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Abstract—Particle filtering is frequently used for visual tracking problems since it provides a general framework for estimating and

propagating probability density functions for nonlinear and non-Gaussian dynamic systems. However, this algorithm is based on a

Monte Carlo approach and the cost of sampling and measurement is a problematic issue, especially for high-dimensional problems.

We describe an alternative to the classical particle filter in which the underlying density function has an analytic representation for

better approximation and effective propagation. The techniques of density interpolation and density approximation are introduced to

represent the likelihood and the posterior densities with Gaussian mixtures, where all relevant parameters are automatically

determined. The proposed analytic approach is shown to perform more efficiently in sampling in high-dimensional space. We apply the

algorithm to real-time tracking problems and demonstrate its performance on real video sequences as well as synthetic examples.

Index Terms—Bayesian filtering, density interpolation, density approximation, mean shift, density propagation, visual tracking, particle

filter.
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1 INTRODUCTION

PARTICLE filtering is a Bayesian approach to dynamic state
estimation based on a sequential Monte Carlo technique.

Although it provides tractable solutions to nonlinear and
non-Gaussian systems, it frequently suffers from practical
issues such as degeneracy, loss of diversity, and/or loss of
multimodality [3], [35]. Moreover, to achieve reliable filtering
performance, the sample size can grow exponentially as the
dimension of the state space increases. To overcome these
issues, we explore an analytic approach to approximate and
propagate density functions with a mixture of Gaussians and
introduce kernel-based Bayesian filtering (KBF), which was
originally proposed in [16], [17]. The main idea of this work is
to maintain an analytic representation of relevant density
functions and propagate them over time throughout all steps
in a sequential Bayesian filtering framework.

1.1 Related Work

The seminal work for dynamic state estimation is the

Kalman filter [20], which provides the optimal solution for

linear dynamic systems with Gaussian noise. However, the
linear and Gaussian assumption does not hold in many
real-world problems, so several suboptimal solutions have
been proposed based on various approximations. The
Extended Kalman filter (EKF) can handle nonlinear and
non-Gaussian systems by linearizing the process and
measurement model, but such a first-order approximation
has significant limitations for accurate state estimation.
More recently, the Unscented Kalman filter (UKF) [19], [36]
provides a methodology to better approximate the non-
linearity by deterministic propagation of sigma points and
parameter estimation based on the sigma points. However,
both the EKF and UKF just estimate and propagate a
unimodal Gaussian distribution over time, while many real
visual tracking problems involve multimodal distributions.

To overcome such limitations, particle filters [3], [14],

[13], [18] based on the sequential Monte Carlo method have

been proposed. Particle filtering is very effective in

estimating the state in nonlinear and non-Gaussian dy-

namic systems in a recursive manner, but a significant

number of particles are typically required for accurate

estimation, especially in high-dimensional problems. To

alleviate this problem, various techniques for improving

sampling performance and reducing the number of

particles have been proposed [12], [23], [27], [34], [31],

[32], [33], but they are limited to focusing on the sampling

stage in the particle filter framework. Also, particle filtering

frequently suffers from degeneracy and loss of diversity

problems and requires a resampling step to avoid sub-

stantial performance degradation. The Unscented particle

filter (UPF) [24], [29] is a combination of an Unscented

transformation (UT) and a particle filter and it can reduce

the inefficiency of the original particle filter. However, it is
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also a Monte Carlo technique based on discrete density
functions and shares the same problems as particle filters.

A possible solution to obtaining better sampling quality
is to integrate continuous multimodal proposal distribu-
tions instead of discrete ones [3]. A straightforward solution
is the regularized particle filter [13], in which a proposal
distribution is constructed by kernel density estimation of
current samples. A variation of the regularized particle
filter is the kernel particle filter [6], where density modes in
the posterior are detected for more effective sampling.
However, kernel density estimation and mode detection
with a large number of samples is computationally very
expensive. On the other hand, Cham and Rehg [5] introduce
a piecewise Gaussian function to specify the tracker state in
which the selected Gaussian components characterize the
neighborhoods around the modes. This idea is applied to
multiple hypothesis tracking in a high-dimensional space
body tracker, but the sampling and the posterior computa-
tion are not straightforward and the accuracy of the
posterior density function is not verified. The closest work
to ours is [21], where all relevant density functions in
sequential Bayesian filtering are represented with Gaussian
mixtures. However, that solution may not provide a
compact representation for the posterior and the prediction
and update steps heavily depend on heuristics.

1.2 Our Approach

Instead of utilizing discrete density functions or some ad hoc
integration of continuous density functions, we describe how
continuous density functions—Gaussian mixtures—are
naturally integrated in a sequential Bayesian filtering frame-
work. In this kernel-based Bayesian filtering, density func-
tions morph and density modes are propagated over time.
Density approximation and density interpolation techniques
are employed to represent density functions in the state space
efficiently and effectively. In both techniques, density
functions are represented by Gaussian mixtures, where the
number of components and their weights, means, and
covariances are automatically determined. The density
approximation which is employed to represent the posterior
density function is based on a mode-finding algorithm using
the mean-shift procedure [10], [11]. Mean-shift mode finding
provides a methodology for constructing a compact repre-
sentation with a small number of Gaussian kernels. A density
interpolation technique is introduced to obtain a continuous
representation of the measurement density function, which is
also a mixture of Gaussians.

