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Abstract

The state-of-the-art object detection algorithm learns a
binary classifier to differentiate the foreground object from
the background. Since the detection algorithm exhaustively
scans the input image for object instances by testing the
classifier, its computational complexity linearly depends on
the image size and, if say orientation and scale are scanned,
the number of configurations in orientation and scale. We
argue that exhaustive scanning is unnecessary when detect-
ing medical anatomy because a medical image offers strong
contextual information. We then present an approach to ef-
fectively leveraging the medical context, leading to a solu-
tion that needs only one scan in theory or several sparse
scans in practice and only one integral image even when
the rotation is considered. The core is to learn a regres-
sion function, based on an annotated database, that maps
the appearance observed in a scan window to a displace-
ment vector, which measures the difference between the
configuration being scanned and that of the target object.
To achieve the learning task, we propose an image-based
boosting ridge regression algorithm, which exhibits good
generalization capability and training efficiency. Coupled
with a binary classifier as a confidence scorer, the regres-
sion approach becomes an effective tool for detecting left
ventricle in echocardiogram, achieving improved accuracy
over the state-of-the-art object detection algorithm with sig-
nificantly less computation.

1. Introduction

Detecting medical anatomic structure is important to
medical image understanding. For example, in order to seg-
ment the anatomic structure [2], a two-stage algorithm is
proposed: anatomy detection followed by database-guided
segmentation. The detection result can also serve valuable
initialization information for other segmentation techniques
such as level set, active contour, etc.

A promising approach to medical anatomy detection is
to use the classifier-based object detection approach: It first
trains a binary classifier, discriminating the anatomic struc-
ture of interest from the background, and then exhaustively

(a) (b)
Figure 1. (a) Face detection. There are multiple faces in the im-
age. (b) Left ventricle detection. There is only one LV in the A4C
echocardiogram.

scans the query image for anatomy targets. Suppose that the
trained classifier is denoted by posterior probability p(O|I),
the above scanning procedure mathematically performs one
of the following two:

find {θ : p(O|I(θ)) > 0.5; θ ∈ Θ}, (1)

θ̂ = arg max
θ∈Θ

p(O|I(θ)), (2)

where I(θ) is an image patch parameterized by θ and Θ
is the parameter space where the search is conducted. In
(1), multiple objects are detected such as in face detection
(Figure 1(a)); in (2), only one object is detected such as
in left ventricle (LV) detection from a 2D echocardiogram
of an apical four chamber (A4C) view (Figure 1(b)). The
2D echocardiogram is a 2D slice of the human heart cap-
tured by an ultrasound imaging device and the A4C view
is a canonical slice where all four chambers, namely left
ventricle, right ventricle (RV), left atrium (LA), and right
atrium (RA), are visible.

In [11], Viola and Jones used the classifier-based ap-
proach and reached real time detection of frontal-view face
by exhaustively searching all possible translations and a
sparse set of scales. They made three contributions: invok-
ing the AdaBoost to do feature selection, using the so-called
integral image to enable fast evaluation of the features, and
training the boosting cascade to quickly eliminate negatives.
Recently, approaches (mostly extended from [11]) that de-
tect objects under in-plane/out-of-plane rotations are pro-
posed [2, 4, 5]; but only a sparse set of orientations and
scales are tested in order to meet real time requirement. Ei-
ther multiple classifiers are learned [4, 5] or one classifier
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is learned but multiple integral images according to differ-
ent rotations are computed [2]. In general, the computa-
tional complexity of the classifier-based approach linearly
depends on the image size (for the translation parameter),
and the number of tested orientations and scales.

The medical anatomy such as LV often manifests an ar-
bitrary orientation and scale. To give an accurate account of
orientation and scale, which is required for subsequent tasks
like LV endocardial wall segmentation, the detection speed
is sacrificed for testing a dense set of orientations and scales.
Further, if the one-classifier approach [2], which is shown
to perform better than the multiple-classifier approach [4],
is used, then rotating the images and computing their asso-
ciated integral images cost extra computations. Therefore, it
is challenging to build a rapid detector for medical anatomy
using the classifier-based approach.

