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Abstract

Recently, we proposed marginal space learning (MSL) as

a generic approach for automatic detection of 3D anatom-

ical structures in many medical imaging modalities. To

accurately localize a 3D object, we need to estimate nine

parameters (three for position, three for orientation, and

three for anisotropic scaling). Instead of uniformly search-

ing the original nine-dimensional parameter space, only

low-dimensional marginal spaces are uniformly searched

in MSL, which significantly improves the speed. In many

real applications, a strong correlation may exist among pa-

rameters in the same marginal spaces. For example, a large

object may have large scaling values along all directions.

In this paper, we propose constrained MSL to exploit this

correlation for further speed-up. As another major contri-

bution, we propose to use quaternions for 3D orientation

representation and distance measurement to overcome the

inherent drawbacks of Euler angles in the original MSL.

The proposed method has been tested on three 3D anatomi-

cal structure detection problems in medical images, includ-

ing liver detection in computed tomography (CT) volumes,

and left ventricle detection in both CT and ultrasound vol-

umes. Experiments on the largest datasets ever reported

show that constrained MSL can improve the detection speed

up to 14 times, while achieving comparable or better detec-

tion accuracy. It takes less than half a second to detect a

3D anatomical structure in a volume.

1. Introduction

Efficiently localizing an anatomical structure (e.g., heart,

liver, and kidney) in medical images is often a prerequisite

∗Haibin Ling contributed to this work when he was with the Integrated

Data Systems Department of Siemens Corporate Research.

for the subsequent procedures, e.g., segmentation, measur-

ing, and classification. Albeit important, automatic object

detection is largely ignored in previous work. Most ex-

isting 3D segmentation methods focus on boundary delin-

eation using active shape models (ASM) [2], active appear-

ance models (AAM) [1], and deformable models by assum-

ing that a rough pose estimate of the object is available.

Sometimes, heuristic methods may be used for automatic

object localization by exploiting the domain specific knowl-

edge [3]. Recently, we proposed a generic 3D object detec-

tion framework, marginal space learning (MSL) [14, 15],

based on learning discriminative classifiers. The full pa-

rameter space for 3D object localization has nine dimen-

sions: three for position, three for orientation, and three for

anisotropic scaling. To efficiently localize the object, we

perform parameter estimation in a series of marginal spaces

with increasing dimensionality. To be specific, the task is

split into three steps: object position estimation, position-

orientation estimation, and similarity transformation esti-

mation (as shown in Fig. 1). After each step, a few promis-

ing candidates (e.g., 100) are retained for the next estima-

tion step. Instead of uniformly searching the original 9D

parameter space, only low-dimensional marginal spaces are

uniformly and exhaustively searched in MSL. It has been

shown that MSL can reduce the number of testing hypothe-

ses by about six orders of magnitude [15], compared to a

naive implementation of full space searching. Later, MSL

has been successfully applied to many 3D anatomical struc-

ture detection problems in medical imaging, e.g., ileocecal

valves [7], polyps [8], and livers [6] in abdominal CT, and

heart chambers [13] in ultrasound.

Previously, we used three Euler angles to represent the

3D orientation space [15], which have several limitations.

(1) There are multiple sets of values that can yield the same

orientation, leading to a fundamental ambiguity. During

training, we assign a hypothesis to the positive or negative
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Figure 1. 3D object localization using marginal space learn-

ing [15].

set based on its distance to the ground truth. The Euclidean

distance in the Euler angle space was used in [15] as the dis-

tance measurement between two orientations. However, it

is well known that the Euclidean distance is not a good ori-

entation distance measurement [4]. (2) Uniform sampling

in the Euler angle space is not uniform in the orientation

space [5]. (3) There are many widely used conventions for

Euler angles. To reduce the search range, the best conven-

tion need to be selected depending on application scenario.