For handling nonlinear state transition models with a
continuous representation of density functions in a sequen-
tial Bayesian filtering framework, we adopt the Unscented
transformation [19], [24]. The main advantage of maintain-
ing an analytic representation of the density functions lies in
efficient sampling, which is important for solving high-
dimensional problems. A multistage sampling strategy is
introduced within the density interpolation technique for
accurate approximation of the measurement density func-
tion. The kernel-based representation for the likelihood of
each sample increases the coverage of the state space with a
small number of samples. The algorithm is applied to real-
time visual tracking, and its performance is demonstrated
through various experiments.

This paper is organized as follows: Section 2 introduces

the new density propagation technique in the sequential

Bayesian filtering framework. Sections 3 and 4 explain the

density interpolation and the density approximation meth-

ods, respectively. Section 5 demonstrates its performance by

various simulation results with synthetic examples. Finally,

Section 6 shows object tracking in synthetic examples and

real videos.

2 KERNEL-BASED BAYESIAN FILTERING

In this section, we present the overall structure of KBF,

where the relevant density functions are approximated by a

kernel-based representation and propagated over time.

2.1 Overview

In a dynamic system, the process and measurement models

are given by

xt ¼ gðxt�1;utÞ; ð1Þ

zt ¼ hðxt;vtÞ; ð2Þ

where vt and ut are the process and the measurement

noises, respectively. The state variable xt ðt ¼ 0; . . . ; nÞ is

characterized by its probability density function (pdf)

estimated from the sequence of measurements zt
ðt ¼ 1; . . . ; nÞ. In the sequential Bayesian filtering frame-

work, the conditional density of the state variable given the

measurements is propagated through prediction and

update stages as

pðxtjz1:t�1Þ ¼
Z
pðxtjxt�1Þpðxt�1jz1:t�1Þdxt�1; ð3Þ

pðxtjz1:tÞ ¼
1

k
pðztjxtÞpðxtjz1:t�1Þ; ð4Þ

where k ¼
R
pðztjxtÞpðxtjz1:t�1Þdxt is a normalization con-

stant independent of xt. Also, pðxt�1jz1:t�1Þ represents the

prior pdf and pðxtjz1:t�1Þ and pðztjxtÞ are the predicted pdf

and the measurement likelihood function, respectively. The

posterior pdf at time step t, pðxtjz1:tÞ, is used as the prior

pdf at time step tþ 1.
At each time step, the conditional distribution of the state

variable x given a sequence of measurements z is

represented by a Gaussian mixture. Our goal is to retain

such a representation through the stages of prediction and

update and to represent the posterior probability in the

following step with the same mixture form.
The proposed filtering framework is described as

follows: First, the UT [19], [24] is used to derive a mixture

representation of the predicted pdf pðxtjz1:t�1Þ. Second, a

density interpolation technique with multistage sampling is

integrated to approximate the likelihood function with a

mixture form. By multiplying two mixture functions, the

posterior pdf is obtained through (4). To prevent the

number of mixands from growing too large, a density

approximation algorithm based on mode finding is applied

to construct a compact representation for the posterior pdf.
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2.2 Prediction by Unscented Transform

The state estimation problem in general dynamic systems
typically involves highly nonlinear process models, which
requires additional observations for better construction of
the posterior density function. Therefore, accurate predic-
tion is critical for reducing the cost of the observation and
improving estimation accuracy. However, it is generally
hard to find a closed-form solution for the nonlinear process
model. The UT is an appropriate technique for handling
nonlinear process models since it is accurate up to the
second order of Taylor expansion. This section describes the
unscented transformation.

Denote by xit ði ¼ 1; . . . ; ntÞ the set of means in IRd of the
components of a Gaussian mixture and by Pi

t the
corresponding covariance matrices at time step t. Let each
Gaussian have a weight �it, with

Pnt
i¼1 �

i
t ¼ 1, and let the

prior density function be given by

pðxt�1jz1:t�1Þ

¼ 1

ð2�Þd=2

Xnt�1

i¼1

�it�1

jPi
t�1j

1=2
exp � 1

2
D2 xt�1;x

i
t�1;P

i
t�1

� �� �
;
ð5Þ

where

D2ðxt�1;x
i
t�1;P

i
t�1Þ � xt�1 � xit�1

� �>
Pi
t�1

� ��1
xt�1 � xit�1

� �
:

ð6Þ

The unscented transformation [19], [24] is a method for
calculating the statistics of a random variable which
undergoes a nonlinear transformation. For each mode, it
first chooses 2dþ 1 sigma points and their weights, which
are given by

Xði;0Þt�1 ¼xit�1;

Xði;jÞt�1 ¼xit�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ �ÞPi

t�1

q� �
j

j ¼ 1; . . . ; d;

Xði;jÞt�1 ¼xit�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ �ÞPi

t�1

q� �
j�d

j ¼ dþ 1; . . . ; 2d;

Wði;0Þ ¼�=ðdþ �Þ;
Wði;jÞ ¼ 1=2ðdþ �Þ j ¼ 1; . . . ; 2d;

ð7Þ

where � is a scaling parameter, and ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ �ÞPi

t�1

q
Þj is the

jth row or column of the matrix square root of ðdþ �ÞPi
t�1.

Wði;jÞ is the weight associated with the jth sigma point,
where

P2d
j¼0 Wði;jÞ ¼ 1. These sigma vectors are propagated

through the nonlinear function

Xði;jÞt ¼ g Xði;jÞt�1 ;ut

� �
j ¼ 0; . . . ; 2d ð8Þ

and the mean �xit and covariance �Pi
t of the ith mode in the

predicted density are approximated using a weighted
sample mean and covariance of the sigma points

�xit ¼
X2d
j¼0

Wði;jÞXði;jÞt ;

�Pi
t ¼

X2d
j¼0

Wði;jÞ Xði;jÞt � �xit

� �
Xði;jÞt � �xit

� �>
þ Q;

ð9Þ

where Q is the covariance matrix for the process noise.