In summary, the exhaustive native of the classifier-based
approach makes real time computation impossible when a
high-dimensional space is searched. In this paper, we take
a completely different approach. By leveraging the anatom-
ical structure that manifests regularization and context in
geometry and appearance in medical images, we formulate
a regression task in section 2 to avoid exhaustive scanning
in medical anatomy detection. In theory, we need only one
scan. Also, we compute only one integral image. In ad-
dition, we contribute a novel image-based boosting ridge
regression (IBRR) algorithm in section 3 for multiple re-
gression with a multidimensional output. We present in sec-
tion 4 the medical anatomy detection algorithm and report
in section 5 experimental results on detecting the LV in the
2D echocardiogram of the A4C view.

2. Overview

We first present the basic idea of the regression approach
to medical anatomy detection. Then, we justify our ap-
proach by addressing the existence issue and contrasting it
with related work. Finally, we define the learning task.

2.1. Basic idea

Figure 2 illustrates the basic idea of the regression-based
medical anatomy detection. In Figure 2(a), we are only in-
terested in finding the center position (tx,0, ty,0) of the LV
in an A4C echocardiogram, assuming that the orientation of
the LV is upright and the scale/size of the LV is fixed.

Suppose that, during running time, we confront an image
patch I(tx, ty) centered at position θ = (tx, ty). If there
exists an oracle F that does the following: given an image
patch I(tx, ty), it tells the difference vector dθ = (dtx, dty)
between the current position θ and the target position θ0 =
(tx,0, ty,0), i.e., dθ = θ0 − θ or

dtx = tx,0 − tx, dty = ty,0 − ty, (3)

(a) (b)
Figure 2. (a) A graphical illustration of regression-based medical
anatomy detection based on a 2D translation parameterization.
(b) The regression setting of a 5D parameter space: (tx, ty) is the
LV center, (sx, sy) the LV size, and α the LV angle.

then we achieve the detection using just one scan. In other
words, the oracle gives a mapping F : I → (dtx, dty), i.e.,

(dtx, dty) = F(I(tx, ty)) or dθ = F(I(θ)), (4)
and the ground truth position is estimated as

θ̂0 = θ + F(I(θ)). (5)
Learning the function F(I(θ)) is referred to as regression
in machine learning.

It is straightforward to extend the 2D case to a higher
dimension. For example, to model the unaligned LV
in real images, we use a 5D parameterization θ =
(tx, ty, log(sx), log(sy), α): (tx, ty) for translation, α for
orientation, and (sx, sy) for scale (or size) in both x- and
y-directions. Due to the multiplicative native of the scale
parameter, we take the log operator to convert it to addi-
tive. The ‘difference’ vector dθ = (dtx, dty, dsx, dsy, dα)
is given as

dtx = tx,0 − tx, dty = ty,0 − ty, dα = α0 − α, (6)

dsx = log(sx,0) − log(sx), dsy = log(sy,0) − log(sy),

where θ0 = (tx,0, ty,0, sx,0, sy,0, α0) is the ground truth pa-
rameter of the target. Figure 2(b) illustrates the meaning of
the five parameters.

2.2. Existence

Does such an oracle F exist? To answer this, we observe
the fundamental differences between generic object detec-
tion and medical anatomy detection. Unlike general object
detection that needs to detect object instances from uncon-
strained scenes (see Figure 1(a)), medical anatomy detec-
tion applies to more constrained medical images (see Figure
1(b)). As a result, in generic object detection, an unknown
number of objects can appear at arbitrary locations in the
images with arbitrary background; in medical anatomy de-
tection, since the anatomic structure of interest is tied with
human body atlas, there is a known number of objects ap-
pearing within geometric and appearance contexts. Often
only one object is available. For example, in the echocardio-
gram shown in Figure 1, there is only one target LV avail-
able and its relation with respect to other structures such as



left atrium, right ventricle and right atrium is geometrically
fixed (that is why they are called left/right ventricle/atrium).
Also there exists a strong correlation among their appear-
ances. By knowing where the LA, RV, or RA is, we can
predict the position of the LV quite accurately. In principle,
by knowing where we are (i.e., knowing (tx, ty)) and then
looking up the map/atlas that tells the difference to the tar-
get (i.e., telling (dtx, dty) through the oracle), we can reach
the target instantaneously in a virtual world.