In this paper, we propose to use quaternions [4] to over-

come all the above limitations. Quaternions provide an el-

egant conceptual framework, which can solve many prob-

lems involving rotation. For example, it is much easier to

use quaternions to calculate the correct distance between

two orientations.

In terms of computational efficiency, MSL significantly

outperforms a brute-force full space search. However, it

still has much room for improvement since the marginal

spaces are exhaustively searched, though in a lower dimen-

sion (three in this case). The variations of the object ori-

entation and its physical size are normally bounded. The

distribution range of a parameter can be estimated from the

training set. During searching, each parameter is uniformly

sampled within that range to generate testing hypotheses.

Each of the three subspaces (the translation, orientation,

and scale spaces) are uniformly sampled without consider-

ing the correlation among parameters in the same marginal

space. However, in many real applications, the parameters

are unlikely to be independent. For example, a large ob-

ject (the heart of an adult) is likely to have larger values

than a small object (the heart of a baby) in all three direc-

tions. Independent sampling of each parameter will result

in much more testing hypotheses than necessary. Because

the detection speed is roughly proportional to the number of

hypotheses, reducing the testing hypothesis set can speed up

the system.

In this paper, we propose to further constrain the search

by exploiting the correlation among object pose parameters.

Due to the heterogeneity in the capture range of the scan-

ning protocols, the position of an organ may vary signifi-

cantly in a volume. We propose a generic way to reduce

the search range for object position. To study an organ,

normally we need to capture the whole organ in the vol-

ume. Therefore, the center of the organ cannot be arbitrar-

ily close to the volume border. Using this observation, we

can safely skip those hypotheses around volume margin for

object position estimation. To constrain the search of the

orientation or scale space, we can estimate the joint distri-

bution of parameters using the training set. We then sam-

ple only the region with large probabilities. However, it is

not trivial to estimate the joint probability distributions reli-

ably since, usually, only a limited number of training sam-

ples (a couple of hundreds or even less) are available. To

solve this problem, we propose an example-based strategy

to constrain the search to a region with large probabilities.

We first uniformly sample the space to get a large set, Su.

For each training sample, we add its neighboring hypothe-

ses in Su to the test set St. Repeating the above process

for all training samples and removing redundant hypothe-

ses from St, we can get a much smaller test set than Su.

Using the constrained marginal space learning, overall, we

can improve the detection speed by an order of magnitude

further. Besides speed-up, constraining the search to a small

valid region can reduce the likelihood of detection outliers,

therefore improve the detection accuracy.

In summary, we make two major improvements to the

original MSL [15].

1. After analyzing the drawbacks of Euler angles for 3D

orientation representation, we propose to use quater-

nions to overcome the limitations of Euler angles.

2. We propose efficient ways to further constrain the

search spaces in MSL and improve the detection speed

by an order of magnitude. It takes less than half a sec-

ond to detect a 3D anatomical structure in a volume.

This paper is organized as follows. In the next section,

we give a brief overview of marginal space learning. In

Section 3, we compare Euler angles and quaternions for 3D

orientation representation and discuss the limitations of Eu-

ler angles as used in [15]. Section 4 presents our approach

to constrain the search space in MSL. Extensive comparison

experiments on large medical datasets in Section 5 demon-

strate the efficiency of the proposed method. This paper

concludes with Section 6.

2. Overview of Marginal Space Learning

In this section, we briefly review the marginal space

learning (MSL) based 3D object detection method. Inter-

ested readers are referred to [15] for more details. To local-

ize a 3D object, we need to estimate nine parameters (three

for position, three for orientation, and three for anisotropic

scaling). As a straightforward application of a learning-

based approach (e.g., [12]), we can train a discriminative

classifier that assigns a high score to a hypothesis closing

to the true object pose and a low score to those far away.