The unscented transformation is applied to every mode
in the density (5) independently and the density after
prediction is given by

pðxtjz1:t�1Þ ¼
1

ð2�Þd=2

Xnt�1

i¼1

��it
�Pi
t

		 		1=2 exp � 1

2
D2 xt; �x

i
t;

�Pi
t

� �� �
;

ð10Þ

where ��it ¼ �it�1. The advantage of the unscented transfor-
mation is illustrated clearly in [24, Fig. 1].

2.3 Multistage Sampling and Interpolation of
Measurement Likelihood

In the measurement step of KBF, a continuous approximation
of the likelihood function is interpolated from discrete
samples. A multistage sampling scheme is introduced to
improve the approximation progressively. The advantage of
the analytic representation and multistage sampling is that it
provides a global view of the landscape of the likelihood
function and supports efficient sample placement.

2.3.1 Multistage Sampling

Unlike the Sampling Importance Resampling (SIR) algo-
rithm [18], which uses the predicted pdf as the proposal
distribution, we employ a multistage sampling strategy and
progressively update the proposal function based on
observations. The predicted pdf is used as the initial
proposal distribution q0 as

q0ðxtÞ ¼ pðxtjz1:t�1Þ: ð11Þ

Assume that, in total, N samples are to be drawn to obtain
the measurement density function. In our multistage
sampling scheme, N=m samples are drawn in the first
stage from the initial proposal distribution (11), where m is
the number of sampling stages. An initial approximation of
the likelihood function p1ðztjxtÞ is obtained through
interpolation with Gaussian kernels. Details of the density
interpolation algorithm are provided in Section 3. The
proposal function is then updated by a linear combination
of the initial proposal distribution and the current approx-
imation of the likelihood function p1ðztjxtÞ. We repeatedly
approximate the likelihood function from available samples
and update the proposal distribution using samples with
nonzero weights as follows:

pjðztjxtÞ ¼
1

ð2�Þd=2

X
�i 6¼0

�it
jRi

tj
exp � 1

2
D2 xt;x

i
t;R

i
t

� �� �
; ð12Þ

qjðxtÞ ¼ ð1� �jÞqj�1ðxtÞ þ �j
pjðztjxtÞR
pjðztjxtÞdxt

; ð13Þ

where i ¼ 1; . . . ; jmN , j ¼ 1; . . . ;m, and �j 2 ½0; 1� is the
adaptation rate. The kernel bandwidth Ri

t for each sample xit
is determined based on the distance to the kth nearest
neighbor in each dimension; the details are described in
Section 3.1.

Since the observation information is incorporated into
the proposal distribution to guide sampling, the multistage
sampling strategy explores the likelihood surface more
efficiently than conventional particle filters. Thus, it is
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especially advantageous in dealing with a high-dimensional
state space.

2.3.2 Approximation of Likelihood Function

As discussed previously, the measurement likelihood is
estimated through multistage sampling. With samples
drawn from the improved proposal distributions, inter-
mediate likelihood functions are constructed and used to
update the proposal distributions. In each stage, the inter-
mediate likelihood density function is obtained by a Non-
Negative Least Square (NNLS) method [22]. After an m-step
repetition of this procedure, the final measurement distribu-
tion is obtained. Algorithm 1 presents the complete proce-
dure to compute the likelihood function, and the final
measurement function withmt Gaussians at time t is given by

pðztjxtÞ ¼
1

ð2�Þd=2

Xmt

i¼1

�it

Ri
t

		 		1=2 exp � 1

2
D2 xt;x

i
t;R

i
t

� �� �
; ð14Þ

where �it , xit, and Ri
t are the weight, mean, and covariance

matrix of the ith kernel. Note that the measurement density
is a function of the state variable xt and that the
measurement variable zt is not shown in the RHS of (14).

Algorithm 1 Measurement Step

1: St ¼ �, where St represents the sample set.

2: Set the initial proposal distribution q0ðxtÞ to the

predicted pdf

q0ðxtÞ ¼ pðxtjz1:t�1Þ:
3: for i ¼ 1 to m do

4: Draw samples from proposal distribution and update

sample set

Sit ¼ fs
ðjÞ
i js

ðjÞ
i � qi�1ðxtÞ; j ¼ 1; . . . ; Nmg, St ¼ St [ Sit:

5: Assign a Gaussian kernel for each element in Sit
mði�1ÞNmþj ¼ s

ðjÞ
i

Qði�1ÞNmþj ¼ c diagðKNN1ðkÞ . . . KNNdðkÞÞ2 I: (23)

6: Compute likelihood of each new sample using a

measurement function h

lði�1ÞNmþj ¼ hðmði�1ÞNmþj;vtÞ, where vt is a variable for

measurement noise.

7: Obtain A and b for every element in St. (25) (26)

8: Compute the weight for each kernel by NNLS

w ¼ nnlsðA;bÞ: (27)

9: Obtain the measurement density function at the

current step

piðztjxtÞ ¼
P

�jt 6¼0Nð�
j
t ;x

j
t ;R

j
tÞ, where �t ¼ w, xt ¼m,

and Rt ¼ Q.

