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Abstract. Cardiac magnetic resonance (MR) imaging has advanced to
become a powerful diagnostic tool in clinical practice. Automatic detec-
tion of anatomic landmarks from MR images is important for structural
and functional analysis of the heart. Learning-based object detection
methods have demonstrated their capabilities to handle large variations
of the object by exploring a local region, context, around the target. Con-
ventional context is associated with each individual landmark to encode
local shape and appearance evidence. We extend this concept to a land-
mark set, where multiple landmarks have connections at the semantic
level, e.g., landmarks belonging to the same anatomy. We propose a joint
context approach to construct contextual regions between landmarks.
A discriminative model is learned to utilize inter-landmark features for
landmark set detection as an entirety. This helps resolve ambiguities of
individual landmark detection results. A probabilistic boosting tree is
used to learn a discriminative model based on contextual features. We
adopt a marginal space learning strategy to efficiently learn and search a
high dimensional parameter space. A fully automatic system is developed
to detect the set of three landmarks of the left ventricle, the apex and
the two basal annulus points, from a single cardiac MR long axis image.
We test the proposed approach on a database of 795 long axis images
from 116 patients. A 4-fold cross validation results show that about 15%
reduction of the errors is obtained by integrating joint context into a
conventional landmark detection system.

1 Introduction

In cardiology, precise information on both the dimensions and functions of the
left ventricle (LV) and other heart chambers is essential in clinical applications
for diagnosis, prognostic, and therapeutic decisions. Magnetic Resonance (MR)
imagery provides a complete morphological LV characterization. The precision
on the measures extracted from MR images has been demonstrated and makes
MR imagery a standard for LV analysis [1]. Although cardiac MR imaging tech-
nologies have rapidly advanced [2, 3], due to considerable amount of available
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data, analysis such as segmentation of cardiac images for functionality quan-
tification is time consuming and error-prone for human operators. Automated
analysis tools are in great need.

In MR scans, long axis slices are not only used as scout images for acquisition
planning, but also are complementary to the short axis stack [4]. Long axis slices
captures left ventricle’s shape information and can also be used to correct mis-
registration of the short axis stack. Long axis acquisitions can be an image
sequence or a single slice during acquisition planning, when the short stack and
temporal information may not be available. Anatomic landmarks can be used
for higher level segmentation, such as initialization of deformable model based
approaches [5], and for accelerating acquisition time by facilitating the fully
automatic planning of Cardiac MR examinations [6]. Therefore, we are focused
on detecting a set of three landmarks from a single cardiac MR long axis slice,
containing the apex and two basal annulus points of LV as shown in Fig. 1.

Fig. 1. Examples of cardiac long axis images and three landmarks of interest, which
are the apex (yellow) and two basal annulus points (cyan) of LV.

Learning based object detection approaches have been demonstrated suc-
cessful in many applications [7, 8]. However, they still encounter challenges in a
cluttered environment, such as landmark detection in MR long axis slices, due to
large anatomy shape and appearance variations across populations along with
different acquisition parameters. A number of different anatomies other than
the heart also appear in the same slice. For the same patient, time sampling
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across the entire heart beat cycle, with ED and ES as two ends, also leads to
significantly different myocardium contour shape changes. These variations and
ambiguities result in challenges for each individual landmark detector to identify
correct landmarks. Cardiac MR long axis image examples along with the three
target landmarks in our experiments are shown in Fig. 1.

Context of a landmark is considered as its local evidence such as shape and
appearance. Each individual landmark has limited local evidence to identify.
However, a set of landmarks are not independent to each other. Correlation in
shape and appearance among landmarks can be crucial to identify a landmark
set as an entirety. For example, each basal annulus point of LV has limited
context, but joint context of the two basal annulus points contains the base
plane region, which has a more discriminative power than each individual an-
nulus point to distinguish from other anatomic structures. For those anatomic
landmarks that have semantic connections, such as the two basal annulus points
and the apex of the left ventricle, joint contextual information (around LV re-
gion) captures the correlation of the shape and appearance constructed from the
landmark set, which includes more evidence and helps resolve the ambiguities
in detecting each landmark individually. Therefore, we propose a joint context
based approach under a learning-based object detection framework to automat-
ically identify a landmark set. We define a mapping calculated from a landmark
set to derive contextual region, where features are automatically learned to build
a discriminative model/classifier. We apply joint context to two scenarios: one
for the two basal annulus points, and the other for the set of the apex and the
base plane (defined by the two basal annulus points).