Medical atlas is widely used in the literature [1, 6, 7, 9].
However, current work uses the atlas as an explicit source
of prior knowledge about the location, size, and shape of
the anatomic structures and matches/deforms it to match the
image content for segmentation, tracking, etc. In this paper,
we take an implicit approach, that is, embedding the atlas in
a learning framework. After learning, the atlas knowledge
is fully absorbed and the atlas is no longed kept.

Torralba and Sinha [10] investigate modeling the con-
text information for general object detection. They view
the context from a holistic perspective and use a mixture of
Gaussians to relate the global image content represented by
windowed Fourier transform with the object’s location and
scale. We view the context from a local perspective, believ-
ing that what is locally observed is a part of a big picture,
and develop a regression algorithm to relate the local image
content to the target’s attributes.

2.3. Learning

How to learn the oracle F? We leverage machine learn-
ing techniques, based on an annotated database. As in Fig-
ure 3, we first collect, from the database, input-output pairs
(as many as possible) as training data: By varying the loca-
tion, we crop out different local image patches; meanwhile
recording their corresponding difference vectors. Similarly,
for the 5D parameterization, we can extract the training
data. We now confront a multiple regression setting with a
multidimensional output, which is not well addressed in the
machine learning literature. In this paper, we propose the
image-based boosting ridge regression (IBRR) algorithm,
which builds upon the image-based regression (IBR) algo-
rithm [13], to fulfill the learning task.

(-15,-12) (-3,-8) (-4,-6)

(-5,-17) (-7,-21) (15,16)

(15,-6) (16,-5) (17,6)
Figure 3. Examples of training data: image patch I and its asso-
ciated parameter dθ = (dx, dy).

3. Image-based boosting ridge regression

In this section, we first review the IBR algorithm [13],
which produces better results on several heterogeneous
tasks than data-driven regressors such as support vector re-
gressor while running substantially faster. Then, we present
our IBRR proposal to further make the IBR generalize bet-
ter, run faster, and more trainable.

3.1. Image-based boosting regression

We follow the notation used in [13]: a is a scalar, a a
column vector, and A a matrix. The input is denoted by
x ∈ Rd, the output by y(x) ∈ Rq, the regression func-
tion by g(x) : Rd → Rq and the training data points by
{(xn,yn);n = 1, 2, ..., N}. Further, we denote xTAx =
‖x‖2

A and tr{XTAX} = ‖X‖2
A. In medical anatomy detec-

tion, x = I is the image, y = dθ is the difference vector,
and the regression function g(x) = F(I) is the oracle.

3.1.1 Boosting regression

IBR minimizes the following cost function, which com-
bines a regression output fidelity term and a subspace regu-
larization term:

J(g) =
∑

n=1:N

{‖y(xn)−g(xn)‖2
A+λ‖µ−gt(xn)‖2

B}, (7)

where λ is a regularization coefficient.
IBR assumes that the regression output function g(x)

takes an additive form:

gt(x) = gt−1(x) + αtht(x) =
∑
i=1:t

αihi(x), (8)

where each hi(x) : Rd → Rq is a weak learner (or weak
function) residing in a dictionary set H, and g(x) is a strong
learner (or strong function). Boosting is an iterative algo-
rithm that leverages the additive nature of g(x): At iteration
t, one more weak function αtht(x) is added to the target
function gt(x). So,

J(gt) =
∑

n=1:N

{‖rt(xn)−αtht(xn)‖2
A+λ‖st(xn)−αht(xn)‖2

B},
(9)

where rt(x) = y(x)−gt−1(x) and st(x) = µ−gt−1(x).
It is shown in [13] that the optimal function ĥ (dropping

the subscript t for notational clarity) and its weight coeffi-
cient α̂, which maximally reduce the cost function or equiv-
alently boost the performance, are given as follows:

ĥ = arg max
h∈H

ε(h), α̂(ĥ) =
tr{(AR+ λBS)ĤT}

‖Ĥ‖2
A+λB

, (10)

where

ε(h) =
tr{(AR+ λBS)HT}√

‖H‖2
A+λB

√
‖R‖2

A + λ‖S‖2
B

, (11)



(a) (b)
Figure 4. (a) Binary decision stump. (b) Regression stump. The
regression stump carries more representational power than the de-
cision stump.

and the matrices Rq×N , Sq×N , and Hq×N are defined as:
R = [r(x1), . . . ,r(xN )], S = [s(x1), . . . ,s(xN )], H =
[h(x1), . . . ,h(xN )]. Finally, IBR invokes shrinkage (with
the shrinkage factor η = 0.5), leading to a smooth output
function: gt(x) = gt−1(x) + ηαtht(x).

