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Abstract. In this paper we present a fully automated approach to the
segmentation of pediatric brain tumors in multi-spectral 3-D magnetic
resonance images. It is a top-down segmentation approach based on a
Markov random field (MRF) model that combines probabilistic boosting
trees (PBT) and lower-level segmentation via graph cuts. The PBT algo-
rithm provides a strong discriminative observation model that classifies
tumor appearance while a spatial prior takes into account the pair-wise
homogeneity in terms of classification labels and multi-spectral voxel
intensities. The discriminative model relies not only on observed local
intensities but also on surrounding context for detecting candidate re-
gions for pathology. A mathematically sound formulation for integrating
the two approaches into a unified statistical framework is given. The
proposed method is applied to the challenging task of detection and de-
lineation of pediatric brain tumors. This segmentation task is character-
ized by a high non-uniformity of both the pathology and the surrounding
non-pathologic brain tissue. A quantitative evaluation illustrates the ro-
bustness of the proposed method. Despite dealing with more complicated
cases of pediatric brain tumors the results obtained are similar to those
reported for current state-of-the-art approaches to 3-D MR brain tu-
mor segmentation in adult patients. Processing one multi-spectral data
set takes 5 minutes on average including pre-processing and does not
require any user interaction.

1 Introduction

Detection and delineation of pathology, such as cancerous tissue, within multi-
spectral brain magnetic resonance (MR) volume sequences is an important prob-
lem in medical image analysis. For example, a precise and reliable segmentation
of brain tumors present in the childlike brain is regarded critical when aiming for
the automatic extraction of diagnostically relevant quantitative or more abstract
findings. This may include the volume of the tumor or its relative location. Once
these findings are obtained they can be used both for guiding computer-aided di-
agnosis and therapy planning as well as for traditional decision making. However,
the manual labeling of volumetric data is usually time consuming, which has the
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Fig. 1. Two different cases of pediatric brain tumors exhibiting heterogeneous shape
and appearance. Columns (a) and (b) show axial slices of the typically acquired pulse
sequences (row-wise from left to right: T2-weighted, T1-weighted, and T1-weighted
after contrast enhancement) and the expert annotated ground-truth overlaid to the
T2-weighted pulse sequence.

potential to delay clinical workflow, such that there is a need for fully automatic
segmentation tools in this particular context. Furthermore, manual annotations
may vary significantly among experts as a result of individual experience and
interpretation.

As multi-spectral 3-D magnetic resonance imaging (MRI) is the method of
choice for the examination of neurological pathology such as brain cancer in pe-
diatric patients, automatic approaches first have to be capable of dealing with
the characteristic artifacts of this imaging modality: Rician noise, partial vol-
ume effects, and intra-/inter-scan intensity inhomogeneities. Second and more
importantly, they have to be robust enough to handle the heterogeneous shape
and appearance of pediatric brain tumors in different patients (see Fig. 1).

In this paper, we propose a fully automatic solution based on a novel top-
down segmentation scheme that uses a statistical model of the pathology ap-
pearance as a constraint for a sub-sequent optimization problem. The statistical
model is provided by a machine learning technique that is able to work with
high-dimensional feature vectors allowing to encode characteristic voxel contexts.
The optimization problem itself is stated as a search for an MAP estimate of
the most-likely binary image segmentation, which permits efficient computation
of a solution by means of a max-flow/min-cut optimization procedure.