2 Methodology

2.1 Overall Workflow

For a cardiac MR long axis image, our joint context based landmark set detection
framework includes the following steps (see Fig. 2):

(1). Apply an apex detector and select the top M candidates.
(2). Apply a base plane detector and select the top N candidates.
(3). For each possible candidate pair of <apex, base plane> from the candidate

pool (M apex candidates and N base plane candidates), construct joint
context.

(4). Apply the joint context classifier to determine the best pair of <apex, base
plane> with the highest probability.

(5). A local search can be applied to further improve the estimation accuracy of
the detected landmarks.

2.2 Joint Context

We define a context operator C to represent context of an object O, whose para-
meters are denoted by θ, i.e., C(O|θ). For concise representation purposes, we use
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Fig. 2. Joint context based detection workflow.

C(θ). The operator C is applied to extract features (context information) from
contextual appearance. For example, a series of Haar-wavelet like features [7]
can be computed and selected by C.

Joint context is defined across a set of landmarks. For two objects O1 and
O2, which are represented by their respective parameters θ1 and θ2, the joint
context (JC) is defined as:

JC = C(f(θ1, θ2)). (1)

JC is represented as appearance and encodes the shape by computing geometric
relationship through the mapping f , which derives a geometric region based on
θ1 and θ2.

2.3 Joint Context Based Landmark Set Detection

Context Construction We associate a two-dimensional bounding box with
each target landmark object and their derived context. Each bounding box is
specified by a five-parameter set θ, containing two positions < x, y >, one orien-
tation < φ >, and two scales < sx, sy >. The original landmark detection task
can then be formulated into estimating this set of parameters. Although only
positions are used as the output, orientation and scales are useful in encoding
proper and consistent context learned during offline training process, where a
set of contextual models/classifiers are obtained.

To learn contextual models, we collect a set of cardiac long axis images
and annotate the landmark positions. Based on this annotated training set, we
build a contextual model for each target object and a joint contextual model for
the pair of <apex, base plane>. Let < xa, ya >, < xb1, yb1 >, and < xb2, yb2 >
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denote the positions of the apex, and two basal annulus points, respectively. The
joint contextual parameter sets derived from this landmark set are constructed
as shown in Table 1.

Table 1. Context construction (mapping f in Eq. (1)). < xa, ya >, < xb1, yb1 >,
and < xb2, yb2 > denote the positions of the apex, and two basal annulus points,
respectively. Base Plane (BP) context is obtained from two basal annulus points. Joint
context of <Apex, Base Plane> depends on the apex and the two basal annulus points.

Positions Orientation

Apex xa = xa phia = arctan (ya−(yb1+yb2)/2)
(xa−(xb1+xb2)/2)

;

ya = ya

Orthogonal to the line segment
Joint context xb = (xb1 + xb2)/2 connecting the two basal

BP yb = (yb1 + yb2)/2 annulus points, and pointing
toward the apex

Joint context xjc = (xa + xb)/2 φjc = arctan ya−(yb1+yb2)/2
xa−(xb1+xb2)/2

<Apex, BP> yjc = (ya + yb)/2

Scales

Apex sxa =
p

(yb2 − yb1)2 + (xb2 − xb1)2 ∗ 1.8 1

sya = sxa

Joint context sxb =
p

(yb2 − yb1)2 + (xb2 − xb1)2 ∗ 1.8
BP syb = sxb

Joint context sxjc =
p

(ya − yb)2 + (xa − xb)2 ∗ 1.5

<Apex, BP> syjc =
p

(yb2 − yb1)2 + (xb2 − xb1)2 ∗ 1.8

2.4 Learning Discriminative Context

To utilize context for object detection, we build a discriminative model to dif-
ferentiate the true object from background by calculating the probability of
given context (of a candidate) being a target object, denoted as P (O|C). Our
joint context based landmark set detection approach follows the database-driven
knowledge-based framework, which has been demonstrated effective in object de-
tection and medical applications [7, 8]. Landmark detection is formulated as a
two-category classification problem, i.e., true object vs. background. Discrimi-
native features from context are extracted and learned by a machine algorithm
based on the experts’ annotations, resulting in a probabilistic model for each
landmark context or a joint context of a landmark set. The online detection al-
gorithm searches through multiple hypotheses in the parameter space to identify
the ones with high probabilities.