10: Update new proposal distribution

qiðxtÞ ¼ ð1� �iÞqi�1ðxtÞ þ �j piðztjxtÞR
piðztjxtÞdxt

: (13)

11: end for

12: Final measurement density function

pðztjxtÞ ¼ pmðztjxtÞ:

2.4 Update

Since both the predicted pdf and the measurement
functions are represented by Gaussian mixtures, the
posterior pdf, as the product of two Gaussian mixtures,
can also be represented by a Gaussian mixture. Denoting
the Gaussian components of the predicted pdf and the
likelihood function by Nð��it; �xit; �Pi

tÞ ði ¼ 1; . . . ; nt�1Þ and

Nð�jt ;x
j
t ;R

j
tÞ ðj ¼ 1; . . . ;mtÞ, respectively, the product of the

two distributions is given as follows:

Xnt�1

i¼1

N ��it; �x
i
t;

�Pi
t

� � ! Xmt

j¼1

N �jt ;x
j
t ;R

j
t

� � !

¼
Xnt�1

i¼1

Xmt

j¼1

N !ijt ;m
ij
t ;�

ij
t

� �
;

ð15Þ

where

!ijt ¼
��it�

j
t exp � 1

2D
2 xjt ; �x

i
t;

�Pi
t þRj

t

� �� �
ð2�Þd=2 �Pi

t þRj
t

		 		1=2
; ð16Þ

mij
t ¼ �ij

t

�
�Pi
t

��1

xit þ
�

Rj
t

��1

xjt

 !
; ð17Þ

�ij
t ¼

�
�Pi
t

��1

þ
�

Rj
t

��1
 !�1

: ð18Þ

The resulting density function in (15) is a weighted

mixture of Gaussians with nt�1 �mt components. How-

ever, the exponential increase in the number of components

over time could make the whole procedure intractable. In

order to avoid this situation, a density approximation

technique is proposed to maintain a compact yet accurate

density representation, even after density propagation

through many time steps. Details of the density approxima-

tion algorithm are given in Section 4.
After the update step, the final posterior distribution is

given by

pðxtjz1:tÞ ¼
1

ð2�Þd=2

Xnt
i¼1

�it

Pi
t

		 		1=2 exp � 1

2
D2 xt;x

i
t;P

i
t

� �� �
; ð19Þ

where nt is the number of components at time step t.
Fig. 1 illustrates the density functions throughout kernel-

based Bayesian filtering.

2.5 State Estimation

In the conventional particle filters such as the Condensation

algorithm, the final target state is typically determined by a

function of particle locations and their weights; the common

choices are weighted mean or maximum a posteriori (MAP)

solution. However, the output of the weighted mean

approach may be located in the middle of a multimodal

distribution, which can be far from any local maximum, and

MAP overly depends on local information (or a small

number of samples), which is not sufficiently resistant to

measurement noise. So, they suffer from instability of the

estimation, especially when multiple modes compete due to

occlusion and clutter. To mitigate this problem, we employ

a fusion technique for estimating the target state, where the

most significant mode in the underlying density function is

found by tracking the mode in a multiscale optimization

framework [9]. In this technique, the local and global

information in the posterior are considered together to

obtain the final target state. This can easily be done since the
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posterior density function is represented with a mixture of

Gaussians as in (20).
We first perform mode detection using large covariance

matrices of the form Ci ¼ ð1þ �ÞPi, where the parameter �
is large enough to ensure that the density function is

unimodal. Then, the sample point density estimator

computed at point x is given by

f̂ðxÞ ¼ 1

ð2�Þd=2

Xn
i¼1

�i

jCij1=2
exp � 1

2
D2 x;xi;Cið Þ

� �
; ð20Þ

where the time variable t has been dropped from (19) for

convenience of representation. Since the initial density
function with large � is assumed to be unimodal, the

convergence point of the mean-shift mode-finding proce-

dure is actually the global maximum.
Once the initial mode is determined, the mode location is

tracked across scales by successively reducing � and
performing mode detection again and again until there is

no further change in convergence location. Note that �

decreases to zero in the last mode detection iteration, and
the bandwidth matrix associated with each data point

becomes equal to the point covariance matrix, i.e., Ci ¼ Pi,

i ¼ 1; . . . ; n.
Denote by x̂m the location of the most significant mode.

Since the gradient at x̂m is zero, we have mðx̂mÞ ¼ 0, which

means

x̂m ¼
Xn
i¼1

!iðx̂mÞC�1
i

 !�1Xn
i¼1

!iðx̂mÞC�1
i xi; ð21Þ

where

!iðxÞ ¼
1

jCij1=2 exp � 1
2D

2 x;xi;Cið Þ
� �

Pn
i¼1

1

jCij1=2
exp � 1

2D
2 x;xi;Cið Þ

� � : ð22Þ

The most significant mode obtained by multiscale
mode tracking using Gaussian mixture density estimation

corresponds to the target location in our application.
However, note that the detected mode may not be equal
to the point with the highest density or the mode with the
largest local weight. This means that the most significant
mode is determined by neighborhood information, in
addition to local information, which is realized by the
multiscale implementation. The procedure of the final
state estimation and its property is illustrated in Fig. 2.

Fig. 3 illustrates the performance of state estimation
based on the proposed method. A synthetic example is
provided in Fig. 3a, where the estimated state based on the
weighted mean approach is in the middle of three major
modes in the density function, but the result of our method
finds the most significant mode. Note that the most
significant mode in this example is different from the
global maximum in the density function. A real example is
presented in Figs. 3b and 3c in which a human face is
tracked by KBF. The states estimated by the weighted mean
and density fusion method are indicated by blue and white
rectangle in Fig. 3b. Also, the contour of the posterior
density function1 is superimposed on the image in Fig. 3c,
which clearly illustrates the difference between the results
of the weighted mean (square marker) and density fusion
(circle marker). It would be more interesting to see the
detail of the posterior density function. The mixture weights
of the modes on the left and right are around 0.4 and 0.6,
respectively,2 and the probabilities at the peaks are almost
the same because the mode on the right has a wider
covariance. So, the state estimation in this case is quite
ambiguous, but the result based on the density fusion
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1. For visualization, the original 3D density function is projected to 2D
image plane.

