding the correct transformation
between world coordinates and local coordinates of this object. From Equation 1,
the transformation is determined by R, S and T , which contain 8 transforma-
tion parameters [ωx, ωy, ωz, w, h, tx, ty, tz ], where ωx, ωy and ωz are three
Euler angles. Exhaustive searching in an 8 dimensional space would be very
time-consuming. In the left ventricle detection problem, the A4C plane (i.e., the
x − z plane of local coordinates) is usually easy annotated by human or other
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Fig. 5. Several positive training samples. The multiple slices capture the variations of
the 3-D shapes. There are two columns of slices for each sample. The left columns show
the slices and the right columns show the slices with the meshes annotated by experts.

Fig. 6. Positive samples and negative samples generated from one volume. Only the
leftmost one is a positive sample generated by correct local coordinates. All others are
negative samples generated by incorrect local coordinates.

automatic detection. So we will assume the A4C is known so that we only need
to search inside the A4C plane. Suppose that we know the normal vector n and
a point b on the A4C plane. The A4C plane will be,

nT (x − b) = 0. (8)

Suppose the initial transform R, S, T are R0, S0 and T0. The initial rotation R0
must satisfy that the y-axis of local coordinates is the normal of the A4C plane.
It can be determined as,

R0 = [u1,u2,u3], u2 = n, v = [0, 0, 1]T , u1 = u2 × v, u3 = u1 × u2. (9)

The initial scale matrix S0 can be set to be the mean scale Sm for the training
set. But the initial translation vector T0 cannot be the mean translation vector
Tm because it may not be on the A4C plane. So we will use the projection of
Tm on the A4C plane as T0, i.e.,

T0 = Tm + nnT (b − Tm). (10)

During the search, we will change the initial transformation R0, S0, T0 by an-
other relative transformation Rr, Sr, Tr. Since we need to fix our transformation
inside the A4C plane, the only possible relative rotation is along y-axis.

Rr =

⎡

⎣
cosωry 0 sin ωry

0 1 0
− sinωry 0 cosωry

⎤

⎦ . (11)
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The relative translation Tr = [trx, 0, try]T is a translation on the A4C plane.

The relative scale matrix is Sr =

⎡

⎣
wr 0 0
0 wr 0
0 0 hr

⎤

⎦, where wr is the changing of the

width and hr is the changing of the height.
So the overall transform from the prototype to the shape is,

x = RSx0 + T = R0Rr((S0 + Sr)x0 + Tr) + T0

= R0Rr(S0 + Sr)x0 + R0RrTr + T0. (12)
R = R0Rr, S = S0 + Sr, T = R0RrTr + T0 = RTr + T0. (13)

The searching for [ωry, wr, hr, trx, trz] will be in a 5-dimensional space and
will be performed on a coarse to fine fashion. In the coarse stage, the search
range is determined by the statistics of the training data. After finding the
maximum response of the detection classifier, a new iteration of searching will
be performed. The initial point will be located at the maximum response found
in the coarse stage and the search range will be reduced by half.

4 3-D Non-rigid Shape Inference

The problem is now to determine the shape associated with the detected object.
This task is solved by finding the relevant features which best describe the non-
rigid variations of the shapes around the mean. All the prototype shapes {Pj}M

j=1

are clustered into K classes {Ci}K
i=1 as shown in Figure 7 by the K-means algo-

rithm. The rectangle feature vectors of each shape are acquired by the multi-slice
presentation in Section 3.1. The best features vectors for each class {fi}K

i=1 that
discriminate these classes of shapes are selected by the forward sequential feature
selection [9]. For each input volume, we first find the linear non-rigid transfor-
mation of the shape by the detection method in Section 3.2. In local coordinates

Fig. 7. All the prototype shapes {Pj}M
j=1 are clustered into K classes {Ci}K

i=1 by the
K-means method
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of the shape, the multiple slices are cut from its prototype to generate a query
feature vector fq for the shape in this volume. The distance of the query and a
reference is,

d(fq, fr) = (fq − fr)T Σ(fq − fr), (14)

where fq and fr are the feature vectors of the query and the reference respectively.
Σ is the Fisher linear discriminating matrix [12] learnt from the training samples.