During testing, we exhaustively search the 9D parameter

space (i.e., all possible combinations of position, orienta-

tion, and scales) under a specified searching step to gener-



ate a huge number of hypotheses and test each one using the

trained classifier. The hypothesis with the highest classifi-

cation score can be taken as the final detection result. Due

to the exponential increase of hypotheses w.r.t. the dimen-

sion of the search space, the computation demand of this

naive implementation is well beyond the current personal

computers.

In MSL, we split the task into three steps: object posi-

tion estimation, position-orientation estimation, and simi-

larity transformation estimation (as shown in Fig. 1). For

each step, we train a classifier using the probabilistic boost-

ing tree (PBT) [10] to assign a high score to a correct

hypothesis. The 3D Haar wavelet features are used to

train the position detector, while efficient steerable fea-

tures are used for the other two detectors to avoid time-

consuming volume rotation. During testing, all voxels are

scanned using the trained position classifier and topK (e.g.,

K = 100) candidates, (Xi, Yi, Zi), i = 1, . . . ,K, are

kept. Next, each candidate is augmented with M hypothe-

ses about orientation by exhaustively searching the orien-

tation space, (Xi, Yi, Zi, ψj , φj , θj), j = 1, . . . ,M . The

trained position-orientation classifier is used to prune these

K × M hypotheses and the top N (e.g., N = 50) can-

didates are retained, (X̂i, Ŷi, Ẑi, ψ̂i, φ̂i, θ̂i), i = 1, . . . , N .

Similarly, we augment each position-orientation candidate

with P hypotheses about scaling by exhaustively searching

the scale space. The position-orientation-scale classifier is

used to pick the final best estimate. As shown in [15], MSL

can reduce the number of testing hypotheses by six orders

of magnitude compared the full space searching approach.

3. Orientation Representation for 3D

In this section, we first analyze the drawbacks of Eu-

ler angles in 3D orientation representation in the original

MSL [15] and then propose to use quaternions to solve all

the limitations of Euler angles.

3.1. Drawbacks of Euler Angles

It is well known that 3D orientation has three degrees of

freedom and can be represented as three Euler angles. An

advantage of Euler angles is that they have an intuitive phys-

ical meaning. For example an orientation with Euler angles

of ψ, φ, and θ in the ZXZ convention is achieved by rotat-

ing the original coordinate system around the z axis with an

amount ψ, followed by a rotation around the x axis with an

amount φ, and lastly a rotation around the z axis again with

an amount θ. The rotation operation is not commutable.

That means we cannot change the order of rotations.
To train a classifier for distinguishing correct orientation

estimates from wrong ones, we need to provide both posi-

tive and negative training samples. The Euclidean distance1

1In [15], a special city-block distance is actually used to split the ori-
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Figure 2. Histograms of Euler angles of the left ventricle orienta-

tion in ultrasound volumes (see Section 5.3). First row shows three

Euler angles of the ZXZ convention and the second row shows the

XYZ convention.

in the Euler angle space can be used to measure the dis-

tance of a hypothesisOh = (ψh, φh, θh) to the ground truth

Ot = (ψt, φt, θt)

De(O
h
, O

t
) =

q

‖ψh − ψt‖2 + ‖φh − φt‖2 + ‖θh − θt‖2. (1)

If the distance is less than a threshold, it is taken as a pos-

itive sample, otherwise negative. Though convenient, the

Euclidean distance is not a good distance measurement of

orientations. There are multiple sets of Euler angles which

yield the same orientation, leading to a fundamental ambi-

guity. For example, Euler angles (α, 0, β) and (γ, 0, θ)

in the ZXZ convention represent the same orientation when

α + β = γ + θ. That means two close orientations may

have a large distance in the Euler angle space. Therefore,

the collected positive and negative sets may be confusing,

which makes the learning difficult. To estimate the orienta-

tion of an object, we need to uniformly sample the orienta-

tion space to generate a set of hypotheses. Each hypothesis

is then tested with the trained classifier to pick the best one.

However, uniform sampling of the Euler angle space under

the Euclidean distance is not truly uniform in the orientation

space [5].