2. Note that the mode with a smaller weight is selected in the fusion
process.

Fig. 1. Density function in each step of kernel-based Bayesian filtering.

(a) Prior. (b) Prediction. (c) Measurement. (d) Posterior. Fig. 2. Simulation result of the fusion-based state estimation. (a) Initial

sample locations with covariance matrix estimation and trajectory of

mode tracking across scales (red dots and lines). The black dot

represents the final convergence location. (b) Initial density function with

� ¼ 10. (c) Final density estimate with � ¼ 0. (The triangles in (b) and (c)

indicate mode tracking estimates.)



approach is more reasonable than the weighted mean

solution. We performed tracking in the same sequence with

Condensation algorithm and the estimated state coincides

with the location estimated by the weighted mean solution.

3 DENSITY INTERPOLATION

In this section, we describe the density interpolation

algorithm, which represents the measurement density

function with a mixture of Gaussians. In the measurement

step of sequential Bayesian filtering, the likelihood values

are known for a set of samples, and the likelihood density

surface can be interpolated from sample likelihoods using a

Gaussian mixture. The main objective of this step is to

interpolate measurement density surface using Gaussian

kernels as in [28], where the number of Gaussians is much

less than the number of samples.

3.1 Initial Scale Selection

One of the limitations of kernel-based methods is that they

involve the specification of a scale parameter. Various

research has been performed for the scale selection problem

[1], [25], [30], but it is very difficult to find the optimal scale

in general. Below, we present a strategy to determine the

scale parameter for density estimation based on the

statistics of the k-nearest neighbors.
The basic idea of this method is very simple, and similar

approaches are discussed in [7] and [8]. Each sample is

intended to cover the local region around itself in the

d-dimensional state space with its scale. For this purpose, kth

nearest neighbors (KNNs) are used and the kernel

bandwidth (scale) is proportional to the distance to the

KNN of a sample. Define KNNi
jðkÞ ð1 � j � dÞ to be the

distance to the KNN from sample i in the jth dimension;

then, the covariance matrix Pi for the ith sample is given by

Pi ¼ c diag KNNi
1ðkÞ KNNi

2ðkÞ . . . KNNi
dðkÞ

� �2
I; ð23Þ

where c is a constant that depends on the number of
samples and the dimensionality and I is the d-dimensional
identity matrix.

By this method, samples in dense areas have small scales
and the density will be represented accurately, but sparse
areas that are not represented as accurately convey only
relatively rough information about the density function.

3.2 Interpolation

A Gaussian kernel is assigned to each sample; the mean and
covariance are set to the sample location and the scale
initialized by the method in Section 3.1, respectively. When
the likelihood value of each sample is given, the weight for
each kernel can be computed by the Non-Negative Least
Squares (NNLS) method [22].

Denote xi as the mean location and Pi as the covariance
matrix for the ith sample ði ¼ 1; . . . ; nÞ. Also, suppose that li
is the likelihood value of the ith sample. The likelihood at xj
induced by the ith kernel is given by

piðxjÞ ¼
1

ð2�Þd=2jPij1=2
exp � 1

2
D2ðxj;xi;PiÞ

� �
: ð24Þ

Define an n� n matrix A having entry piðxjÞ in ði; jÞ and an
n� 1 vector b having li in its ith row as

A ¼

p1ðx1Þ p1ðx2Þ � � � p1ðxnÞ
p2ðx1Þ p2ðx2Þ � � � p2ðxnÞ

..

. ..
. . .

. ..
.

pnðx1Þ pnðx2Þ � � � pnðxn

0
BBB@

1
CCCA; ð25Þ

b ¼ ðl1; l2; � � � ; lnÞ>: ð26Þ

Then, the weight vector w ¼ ð�1; �2; . . . ; �nÞ> can be com-
puted by solving the following constrained least square
problem:

min
w
kAw� bk2

subject to �i 	 0 for i ¼ 1; . . . ; n;
ð27Þ

and it is denoted by w ¼ nnlsðA;bÞ. The size of matrix A is
determined by the number of samples. When the sample
size is large, sparse matrix methods can be used to solve for
w efficiently [2], [4]. Although the number of unknowns
and the number of equations in the optimization problem in
(27) are equal, we need a least square method since all
solutions must be nonnegative.

Usually, many of the weights will be zero and the final
density function will be a mixture of Gaussians with a small
number of components. The density interpolation simulates
the heavy-tailed density function more accurately than the
density approximation introduced in Section 4, while the
density approximation generally produces a more compact
representation.

3.3 Performance of Interpolation

Fig. 4 shows one-dimensional density interpolation
results. For each case, 100 samples are drawn, and the
initial scale for each sample is given as explained in
Section 3.1. The estimated density function approximates
the original density very accurately, as seen in Fig. 4. Two
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Fig. 3. State estimation in KBF. (a) Synthetic example. The square and
circle represent the estimated state by the weighted mean and the most
significant mode, respectively. (b) and (c) Real example. The blue and
white rectangle (or marker) in both figures represent the estimated state
by the weighted mean and the most significant mode, respectively.



different Gaussian mixtures—Nð0:2; 10; 22Þ, Nð0:35; 17; 42Þ,
Nð0:15; 27; 82Þ, Nð0:2; 50; 162Þ, and Nð0:1; 71; 322Þ in exam-
ple 1 and Nð0:15; 12; 52Þ, Nð0:1; 15; 42Þ, Nð0:35; 60; 82Þ,
Nð0:25; 75; 162Þ, and Nð0:15; 90; 322Þ in example 2—are
tested for the interpolation. The important difference
between density approximation and density interpolation
can be found in Fig. 4d, where the area around 90 is
accurately estimated by density interpolation although no
local maximum is detected there.