3.1.2 Weak function based on decision stump

In [13], the over-complete feature representation based on
the local rectangle features [8, 11] is used to construct one-
dimensional (1D) decision stumps as primitives of the dic-
tionary set H. This construction enables robustness to ap-
pearance variation and fast computation. Each local rectan-
gle feature has its own attribute µ, namely feature type and
window position/size.

A 1D decision stump h(x) is associated with a local rect-
angle feature f(x;µ), a decision threshold ε, and a binary
direction indicator p, i.e., p ∈ {−1,+1}.

h(x;µ) =
{

+1 if pf(x;µ) ≥ pε
−1 otherwise

. (12)

Figure 4(a) illustrates a decision stump. Given a moderate
image size, one can generate a huge number of features by
varying their attributes. Denote the number of features by
M . By adjusting the threshold ε (say K evenly spaced lev-
els), one can further create K decision stumps per feature.
In total, we have 2KM 1D decision stumps.

A weak function is constructed as a q-dimensional (q-D)
decision stump h(x)q×1 that stacks q 1D decision stumps.

h(x;µ1, . . . , µq) = [h1(x;µ1), ..., hq(x;µq)]T. (13)

Because each hj(x;µj) is associated with a different pa-
rameter, one can construct a sufficiently large weak function
set that contains (2KM)q weak functions!

3.1.3 Incremental feature selection

Boosting operates as a feature selector: At each round of
boosting, the features that can maximally decrease the cost
function are selected. However, to transform the boosting
algorithm into an efficient implementation, there is a com-
putational bottleneck, that is the maximization task in (10).
This task necessitates a greedy feature selection scheme,

which is too expensive to evaluate, because it involves eval-
uating (2MNK)q decision stumps for each boosting round.

IBR uses an incremental feature selection scheme by
breaking the q-D regression problem into q dependent 1D
regression problems. Using the incremental vector

hi(x)i×1 = [h1(x), ..., hi(x)]T = [hi−1(x)T, hi(x)]T,
(14)

the optimal hi(x) is searched to maximize the ε(hi), which
is similarly defined as in (11) but based on all i (i ≤ q)
dimensions processed so far. The incremental selection
scheme needs evaluating only 2qMNK decision stumps
with some overhead computation while maintaining the de-
pendence among the output dimension to some extent.

3.2. Image-based boosting ridge regression (IBRR)

The above-reviewed IBR has two major drawbacks.
First, it is restrictive to use the subspace regularization
term ‖µ − g(xn)‖2

B in (7), which amounts to a multivariate
Gaussian assumption about the output variable that often
manifests a non-Gaussian structure for real data. As a re-
sult, the generalization capability is hampered. Second, the
weak function h(x) is too “weak” as it consists of several
1D binary decision stumps hj(x) sharing the same weight
coefficient α. Consequently, the training procedure takes
a long time and the learned regression function uses too
many weak functions, affecting its running speed. To over-
come the drawbacks of IBR, we propose to (i) replacing
the subspace regularization and (ii) enhancing the modeling
strength of the weak function.