Approaches in the field of MR brain tumor segmentation rarely rely on pure
data-driven approaches due to the complexity in terms of tumor shape and
appearance of the segmentation task. The vast majority of methods make use
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of domain knowledge in varying representations in combination with low-level
imaging techniques. Fletcher-Heath et al. [1] use unsupervised fuzzy clustering
followed by 3-D connected components with an intermediate step incorporating
knowledge about the usual distribution of cerebral spinal fluid and location of the
ventricular system. Gering et al. [2] use trained models for intensity distributions
of non-pathologic brain tissue to detect model outliers on the voxel level that
are considered tumor voxels in a multi-layer Markov random field framework.
In a similar manner Prastawa et al. [3] detect outliers based on refined intensity
distributions for healthy brain tissue initially derived from a registered proba-
bilistic atlas, which introduces structural domain knowledge. Registration is also
used in combination with voxel intensities in the adaptive template-moderated
classification algorithm by [4]. More recent approaches try to enrich low level seg-
mentation techniques, like level set evolution [5] or hierarchical clustering [6], by
using supervised machine learning on higher dimensional feature sets associated
with each image voxel. These feature sets are capable of representing a more gen-
eral variety of domain knowledge on different levels of abstraction. In a similar
manner we make use of the recently proposed technique of probabilistic boosting
trees (PBT) [7] for supervised learning, which has proven its robustness and its
capability for efficient training and classification in numerous applications [8, 9].
The probability estimates provided by PBT are then used to constrain the highly
efficient computation of minimum cuts [10] for image segmentation based on a
Markov random field (MRF) prior model. It takes into account both coherence of
classification labels as well as intensity similarities within voxel neighborhoods.
To the best of our knowledge, this is the first paper giving an integrated for-
mulation for combining PBT classification and computation of minimum cuts.
Opposed to [5, 6] there is no involvement of a time consuming bias field cor-
rection step in data pre-processing. In the case of [6] this seems to be done by
FAST [11], which relies on an HMRF-EM segmentation approach. In the pres-
ence of abnormal tissue types this requires the determination of the number of
different intensity regions expected within each scan. Furthermore, the inher-
ent low level segmentation might bias the final segmentation result. In contrast
we build discriminative models, i.e. PBTs, whose generalization capabilities are
strong enough to implicitly handle those intra-patient intensity non-uniformities.
Moreover, we apply our method to the more complicated task of segmenting pe-
diatric brain tumors where not only pathology underlies significant variation
in shape and appearance but also the non-pathological “background”, which is
caused by ongoing myelination of white matter during maturation [12].

2 Discriminative Model-Constrained Graph Cuts
Segmentation

Our segmentation method relies on the integrated formulation of an objective
function that is subject to optimization via the efficient graph cuts algorithm
[10]. In the following we derive this objective function from the general MAP
framework for image segmentation.

In general, the problem of segmenting an image can be stated as the search for
an MAP estimate of the most likely class labels given appropriate prior and ob-
servation models in terms of probability density functions. Let S = { 1, 2, . . . , N }
be a set of indices to image voxels. At each index s ∈ S there are two random
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variables: ys ∈ Y = {−1, 1 } and xs ∈ X . The former denotes the unobserv-
able binary segmentation of voxel s into fore- and background, whereas the
latter states the observable vector of associated features, that are assumed to be
causally linked to the underlying class labels y by a unified observation model
defined by a probability density function P (x|y). The emergence of the class
labels themselves is described by a prior model P (y). The segmentation task at
hand can now be stated as the search for an MAP estimate

Y ∗ = argmax
Y

p(Y |X) (1)

where p(Y |X) is the joint posterior probability over the image domain. Using
the Bayes rule, and assuming a uniform distribution P (X), we have:

Y ∗ = argmax
Y

ln p(X|Y ) + ln p(Y ). (2)

To concretize this optimization problem a region-specific probability term and
an appropriate prior need to be identified. In our method P (X|Y ) is provided
by a PBT classifier. The machine learning technique of PBT recursively groups
boosted ensembles of weak classifiers to a tree structure during learning from
expert annotated data. Training a PBT resembles inducing a multivariate binary
regression tree as the final strong classifier

H(x) =
T∑

t=1

ht(x) (3)

generated within each inner node for a feature vector x through a combina-
tion of real-valued contributions ht(x) of T ∈ N weak classifiers asymptotically
approaches the additive logistic regression model [13]

H(x) ≈ 1
2

ln
p(y = +1|x)
p(y = −1|x)

. (4)

Accordingly, at each inner node v of the resulting PBT there are current ap-
proximations of the posterior probability distribution P̃v(y|x). During classifi-
cation those values are used to guide tree traversing and combined propagation
of posteriors in order to get a final approximation P̃ (y|x) of the true posterior
probabilities P (y|x) at the tree’s root node.