Another drawback of using Euler angles is that there are

12 possible conventions and a handful are widely used [5].

In our previous work[15], the range of Euler angles are

computed from the training set. Each Euler angle is then

uniformly sampled within that range to generate hypothe-

ses. Different conventions may give quite different search

ranges. For example, if the rotation is only around the y
axis, the XYZ convention (where two Euler angles are zero)

is more compact than the ZXZ conventions since the latter

needs three rotations to generate a pure rotation around the y
axis. Fig. 2 shows the statistics of the Euler angles with the

ZXZ and XYZ conventions for the LV orientation in ultra-

sound volumes (see Section 5.3). In this case, the represen-

tation with the XYZ convention is more compact. However,

entation hypotheses into the positive and negative sets. The city-block

distance is less accurate than the Euclidean distance and can be taken as an

approximation of the latter.



for the application of heart chamber detection in cardiac CT

volumes (Section 5.2), we find that the ZXZ convention is

more efficient than the XYZ convention. In practice, for

a new application, we need to try different conventions to

select the most compact one.

In summary, previous use of Euler angles for orientation

representation in [15] has the following drawbacks.

1. Due to the inherent ambiguity in Euler angle represen-

tation, the same orientation can be represented with

multiple value sets.

2. The Euclidean distance in the Euler angle space is not

a good distance measurement of orientations.

3. Naive uniform sampling of the Euler angle space is not

uniform in the orientation space due to the use of a

wrong distance measurement.

4. Among many conventions, we need to manually select

the Euler angle convention that represents the search

range most compactly.

3.2. Quaternions for Orientation Representation

In this paper, we propose to use quaternions to overcome

all the drawbacks of the Euler angles as used in [15]. Intro-

duced in mid-1800s by Hamilton, quaternions provide an

elegant conceptual framework, which can solve many prob-

lems involving rotation [4]. A quaternion is represented by

four numbers

q = [w, x, y, z], (2)

or as a scalar and a vector

q = [s,v]. (3)

In the scalar-vector representation, multiplication of two

quaternions becomes

q1q2 = [s1s2 − v1.v2, s1v2 + s2v1 + v1 × v2], (4)

where v1.v2 is the vector inner-product and v1 × v2 is the

vector cross-product. The multiplication of two quaternions

is also a quaternion.

To represent an orientation, we use unit quaternions,

|q| = w2 + x2 + y2 + z2 = 1. (5)

Therefore, a unit quaternion also has three degrees of free-

dom, the same as the Euler angles.

A unit quaternion can also be represented in the scalar-

vector form as

q = [cos(θ/2),v sin(θ/2)], (6)

where v is a three-dimensional unit vector. Given

a quaternion p, if we left-multiple it with q =
[cos(θ/2),v sin(θ/2)], we get a new quaternion qp. The

physical meaning of this operation is that qp represents the

orientation after we rotate p around axis v with the amount

of rotation θ [4]. The conjugate of a quaternion is defined

as

q̄ = [w,−x,−y,−z] = [cos(−θ/2),v sin(−θ/2)]. (7)

Here, q̄ represents a rotation around axis v with an amount

−θ.

Given two orientations, we can rotate one along an axis

to align it with the other [9]. The amount of rotation pro-

vides a more natural definition of the distance between

two orientations. Using quaternions, we can calculate the

amount of rotation between two orientations easily. The ro-

tation, q = q1q̄2, moves q2 to q1. Therefore, the amount

of rotation between quaternions q1 and q2 using the scalar-

vector representation in Eq. (3) is

Dq(q1, q2) = arccos(|s1s2 − v1.v2|). (8)

4. Constrained Search Space for MSL

In this section, we present two methods to effectively

constrain the search space in MSL.

4.1. Constrained Space for Object Position

Due to the heterogeneity in scanning protocol, the po-

sition of an object-of-interest may vary significantly in a

volume. As shown in Fig. 5, the first volume focuses on

the liver, while the second volume captures almost the full

torso. A learning based object detection system [15] nor-

mally tests all voxels as hypotheses of the object center.