3.2.1 Weak function based on regression stump

Instead of using the 1D binary decision stumps as primi-
tives, we propose to use regression stumps. A regression
stump h(x;µ), illustrated in Figure 4(b), is defined as

h(x;µ) =
∑

k=1:K

wk [f(x;µ) ∈ Rk] = e(x;µ)Tw, (15)

where [.] is an indicator function, f(x;µ) is the response
function of the local rectangle feature with attribute µ, and
{Rk; k = 1, 2 . . . , K} are evenly spaced intervals1. In
the above, all the weights wk are compactly encoded by
a weight vector wK×1 = [w1, w2, . . . , wK ]T and the vector
e(x;µ) is some column of the identity matrix: only one el-
ement is one and all others are zero. Similarly, we construct
the weak function h(x)q×1 by stacking q different 1D re-
gression stumps, i.e.,

h(x;µ1, . . . , µq) = [e1(x;µ1)Tw1, ...,eq(x;µq)Twq]T,
(16)

1There are two exceptions: the first interval R1 starts from −∞ and the
last one RK ends at +∞. The interval boundary points are empirically
determined. We first find the minimum and maximum responses for the
feature and then uniformly divide them.



where wj is the weight vector for the jth regression
stump hj(x;µj). We further encode the weights belong-
ing to all regression stumps into a weight matrix WK×q =
[w1,w2, . . . ,wq]. Since we now use the weights, we drop
the common coefficient α in the regression output function
defined in (8) and instead use the following form:

gt(x) = gt−1(x) + ht(x) =
∑
i=1:t

hi(x). (17)

It is easy to verify that a regression stump can be formed
by combining multiple decision stumps. Such a combina-
tion strengthens the modeling power of weak functions and
consequently accelerates the training process. Our empiri-
cal evidence shows that the training time is almost inversely
proportional to the number of levels used in the weak func-
tion. Because using the regression stump brings the risk of
overfitting, we will ameliorate this risk by considering the
model complexity of the regression stump.

3.2.2 Boosting ridge regression

Ridge regression, also known as Tikhonov regularization
[3], is the most commonly used method of regularization
for an ill-conditioned system of linear equations. It also al-
lows analytic derivations. In this paper, we adopt the ridge
regression principle into a boosting framework.

The model complexity of the regression output function
gt(x) depends on its weight matrices {W1,W2, . . . ,Wt}. Be-
cause boosting regression proceeds iteratively, at the tth

boosting iteration, we set up the following ridge regression
task that only involves the weight matrix Wt (dropping the
subscript t for notational clarity):

arg min
W

{J(g) =
∑

n=1:N

{‖r(xn) − h(xn)‖2
A} + λ‖W‖2

B}.
(18)

Because the weight vectors {w1,w2, . . . ,wq} in the
weight matrix W are associated with q different local rectan-
gle features, the optimization in (18) implies two subtasks:

1. Given a set of q features with attributes µ1, . . . , µq , re-
spectively, find the optimal matrix Ŵ(µ1, . . . , µq) and
the minimum cost Ĵ(µ1, . . . , µq);

2. Find the optimal set of q features with respec-
tive attributes µ̂1, . . . , µ̂q that minimizes the cost
Ĵ(µ1, . . . , µq). This corresponds to feature selection.

Like [13], the optimization in (18) necessitates a greedy
feature selection that is computationally unmanageable;
therefore we resort to the suboptimal yet computationally
amenable incremental feature selection scheme.

To proceed, we introduce the following “incremental”
vectors and matrices:

Ai =
[

Ai−1 ai−1

ai−1T
ai

]
,hi =

[
hi−1

hi

]
,ri =

[
ri−1

ri

]
.

1. Initialization t = 0.

(a) Set the fixed A and B (the normalization matrices), λ (the regulariza-
tion coefficient), and η (the shrinkage factor).

(b) Set the values related to the stopping criteria: Tmax (the maximum
number of iterations) and Jmin (the minimum cost function).

(c) Set initial values for t = 0: g0(x) = 0 and r0(x) = y(x).

2. Iteration t = 1, . . . , Tmax

(a) Find the optimal ĥt using the feature selection algorithm in Figure 6.

(b) Form the new function gt(x) = gt−1(x) + ηĥt(x).

(c) Evaluate the approximation error rt(x) = y(x) − gt(x) and the
cost function J(gt).

(d) Check convergence, e.g., see if J(gt) < Jmin.

Figure 5. The proposed image-based boosting ridge regression
(IBRR) algorithm.

Assuming that we have found the features up to i − 1, that
is, the incremental vector hi−1(x;µ1, . . . , µi−1) and the
weight vectors w1, . . . ,wi−1 are known, we aim to find the
weak function hi(x;µi) = ei(x;µi)Twi that minimizes the
following ridge regression cost J i(µi,wi).