When 50 independent realizations are performed, Mean
Integrated Squared Error (MISE) and its variance are very
small for both examples as shown in Table 1.

Also, a multidimensional density function is interpo-
lated in the same manner, and its performance is discussed
next. In Fig. 5, the density interpolation produces a very
accurate and stable result when 200 samples are drawn
from the original density function (MISE ¼ 4:5467� 10�9

and VAR ¼ 7:3182� 10�18 on average over 50 runs).
These results show that the density interpolation has

reasonable accuracy to approximate a density function
given samples and their corresponding likelihoods.

4 DENSITY APPROXIMATION

The product of two pdfs—Gaussian mixtures—from the
prediction and measurement steps is also a Gaussian
mixture, but the output density function needs to be

simplified to avoid an exponential increase in the number
of Gaussian components. The density approximation
technique described in this section provides a method to
maintain a compact representation of the density by an
iterative mode detection procedure and curvature-based
covariance estimation [15].

4.1 Mode Detection and Density Approximation

Suppose that �i, xi, and Pi ði ¼ 1 . . .nÞ characterizes a
Gaussian kernel with weight �i, mean xi, and covariance Pi

in the d-dimensional state space, where
Pn

i¼1 �i ¼ 1. Then,
we define the sample point density estimator computed at
point x by

f̂ðxÞ ¼ 1

ð2�Þd=2

Xn
i¼1

�i

jPij1=2
exp � 1

2
D2ðx;xi;PiÞ

� �
: ð28Þ

Our purpose is to obtain a compact representation of the
density function which is a Gaussian mixture. The mode
location and its weight are found by a mean-shift algorithm,
and the covariance matrix associated with each mode is
computed using the Hessian matrix.

To find the gradient ascent direction at x, the variable-
bandwidth mean-shift vector at x is given by

mðxÞ ¼
Xn
i¼1

!iðxÞP�1
i

 !�1 Xn
i¼1

!iðxÞP�1
i xi

 !
� x; ð29Þ

where the weights

!iðxÞ ¼
�ijPij�1=2 exp � 1

2D
2ðx;xi;PiÞ

� �
Pn

i¼1 �ijPij�1=2 exp � 1
2D

2ðx;xi;PiÞ
� � ð30Þ

satisfy
Pn

i¼1 !iðxÞ ¼ 1. By computing the mean-shift vector

mðxÞ and translating the location x by mðxÞ iteratively, a

local maximum of the underlying density function is

detected. A formal check for the maximum involves the

computation of the Hessian matrix

ĤðxÞ ¼ 1

ð2�Þd=2

Xn
i¼1

�i

jPij1=2
exp � 1

2
D2ðx;xi;PiÞ

� �

�P�1
i ðxi � xÞðxi � xÞ> �Pi

� �
P�1
i ;

ð31Þ

which should be negative definite. If it is not negative
definite, the convergence point might be a saddle point or a
local minimum. In this case, kernels associated with such
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Fig. 4. Two examples of original density functions and their interpola-
tions. In the interpolation graphs (right), red dots represent the sample
locations and likelihoods (100 samples). In cases (a) and (b), 32 and
29 components have nonzero weights, respectively. (a) Example 1.
(b) Example 2.

TABLE 1
Error of Density Interpolation

Fig. 5. Comparison between the original density function and density

interpolation (2D). (a) Original density function. (b) Density interpolation

with 30 nonzero weight components.



modes should be restored and considered as separate
modes for further processing.

The approximate density is obtained by detecting the
mode location for every sample point xi and assigning a
single Gaussian kernel for each mode. Suppose that the
approximate density has n0 unique modes of ~xj ðj ¼ 1 . . .n0Þ
with an associated weight ~�j, which is equal to the sum of
the kernel weights that converge to ~xj. The Hessian matrix
Ĥj of each mode is used for the computation of ~Pj as
follows:

~Pj ¼
~�

2
dþ2

j

2�ð�Ĥ�1
j Þ

			 			 1
dþ2

�Ĥ�1
j

� �
: ð32Þ

The basic idea of (32) is to fit the covariance using the
curvature in the neighborhood of the mode. The final
density approximation is then given by

~fðxÞ ¼ 1

ð2�Þd=2

Xn0
i¼1

~�i

j~Pij1=2
exp � 1

2
D2ðx; ~xi; ~PiÞ

� �
: ð33Þ

Note that n0 is typically much smaller than n and that no
significant increase in the number of components in the
mixture is observed in all of our tracking examples. The
approximation error kf̂ðxÞ � ~fðxÞk can be evaluated
straightforwardly.

4.2 Performance of Approximation

In Bayesian filtering, the preservation and propagation of
density modes in the posterior is very important for
accurate sequential state estimation. The accuracy of the
density approximation is demonstrated in Fig. 6. From a
one-dimensional distribution composed of six weighted
Gaussians, 200 samples are drawn and the density function
is constructed by the density approximation technique
based on the samples. The result is presented in Fig. 6,
which shows the performance of density approximation. In
both examples, there are minor errors compared with the
density functions constructed by kernel density estimation,
but major mode locations are well preserved. The MISE
between the original density function and estimated density
functions is calculated and presented for the error estima-
tion. Fig. 7 illustrates the performance of the density
approximation with 400 samples in a 2D example.