Therefore, for a big volume, the number of hypotheses is

quite large. It is preferable to constrain the search to a

smaller region. The challenge is that the scheme should be

generic and works for different application scenarios.

In this paper, we propose a generic way to constrain the

search space. Our basic assumption is that, to study an or-

gan, normally we need to capture the whole organ in the

volume. Therefore, the center of the organ cannot be arbi-

trarily close to the volume border. As shown in Fig. 3a, for

each training volume, we can measure the distance of the

object center (e.g., the left ventricle in this case) to the vol-

ume border in six directions (e.g., X l for the distance to the

left volume border, Xr for right, Y t for top, Y b for bottom,

Zf for front, and Zb for back). All the distances should

be measured in physical units (e.g., millimeters) to handle

different resolution settings in different volumes. The min-

imum value (e.g., X l
min for the left margin) for each di-

rection can be easily calculated from a training set. These

minimum margins define a region (as shown in the white

box in Fig. 3b) and we only need to test voxels inside the

region as possible position hypotheses.

Using the proposed method, we reduce the number of

testing hypotheses by 75% to 98% in our empirical stud-

ies. On average, we achieve a reduction of 91% for liver



(a) (b)
Figure 3. Constraining the search for object center in a volume,

illustrated for the left ventricle (LV) detection in a CT volume. (a)

Distances of the object center to the volume borders. (b) Con-

strained search space (the region enclosed by the white box).

(a) (b) (c)
Figure 4. Example-based selection of testing hypotheses. (a) Uni-

formly sampled hypotheses, shown as black ‘+’s. (b) After pro-

cessing the first training sample. The blue dot shows the ground

truth and the circle shows the neighborhood range. All hypotheses

inside the circle (represented as red dots) are added to the testing

hypothesis set. (c) The testing hypothesis set after processing five

training samples.

detection (Section 5.1), 89% for LV detection in CT (Sec-

tion 5.2), and 84% for LV detection in ultrasound (Sec-

tion 5.3). That means we can speed up the position esti-

mation step about 10 times. Our strategy is generic. If there

is any application-specific prior knowledge available, it can

be combined with our strategy to further constrain the posi-

tion search space.

4.2. Constrained Spaces for Orientation

In this section, we present our example-based strategy

to effectively constrain the orientation search spaces. We

use LV detection in CT volumes (Section 5.2) to illustrate

the efficiency of the proposed method. Similar analysis can

also be performed for the other two applications presented

in Section 5.

For many problems, the orientation of an object is well

constrained in a small region. It is not necessary to test the

whole orientation space. For example, on the cardiac CT

dataset the ranges of Euler angles for the LV using the ZXZ

convention are [-0.9, 39.1], [-60.0, 88.7], and [-68.8, -21.9]

degrees, respectively. In [15], Euler angles are sampled in-

dependently within the region to generate testing hypothe-

ses. However, since three Euler angles should be combined

to define an orientation, they are not independent. Sampling

each Euler angle independently will generate far more hy-

potheses than necessary.

To constrain the search space, we can estimate the joint

distribution of parameters using the training set. We then

sample only the region with large probabilities. However,

it is not trivial to estimate the joint probability distributions

reliably since, usually, only a limited number of training

samples (a couple of hundreds or even less) are available.

In this paper, we propose to use an example-based strategy

to generate testing hypotheses (as shown in Fig. 4). The

procedure is as follows.

1. Uniformly sample the parameter space with a certain

resolution r to generate Su (as shown in Fig. 4a).

2. Set the selected hypothesis set St to empty.

3. For each training sample, we add its neighboring sam-

ples in Su (which have a distance no more than d) into

St (as shown by red dots in Fig. 4b). Here, d ≥ r/2,

otherwise, there may be no sample satisfying the con-

dition. In our experiments, we set d = r.