Context-based landmark detection is to estimate the parameter set, θ, of an
object target from a given image. There are five parameters for each context
in our framework, including 2 positions (x, y), 1 orientation (φ), and 2 scales
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along each axis (sx, sy). Because exhaustively searching in this five-dimensional
parameter space is expensive for online applications, we adopt a search strategy
similar to the marginal space learning based approach, which was proposed by
Zheng et al. [9] for 3D object detection. These detectors are trained using positive
samples based on the position, orientation, and size of the annotated object
context, while the negative set is generated by extracting sub-images that are
further from the positive samples in the parameter space.

For each learning/classification task, we use a probabilistic boosting tree
(PBT) proposed by Tu et al. [10] as the classifier. The classifier is a tree-based
structure with which the posterior probabilities of the presence of the landmark
of interest are calculated from candidate context in given images. Following
the marginal space learning strategy, we designed a series of classifiers that
estimate parameters at a number of sequential stages in the order of complexity,
i.e., position, orientation, and scale. Different stages utilize different features
computed from image intensities. Multiple hypotheses are maintained between
algorithm stages, which quickly removes false hypotheses at the earlier stages
while propagates the right hypothesis to the final stage. Only one hypothesis is
selected as the final detection result.

A set of discriminative features are selected to distinguish the positive target
from negatives from a large pool of features at each stage. For the classifiers
at the position stage, we choose Haar wavelet-like features [7], which are effi-
ciently calculated using integral image-based techniques. For the classifiers at
the orientation and scale search stages, steerable features [9] are applied, be-
cause their computation does not require image rotation and re-scaling, which
are computationally expensive.

3 Experiments

We collected 253 long axis sequences from 116 patients (ages range from 11 to
72 years old), from which slices were selected to cover a large range of dynamic
heart motion from end diastole to end systole. In total, there are 795 long axis
slices (images) in our database. For each slice, three landmarks of LV (two basal
annulus points and the apex) were manually annotated by experts and used as
groundtruth for evaluation.

For each long axis slice, we applied the proposed joint context based algorithm
to detect the landmark set, i.e., two basal annulus points and the apex, in a
fully automatic fashion. We computed Euclidean distance between the detected
landmark position and its corresponding groundtruth as the detection error for
each landmark. The average error of all three landmarks was used as the metric
to evaluate the system performance.

A 4-fold cross-validation scheme was applied for evaluation. The entire dataset
of 795 images was randomly partitioned into four quarters. For each fold evalu-
ation, three quarters were combined for training and the remaining one quarter
was used as unseen data for testing. This procedure was repeated four time so
that each image has been used once for testing. Examples of the detection results
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are shown in Fig. 3. Performance is summarized based on all 4 folds and provided
in Table 2. Both individual landmark detectors and joint context based approach
are evaluated under the same experimental protocol. It shows that the overall
mean errors are reduced by about 15 percent with the proposed joint context
based approach integrated. While the median error is not reduced as much as
the mean, this indicates that the proposed approach significantly reduces the
outliers generated by the individual landmark detectors. Cardiac MR images in
a large population present a large variations of appearance intensities along with
the anatomy shape changes across the heart beat cycle, leading to difficulties for
accurate identification. Large errors still occur when all individual detectors fail
to locate correct landmarks, resulting in zero correct candidate for joint context.
On the average, it took about 1.5 seconds to detect the three landmarks from a
400×400 image on a duo core 2.8GHz CPU.

Table 2. Statistics of the average error of all three landmarks (two basal annulus points
and the apex) in a 4-fold cross validation. Errors are measured in mm.

Mean Std Median

Individual landmark detector 9.4 15.9 5.4

Joint context based landmark set detection 8.0 13.9 5.2

4 Conclusions

We have proposed a joint context based approach that is integrated into a
learning-based object detection framework. We have applied joint context and
developed a fully automatic system to detect a landmark set from cardiac MR
long axis images. The target landmark set contains the apex and the two basal
annulus points. The proposed joint context based approach is not dependent on
any specific learning algorithms. To account for both scout and diagnosis images,
we are focused on a single MR long axis slice. However, for image sequences, the
cue of temporal coherence can be integrated to further improve the landmark
set detection accuracy.
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Fig. 3. Bottom (’IND’ group): detection results of the base plane detector and the
apex detector individually. Top (’DJC’ group): landmark set detection results after
applying the discriminative joint context (DJC) based approach. The green region
represents joint context that provides the highest likelihood value of a pair of <apex,
base plane>. Pink: detected two basal annulus points; blue: detected apex.