As mentioned above, assuming X to be distributed uniformly, and also to be
independently and identically distributed, we have P (x|y) ∝ P (y|x) and there-
fore p(X|Y ) ≈

∏
s∈S p(ys|xs).We furthermore assume conditional independence

of the observed features x for PBT classification and of the multi-spectral intensi-
ties i such that we can say p(X|Y ) ≈

∏
s∈S p̃(ys|xs)p(is|ys) in (2) with approxi-

mations p̃(ys|xs) from the classifier and P (i|y) being the foreground/background
intensity distribution. The latter can be estimated non-parametrically via his-
tograms from the initial hard classification for p̃(ys|xs) ≥ 0.5 obtained by the
PBT.

The feature vectors x used for PBT classification consist of individual multi-
spectral intensities, inter-spectra intensity gradients, and 2-D Haar-like features
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[14, 15] computed on an intra-axial 2-D context surrounding the voxel of interest.
The Haar-like features are derived from a subset of the extended set of Haar-
like feature prototypes by [16] and are represented only implicitly in memory by
so-called (Rotated) Integral Images. This allows for fast re-computation of the
features with respect to a given voxel when they are actually assessed. We decided
on 2-D Haar-like features in contrast to the full set of 3-D Haars because of
their lower computational cost and memory requirements. Also, as we intend to
capture a discriminative representation of the full context, and not only of local
edge characteristics at the central voxel, Haar-like feature values are computed
according to the given prototypes on every valid origin and scale within the
chosen voxel context.

For the prior distribution we assume a Markov random field prior model

P (Y ) ∝ exp(−U(Y | 1
λ

) (5)

formulated, according to the Hammersly-Clifford Theorem, as a Gibbs distribu-
tion with energy function

U(Y | 1
λ

) =
1
λ

∑
s∈S

∑
t∈Ns

Vst(ys, yt) (6)

where 1
λ with λ ∈ ]0.0;+∞[ controls the relative influence of the spatial prior

over the observation model and Ns states the neighborhood of voxel s. Inspired
by [17] the interaction potentials are

Vst(ys, yt) = exp

(
−1

2

L∑
l=1

(isl
− itl

)2

σ2
l

)
· δ(ys, yt)
dist(s, t)

(7)

where vectors i denote the observed intensities taken from L aligned input pulse
sequences and

δ(ys, yt) =
{

1 if ys 6= yt

0 otherwise . (8)

The function dist(s, t) denotes the physical distance between voxels s and t in pa-
tient space, which varies when working on image volumes with anisotropic voxel
spacing. The model emphasizes homogeneous segmentations among neighboring
voxels but weights penalties for heterogeneity according to intensity similarities
of the voxels involved.

With the equality

Y ∗ = argmax
Y

∑
s∈S

ln p̃(ys|xs)p(is|ys)−
1
λ

∑
s∈S

∑
t∈Ns

Vst(ys, yt) =

argmin
Y

λ ·

(∑
s∈S

− ln p̃(ys|xs)p(is|ys)

)
+
∑
s∈S

∑
t∈Ns

Vst(ys, yt) (9)

the initial maximization problem can be transformed into a minimization prob-
lem that is in a suitable form for optimization by the graph cuts algorithm [10].
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Note that the reciprocal of the regularization parameter in (6) can equivalently
be used to weight the influence of the observation model over the prior model.
Details on how to set up the graph and how to define the edge capacities for
the associated max-flow/min-cut problem instance based on (9) can be found in
[17].