4. Remove redundant elements in St to get the final test-

ing hypothesis set.

To generate the constrained testing hypothesis set for

orientation, we first need to uniformly sample the whole

orientation space to generate the set Su. The problem is

formulated as, given N sample orientations, we want to

distribute them as uniformly as possible. We can define

“a covering radius, α, as the maximum rotation needed to

align an arbitrary orientation with one of the sample ori-

entations” [4]. For uniform sampling, we want to find an

optimal configuration of N sample orientations that gives

the smallest α. The optimization procedure is a little bit

involved, refer to [4] for more details. Near-optimal con-

figurations for some N ’s are available from a companion

website of [4] (http://charles.karney.info/orientation/). We

start from a uniform set of 7416 samples distributed in the

whole orientation space with α = 9.72 degrees as Su. On a

dataset of 457 cardiac CT volumes, St of the LV orientation

has only 66 unique orientations, which is much smaller than

Su (7416) and also smaller than the number of the training

volumes (457).

In [15], each Euler angle was uniformly sampled at a

step size β to generate hypotheses. The maximum dis-

tance for an arbitrary orientation to the closest hypothesis

is
√

3
2 β using the Euclidean distance measurement. Since

different distance measurements are used in our case (the

quaternion distance) and the previous work [15] (the Eu-

clidean distance), we cannot compare them directly. The

Euclidean distance measurement tends to over-estimate the

true distance. However, in the worst case, it is as large as

the quaternion distance. To achieve a nominally equiva-

lent sampling resolution, the search step size β should be

β = 2√
3
α, that is 11.2 degrees. Suppose the range of a



parameter is within [Vmin, Vmax]. We sample N points,

Pmin, Pmin+ r, . . . , Pmax = Pmin+(N − 1)r, under res-

olution r. To fully cover the whole range, we must have

Pmin ≤ Vmin and Pmax ≥ Vmax. Therefore, the number

of samples should be

N =

⌈

Vmax − Vmin
r

⌉

+ 1, (9)

where ⌈x⌉ returns the smallest integer that is no less than x.

On the cardiac CT dataset, sampling Euler angles under the

resolution of 11.2 degrees, we need 5× 15× 6 = 450 sam-

ples to cover the orientation space. Using the quaternion

representation and exploiting the correlation among orien-

tation parameters, we reduce the number of hypotheses by

85% to 66 samples.

4.3. Constrained Spaces for Scale

The same technique can also be applied for the scale

space. The LV has a roughly rotation symmetric shape.

Therefore, two scales (we denote them as Sx and Sy) per-

pendicular to the LV long axis (represented as the z axis)

are highly correlated since they are roughly the same. The

range of the scales calculated from the 457 training volumes

are [53.0, 91.1] mm for Sx, [49.9, 94.0] mm for Sy , and

[72.3, 128.4] mm for Sz . If we uniformly sample each scale

independently using a resolution of 6 mm [15], we need

8× 9× 11 = 792 samples. Using our example-based strat-

egy, we only need 240 samples to cover the whole training

set.

5. Experiments

In this section, we present three experiments to demon-

strate the improved efficiency of constrained MSL, com-

pared to the original MSL [15].

5.1. Liver Detection in CT Volumes

Our database contains 226 3D CT volumes. The dataset

is very challenging because the volumes come from largely

diverse sources. Due to the difference in scanning protocol,

the volumes have various dimensionality: the inter-slice res-

olution varies from 1.0 mm to 8.0 mm; the number of slices

varies from 40 to 524; and the actual volume height varies

from 122 mm to 766 mm.