5 SIMULATION

In this section, synthetic tracking examples are simulated,

and the performance of the KBF is compared with the SIR

algorithm [3], [18]. Two different process models—one

linear and the other nonlinear—are selected, and simula-

tions are performed for various dimensions—2D, 3D, 5D,

10D, 12D, and 15D. The accumulated Mean Squared Error

(MSE) through 50 time steps is calculated in each run, and

50 identical experiments are conducted based on the same

data for error estimation.
The first process model is given by the following

equation:

xt ¼
xt�1

2
þ 25xt�1

1þ x>t�1xt�1
þ 8 cos 1:2ðt� 1Þð Þ1þ ut; ð34Þ

where 1 is the vector whose elements are all ones. The

process noise ut is drawn from a Gaussian distribution

Nð1;0; ð
ffiffiffi
2
p

IÞ2Þ, where I is the identity matrix. The

measurement model is given by a nonlinear function

zt ¼
1

2
x>t xt þ vt; ð35Þ

where vt is drawn from a Gaussian distribution Nð1;0; I2Þ.
For the estimation of the measurement function, 20 particles

(10 particles � 2 stages) are drawn and the posterior is

estimated and propagated through time t ð1 � t � 50Þ.
Fig. 8 presents simulation results by comparing MSEs

and variances of both algorithms. The SIR filter shows

better or equivalent performance in low dimensions such as
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Fig. 6. Comparisons between kernel density estimation and
density approximation (1D). For the approximation, 200 samples
are drawn from the original distribution—Nð0:15; 25; 102Þ,
Nð0:1; 37; 82Þ, Nð0:15; 65; 162Þ, Nð0:25; 77; 92Þ, and Nð0:15; 91; 302Þ,
Nð0:2; 154; 152Þ. (a) Kernel density estimation (MISE ¼ 1:2556� 10�4.
(b) Density approximation ðMISE ¼ 1:7011� 10�4Þ.

Fig. 7. Comparison between kernel density estimation and

density approximations (2D, 400 samples). (a) Kernel density

estimation (MISE ¼ 1:1453� 10�8. (b) Density approximation

ðMISE ¼ 1:5237� 10�8Þ.

Fig. 8. MSE and variance of MSE. kernel-based Bayesian filtering with

20 particles (blue solid line), SIR with 20 particles (red dashed line), and

SIR filter with 200 particles (black dotted line) for model 1. (a) Error.

(b) Variance.



2D, but our method starts to outperform it in dimensions

higher than 3D.
The second process model is a simple linear model

given by

xt ¼
xt�1

2
þ 2 cos 2ðt� 1Þð Þ1þ ut; ð36Þ

where ut � Nð1;0; ð
ffiffiffi
2
p

IÞ2Þ. The same observation model as

in (35) is employed and 20 samples are drawn for every

simulation.
KBF yields smaller errors in high dimensions as in the

previous case and the detailed results are presented in
Fig. 9.

The two different process models produce similar
results, and KBF shows better performance in high-
dimensional cases, as expected. In order to demonstrate
the benefit of kernel-based particles, we ran the SIR
algorithm with 200 samples and compare the performance
with KBF with 20 samples. Surprisingly, the MSEs in the
two cases are almost the same, and our algorithm has a
smaller variance of MSE than the SIR algorithm.

This result suggests that KBF can be applied effectively
to high-dimensional applications, especially when many
samples are not available and the observation process is
very time consuming.

6 VISUAL TRACKING

Particle filtering provides a convenient method for estimat-
ing and propagating the density of state variables regard-
less of the underlying distribution and the given system in
the Bayesian framework. Additionally, our KBF has an
advantage of managing multimodal density functions with
a relatively small number of samples. In this section, we
demonstrate the performance of the KBF by tracking objects
in real videos.

The overall tracking procedure is equivalent to what is
described in Section 5 and we explain the process and the
measurement models briefly.

A random walk is assumed for the process model since,
for real moving objects, it is very difficult to describe the
motion before observation, even though our algorithm can
accommodate the general nonlinear function by unscented
transformation, as described in Section 2.2. So, the process
model equation in (1) can be rewritten as follows:

xt ¼ xt�1 þ vt; ð37Þ

where vt is a zero-mean Gaussian random variable.
The likelihood is based on the similarity of the RGB

histogram between the target and the candidates. Suppose
that the histogram of the target is denoted by c?ðiÞ
ði ¼ 1 . . .NÞ, where N is the number of bins in the
histogram and

PN
i¼1 c

?ðiÞ ¼ 1. The Bhattacharyya distance
in (38) is used to measure the similarity between two
histograms

D c?; cðxtÞ½ � ¼ 1�
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c?ðiÞcðxt; iÞ

p !
ð38Þ

and the measurement function at time t is given by

pðztjxtÞ / exp �	D2½c?; cðxtÞ�
� �

; ð39Þ

where 	 is a constant.
Multistage sampling is incorporated as introduced in

Section 2.3 and the likelihood of each particle is computed
by the inverse exponentiation of the Bhattacharyya distance
between the target and the candidate histograms, as
suggested in [26]. Based on the likelihood of each particle
and the initial covariance matrix derived from the distance
to the kth nearest neighbor, the measurement density is
constructed by density interpolation.