3 Experimental Setting and Results

For quantitative evaluation of the proposed methods there were six multi-spectral
expert annotated data sets available. Each scan consists of three 3-D images ac-
quired at different pulse sequences (T2-weighted, T1-weighted, and T1-weighted
after contrast enhancement). The resolution is 512×512×20 with a voxel spacing
of 0.449219× 0.449219× 6.0. Where necessary due to patient movement during
image acquisition the pulse sequences were co-aligned by means of the MedIN-
RIA affine registration tool (www-sop.inria.fr/asclepios/software/MedINRIA).
All the sequences were further pre-processed by the following pipeline: skull
stripping by the Brain Extraction Tool (BET) [18], gradient anisotropic diffu-
sion filtering (www.itk.org), and inter-scan intensity standardization by Dynamic
Histogram Warping (DHW) [19]. Note that all of the pre-processing steps in-
volved, including co-alignment, can be performed fully automatically without
any user interaction.

The PBT voxel classifiers built were restricted to a maximum depth of 10 with
10 weak classifiers per tree node. The 2-D voxel context considered was of size
11×11 on volumes down-sampled to a voxel spacing of 2.0mm×2.0mm×6.0mm.
The graph cuts optimization is carried out on the original image resolution with
Ns defined to be a standard 6-neighborhood on the 3-D image lattice. The
standard deviation σ for the interaction potentials in (7) was estimated offline
as “camera noise” within manually delineated homogeneous regions throughout
the patient volumes. A leave-one-out cross validation on the patient data sets
and their accompanying PBT models yielded best average segmentation scores
in terms of the Jaccard coefficient (TP/(TP + FP + FN)) for λ ∈]0.1, 0.5[ such
that finally λ = 0.2 was chosen for computing the results depicted in Fig. 2. In
order to remove small regions of false positive voxels only the largest connected
component of the graph cuts result is considered to be the final segmentation.
With Jaccard coefficients of 0.78±0.17 they are better than those published by [5]
and, except for one case, in a similar range as those of [6] who all work with adult
patient data sets and partly on four pulse sequences. However, comparability
of results is limited because of different characteristics between the data sets
used by the mentioned scientists, e.g., pediatric patients versus adult patients,
presence of necrotic tissue within the tumors, restriction to a certain histological
type of tumor, etc.

It takes about 1–2 minutes to process one of the MRI volumes in a non-
optimized C++ implementation of our segmentation method on a Fujitsu Siemens
Computers notebook equipped with an Intel Pentium M 2.0 GHz processor and
2 GB of memory. With the same hardware as above training one classifier takes
about 4 hours. Preprocessing the images takes about 3 minutes so a total amount
of 5 minutes is needed for the processing of one patient data set.
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(a) (b) (c) (d) (e) (f)

Fig. 2. Segmentation results obtained by leave-one-patient-out cross validation. The
first row shows selected slices of the T2-weighted pulse sequences of the six available
patient data sets. The second row shows the associated segmentation results (red) and
the ground-truth segmentation (green) overlaid on the T2-weighted pulse sequence.
Please view in color.

4 Conclusions

The contribution of this paper is two-fold: starting from the well-known MAP
framework for image segmentation we have derived a constrained minimization
problem suitable for max-flow/min-cut optimization that incorporates an ob-
servation model provided by a discriminative PBT classifier into the process
of segmentation. Secondly, we successfully applied the method to the difficult
problem of fully automatic pediatric brain tumor segmentation in multi-spectral
3-D MRI. The experimental results obtained are comparable to those recently
published for fully automatic segmentation in adult patients.

Since tumor is a rather general concept in medicine, limitations of the pro-
posed approach might become apparent as soon as unforeseen pathologic tissue
types that could not adequately be captured by the discriminative model appear
in previously unseen patients. Especially secondary tumors might be composed
of an enormous variety of tissue types depending on the primary tumor site.
Future work will therefore investigate possibilities to handle this issue. The goal
is to detect, to segment, and to identify most types of pathological tissue that
occur within pediatric brain tumors.
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