After object localization, we align the mean shape (a sur-

face mesh) with the estimated transformation. The accuracy

of initial shape estimate is measured with the symmetric

point-to-mesh distance, Ep2m. For each point on a mesh,

we search for the closest point on the other mesh to calculate

the minimum distance. We calculate the point-to-mesh dis-

tance from the detected mesh to the ground-truth and vice

verse to make the measurement symmetric. After initializa-

tion, we can deform the mesh to fit the image boundary to

Table 1. Comparison of unconstrained and constrained MSL on

the number of testing hypotheses and computation time.
(a) Liver detection in CT volumes.

Unconstrained MSL [15] Constrained MSL

#Hypotheses Speed #Hypotheses Speed

Position ∼403,000 2088.7 ms ∼38,000 167.1 ms

Orientation 2686 2090.0 ms 42 59.5 ms

Scale 1664 1082.8 ms 303 243.7 ms

Overall 6590.8 ms 470.3 ms

(b) Left ventricle detection in CT volumes.

Unconstrained MSL [15] Constrained MSL

#Hypotheses Speed #Hypotheses Speed

Position ∼158,000 784.3 ms ∼18,000 75.9 ms

Orientation 450 351.5 ms 66 52.6 ms

Scale 792 193.3 ms 240 60.4 ms

Overall 1329.3 ms 188.9 ms

(c) Left ventricle detection in ultrasound volumes.

Unconstrained MSL [15] Constrained MSL

#Hypotheses Speed #Hypotheses Speed

Position ∼233,000 1487.3 ms ∼37,000 163.6 ms

Orientation 882 696.3 ms 99 12.7 ms

Scale 2340 769.7 ms 296 219.3 ms

Overall 2953.3 ms 395.6 ms

Table 2. Comparison of unconstrained and constrained MSL on

detection accuracy. Average point-to-mesh error Ep2m (in mil-

limeters) of the initialized shape is used for evaluation.
(a) Liver detection in CT volumes.

Mean
Standard
Deviation Median

Mean of
Worst 10%

Unconstrained MSL [15] 7.44 2.26 6.99 12.32

Constrained MSL 7.12 2.15 6.73 11.88

(b) Left ventricle detection in CT volumes.

Mean
Standard
Deviation Median

Mean of
Worst 10%

Unconstrained MSL [15] 2.66 1.00 2.45 4.73

Constrained MSL 2.62 0.84 2.45 4.43

(c) Left ventricle detection in ultrasound volumes.

Mean
Standard
Deviation Median

Mean of
Worst 10%

Unconstrained MSL [15] 3.28 2.50 2.76 7.89

Constrained MSL 3.25 2.09 2.74 7.46

further reduce the error. In this paper, we focus on object

localization. Therefore, in the following we only measure

the error of the initialized shapes for comparison.

The detection speed of MSL is roughly proportional to

the number of testing hypotheses. The analysis presented

in Section 4 shows that constrained MSL significantly re-

duces the number of testing hypotheses. Table 1a shows the

break-down computation time for three steps in MSL (see

Fig. 1). Overall, constrained MSL uses only 470.3 ms to

process one volume, while unconstrained MSL uses 6590.8

ms. Using constrained MSL, we achieve a speed-up by a

factor of 14.

Constrained MSL also slightly improves detection accu-

racy. As shown in Table 2a, constrained MSL reduces the

mean error Ep2m from 7.44 mm to 7.12 mm, and the me-



(a) Initialization by constrained MSL for example 1.

(b) Final segmentation result for example 1.

(c) Initialization by constrained MSL for example 2.

(d) Final segmentation result for example 2.
Figure 5. Typical liver segmentation results. From left to right:

transversal, sagittal, and coronal views.

dian error Ep2m from 6.99 mm to 6.73 mm, in a three-fold

cross-validation. The accuracy improvement arises from

two parts. First, as we constrain the search to a smaller but

more meaningful region, the likelihood of detection outliers

is reduced. Second, quaternions are used for orientation dis-

tance measurement, which reduces the confusion caused by

the wrong measurement used in [15].