Three sequences are tested in our experiment. In the first
sequence, two objects—a hand carrying a can—are tracked
with 50 samples (25 samples � 2 stages). The state space is
described by a 10D vector, which is the concatenation of
two 5D vectors representing two independent ellipses as
follows:

ðx1; y1; lx1; ly1; r1; x2; y2; lx1; ly2; r2Þ;

where xi and yi ði ¼ 1; 2Þ are the location of ellipses, lxi is
the length of the x-axis, lyi is the length of the y-axis, and ri
is the rotation variable. The tracking performance for three
different algorithms are tested—kernel-based Bayesian
filtering, SIR particle filter, and sequential Gaussian mixture
filtering with the fixed number of components.3 The
tracking results are presented in Fig. 10; our algorithm
successfully tracks two objects, while the SIR particle filter
and the five-component sequential Gaussian mixture
filtering show relatively unstable performance with the
same number of samples.

The bodies of two people are tracked in the second
sequence in which one occludes the other completely
several times. The state vector is constructed by the same
method as in the can sequence, but two rectangles are used
instead of ellipses. An 8D vector—ðx; y; w; hÞ for each
rectangle—is used to describe the state, and 50 samples
(25 samples � 2 stages) are used. Fig. 11a demonstrates the
tracking results; our algorithm shows good performance in
spite of severe occlusions. The trackers based on the other
two algorithms are compared with our algorithm. As seen
in Fig. 11b, the performance of the SIR particle filter and the
five-component sequential Gaussian mixture filter are
worse than our method in this sequence.
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3. In the update step, five Gaussian components with the highest weights
are propagated to the next time step instead of using the density
approximation technique.

Fig. 9. MSE and variance of for MSE kernel-based Bayesian filtering

with 20 samples (blue solid line), SIR filter with 20 particles (red dashed

line), and SIR filter with 200 particles (black dotted line) for model 2.

(a) Error. (b) Variance.



The last sequence is more challenging since it involves

significant occlusion, clutter, and compression noises. There

are many faces in the scene and some of them are very close

to the target face, which makes tracking difficult. Tracking
is performed in 3D space (location and scale) and 50 samples
are used. The SIR filter failed after the target face almost
overlapped with another face, but our method recovered
from a short-term failure.

The preservation of multimodality in the posterior,
which is the advantage of our method over the conven-
tional particle filter (Fig. 12), is crucial for the overall tracker
performance since multiple hypotheses can be handled
effectively. We illustrated the number of components in the
posterior at each time step in Fig. 13; the number of
components changes significantly over time, especially in
the can sequence. These results suggest that our method is
potentially more robust to exceptional cases such as
occlusions and clutter by effectively modeling a time-
varying number of multiple hypotheses. Fig. 14 demon-
strates sample frames in the can sequence which involve
complex posterior density functions; each mode in the
density function with 0.1 or higher weight is illustrated as a
green and blue ellipse, where the intensity of the ellipse is
proportional to the weight of corresponding mode. Poten-
tial reasons for highly multimodal posteriors are severe
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Fig. 11. Object tracking comparison among kernel-based Bayesian
filtering, the SIR particle filter, the five-component sequential Gaussian
mixture filtering with person sequence at t ¼ 1, 94, 140, 192, 236, 300.
(a) Result by our method. (b) Result by the SIR filter (white) and the
sequential Gaussian mixture filtering (yellow).

Fig. 10. Object tracking comparison among kernel-based Bayesian
filtering, the SIR particle filter, the five-component sequential Gaussian
mixture filtering with can sequence at t ¼ 1, 24, 41, 96, 152, 200.
(a) Result by our method. (b) Result by the SIR filter (white) and the
sequential Gaussian mixture filtering (yellow).

Fig. 12. Object tracking comparison between KBF and conventional

particle filter with the classroom sequence at t ¼ 1, 42, 97, 104, 113,

153. Particle locations are illustrated as blue rectangles. (a) Result by

our method. (b) Result by the SIR filter.

Fig. 13. The number of components in the posterior at each time step.

(a) Can sequence. (b) Person sequence.



appearance changes due to reflections ((a) and (c)) and
significant orientation changes ((b) and (d)). On the other
hand, the highly multimodal posterior in the person and
classroom sequence is typically observed after occlusions,
clutter, large movements of the camera and/or target, and
so on.

Kernel-based Bayesian filtering does have additional
computational overhead, so it is worthwhile to compare the
performance of both algorithms when the same amount of
computational resources is used for tracking. According to
our experiments, one would need to run the SIR algorithm
using 150-200 particles to obtain comparable results with our
algorithm using 50 samples for all three sequences. The
running time of the SIR particle filter with 100-150 samples is
equivalent to our algorithm with 50 samples. Of course, the
relative computation time of our algorithm compared to the
simple SIR particle filter depends on the complexity of the
measurement process. Tracking based on kernel-based
Baysian filtering using the histogram of multiple elliptical
areas, as in the can sequence, is more advantageous than
tracking with the observation from a simple rectangular
region, as in the classroom sequence. The detailed analysis of
the relative performance for all sequences is presented in
Table 2.

7 DISCUSSION AND CONCLUSION

We have described a novel sequential Bayesian filtering
framework—kernel-based Baysian filtering—where analy-
tic representations are used to approximate relevant density
functions. Density interpolation and approximation techni-
ques based on a mixture of Gaussians were introduced for
density representation and propagation and a fusion-based
state estimation method was also presented. By maintaining
analytic representations of the density functions, we can
sample in the state space more effectively and more
efficiently. This advantage of the proposed method is most
significant for high-dimensional problems. The kernel-
based Baysian filtering was applied to the visual tracking

problem and the effectiveness of the technique was
demonstrated through various simulations and tests on
real video sequences. Our future work is focused on
analyzing the approximation error in the posterior distribu-
tion and its propagation over time.
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