The inferred shape P̂ is computed by Nadaraya-Watson kernel-weighted av-
erage [13, 14] of the K prototype classes,

P̂ =
ΣK

i=1Kh(f , fi)Ci

ΣK
i=1Kh(f , fi)

, (15)

where Kh is the Epanechnikov kernel [15] defined as,

Kh(f , fi) =

{
3
4 (1 − d(f ,fi)

d(f ,f[h])
), for d(f ,fi)

d(f ,f[h])
≤ 1;

0, otherwise,
(16)

where f[h] is the feature vector which has hth smallest distance to f .

5 Experiments

The proposed segmentation method was tested on two sets of 3-D ultrasound car-
diac volumes of size 160×144×208 = 4, 792, 320 voxels. The End-Diastolic(ED)
set consists of 44 volumes and the End-Systolic(ES) set consists of 40 volumes.
For each volume in the training sets, the A4C plane and a mesh of left ventricle
with 1,139 vertices are annotated by experts.

We first demonstrate results of the 3-D shape alignment method introduced
in Section 2. Figure 8 shows the distances between each aligned shape and the
mean shape. The distance between two shapes is defined in Equation 3. The
variation among the shapes is very small after the shape alignment.

Figure 9 illustrates the effectiveness of the 3-D multi-slice detection method
described in Section 3.2 by leave one out method. The four curves indicate

Fig. 8. The distances between each aligned shape and the mean shape. The shapes
are sorted by their distances to the mean shape. Left: Results for ED volumes. Right
Results for ES volumes.
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Fig. 9. The error of the translation, rotation, width and height for the left ventricle
detection. Left: Results for ED volumes. Right Results for ES volumes.

Fig. 10. The error of the entire segmentation procedure. Left: Results for ED volumes.
Right Results for ES volumes.

errors of the translation ‖(∆tx, ∆tz)‖, rotation |∆ωy|, width |∆w| and height
|∆h| respectively. The ground truth of these parameters are obtained by the
shape alignment in Section 2.

The error of the entire segmentation procedure is shown in Figure 10. The
automatic segmentation result of each volume is compared with the mesh anno-
tated by experts. The error of the segmentation is the distance of the inferred
shape and the ground truth in world coordinates. This error contains error both
from the detection and shape inference.

The results in Figure 8 can be thought of as the error of another segmentation
method which uses the ground truth of detection but does not use any shape
inference. All the shapes are assumed to be the same as the mean shape. Com-
paring Figure 10 and Figure 8, we can conclude that the shape inference largely
reduces the shape error even when the detection is not perfect.

Figure 11 shows additional segmentation results from volumes which do not
have the meshes drawn by experts. The meshes found by our segmentation
method visually fit the borders of the left ventricles very well.

The whole segmentation procedure takes about 3 seconds for each volume
with 4, 792, 320 voxels on a Xeon 2.8GHz machine. Our algorithm is faster than



408 W. Hong et al.

Fig. 11. Results from volumes which do not have the meshes drawn by experts. The
meshes found by our segmentation method visually fit the boarders of the left ventricles
very well.

3-D AAM models proposed in [5, 6]. Mitchell’s work [5] requires 2-3 minutes for
each frame on MRI data. Stegmann’s 3-D AAM [6] takes 3.4 seconds on MRI
data with 22,000 voxels.

6 Limitations and Future Work

We have proposed a fast method for segmenting anatomical objects from 3-D
volumetric data. It overcomes the difficulty of working directly with 3-D data
by simultaneously solving several 2-D problems. The method is learning-based
and directly exploits expert annotations in medical databases.

Due to the difficulty of annotating 3-D shapes by hand, our training and
testing sets are not very large or all-inclusive. In the future, more data will be
collected and used to validate our method. In fact our method should only bene-
fit from more training data. For the shape detection, it is also possible to utilize
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other local features or detection methods to generate a better initialization and
reduce the searching range. For the non-rigid shape alignment, so far only lin-
ear transformations are considered. Integrating non-linear transformations might
capture more complex variation of shapes.
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