Fig. 5 shows typical liver segmentation results on two

volumes. Accurate boundary delineation is achieved start-

ing from the good initial estimate of the shape generated by

constrained MSL. After applying our learning-based non-

rigid deformation estimation method [6], the final Ep2m er-

ror is 1.45 mm, which is comparable or better than the state-

of-the-art [11].

5.2. Left Ventricle Detection in CT Volumes

We collected 457 expert-annotated cardiac CT volumes

from 186 patients with various cardiovascular diseases. The

imaging protocols are heterogeneous with different capture

ranges and resolutions. A volume contains 80 to 350 slices

and the size of each slice is 512×512 pixels. The resolution

inside a slice is isotropic and varies from 0.28 mm to 0.74

(a) Initialization by constrained MSL for example 1.

(b) Final segmentation result for example 1.

(c) Initialization by constrained MSL for example 2.

(d) Final segmentation result for example 2.
Figure 6. Typical left ventricle segmentation results in cardiac CT

volumes. Three standard cardiac views are shown in each row.

mm, while the distance between neighboring slices varies

from 0.4 mm to 2.0 mm.

Similar to the previous experiments, constrained MSL

also significantly reduces the number of testing hypotheses

and speeds up the detection consequently. Table 1b shows

the break-down computation time for three steps in MSL.

Overall, constrained MSL uses only 188.9 ms to process

one volume, while unconstrained MSL uses 1329.3 ms. Us-

ing constrained MSL, we achieve a speed-up by a factor of

seven.

Table 2b shows the quantitative evaluation based on a

four-fold cross validation for both unconstrained [15] and

constrained MSL. The average errors by constrained MSL

is slightly better than unconstrained MSL (2.62 mm vs. 2.66

mm). We also study the worst 10% cases (46 cases). The

mean error for the worst 10% cases is 4.43 mm for con-

strained MSL, about 6.3% less than 4.73 mm for uncon-

strained MSL. It is clear that constraining the search space,

we can reduce the likelihood of detection outliers.

Fig. 6 shows typical segmentation results for the LV on

two volumes. Constrained MSL can provide a quite good

initial estimate of the shape. After non-rigid deformation

estimation [15], we can achieve accurate boundary delin-



Figure 7. Typical left ventricle segmentation result in an ultrasound

volume. Three standard cardiac views are shown in each row. The

first row shows the initialization after object pose detection and the

second row shows the final segmentation results.

eation results. Mean Ep2m error of 0.84 mm has been

achieved, which compares favorably with the state-of-the-

art [15, 3].

5.3. Left Ventricle Detection in Ultrasound Vol-
umes

We collected 505 expert-annotated 3D ultrasound vol-

umes. A typical volume size is about 160 × 144 × 208
voxels and the resolution ranges are [1.24, 1.42], [1.34,

1.42], and [0.85, 0.90] mm along different directions. A

four-fold cross validation is performed to evaluate our al-

gorithm. Similar to the previous experiments, using con-

strained MSL we can speed up the detection by a factor of

seven (Table 1c), while achieving a comparable detection

accuracy (Table 2c). Fig. 7 shows the segmentation result

for one example volume.

6. Conclusion

In this paper, we proposed two major improvements for

the original marginal space learning (MSL) [15]. First, we

proposed to use quaternions for 3D orientation representa-

tion to overcome the limitations of Euler angles. Second,

a novel constrained MSL technique was introduced to re-

duce the search space. Based on the statistics of the distance

from the object center to the volume border, we proposed a

generic method to effectively constrain the object position

space. Instead of quantizing each orientation and scale pa-

rameter independently, an example-based strategy is used

to constrain the search to a small region with a high dis-

tribution probability. Extensive comparison experiments on

three 3D anatomical structure detection tasks demonstrated

the efficiency of the proposed method. It significantly ac-

celerates the detection speed by an order of magnitude, re-

sulting in a system that can process one volume in less than

half a second. At the same time, constrained MSL can also

improve the detection accuracy by reducing the likelihood

for detection outliers.
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