J i(µi,wi) =
∑

n=1:N

{‖ri(xn) − hi(xn)‖2
Ai + λ‖wi‖2

B}.
(19)

It is easy to derive that, for a fixed µi, the optimal weight
vector is

ŵi(µi) = Γi(µi)−1τiei(x;µi), (20)
where

Γi(µi) = λB+
∑

n=1:N

{ei(xn;µi)aiei(xn;µi)T}, (21)

τi =
∑

n=1:N

{(ri−1(xn) − hi−1(xn))Tai−1 + ri(xn)Tai}.
(22)

Then, we search the optimal µi to minimize the cost func-
tion J i(µi, ŵi(µi)).

When A = B = Iq, the incremental feature selection
gives the optimal solution. In this case, the optimal weight
wj,k for the jth weak function is the weighted average:

wj,k =
∑N

n=1 rj(xn)[f(xn;µj) ∈ Rk]

λ +
∑N

n=1[f(xn;µj) ∈ Rk]
. (23)

Similar to [13], we randomly permutate the order of the
dimension of the output variable in order to improve robust-
ness and remove bias. We also use other tricks to improve
computational efficiency, including (i) randomly sampling
the dictionary set, i.e., replacing M by a smaller M ′; and
(ii) randomly sampling the training data set, i.e., replacing
N by a smaller N ′.

Figure 5 summarizes the IBBR algorithm and Figure 6
the incremental feature selection scheme inside IBRR.

4. Medical anatomy detection

We now present how to integrate the learned regres-
sion function into a practical algorithm that detects medical



Figure 7. Top row: example images used in Experiment-I where only the LV center is searched. Bottom row: example images used in
Experiment-II where the LV center, size, and orientation are searched. Unlike those images in the first experiment, the size of the images in
the second experiment varies. Note that is a significant variation in the parameter to be searched as well as in the LV appearance due to
ultrasound noise, deformable shape, differences in instrument, sonographer, and patient, etc.

1. Initialization.

• Create a random permutation of {1, 2, . . . , q}, yielding
{[1], [2], . . . , [q]}.

2. Iteration over the dimension of the output variable i = 1, 2, . . . , q

• (optional) Sample M ′ local rectangle features from the dictionary set
and form the reduced set of weak functions H′.

• (optional) Sample N ′ data points from the training set.

• Loop over the feature µi = 1, 2, . . . , M ′ to find h[i] =

arg minµi
J [i](µi, ŵi(µi)).

• Form the new vector h[i] = [h[i−1]T
, h[i]]

T.

Figure 6. The incremental feature selection algorithm for IBRR.

anatomy. In theory, only one scan is needed to find the tar-
get; in practice, we conduct a sparse set of random scans
and then estimate the parameter using fusion. Suppose
that in total M random samples are scanned at positions
{θ<1>, θ<2>, . . . , θ<M>}. For each θ<m>, we invoke the
regressor to predict the difference parameter dθ<m> and
subsequently predict the target parameter θ<m>

0 as follows:

dθ<m> = F(I(θ<m>)), m = 1, 2, . . . ,M ; (24)
θ<m>
0 = θ<m> + dθ<m>, m = 1, 2, . . . ,M. (25)

We treat the M predictions {θ<m>
0 ;m = 1, 2, . . . ,M} as

independent and compute their mean value as the final esti-
mate θ̂0 for the ground truth parameter:

θ̂0 = M−1
∑

m=1:M

θ<m>
0 . (26)

One disadvantage of the proposed IBRR algorithm is
that it lacks a confidence measure, i.e., the regressor is
a black box that tells no confidence about its prediction.
In order to provide a confidence score, we learn a binary
detector D specialized for the anatomy of interest. After
finding the mth prediction θ<m>

0 , we apply the detector
D to the image patch I(θ<m>

0 ). If the detector D fails,
then we discard the mth sample; otherwise, we keep the
confidence score cm. This way, we have a weighted set
{(θ<j>

0 , c<j>); j = 1, 2, . . . , J} (note that J ≤ M as sam-
ples might be discarded), based on which we calculate the

weighted mean as the final estimate θ̂0

θ̂0 = {
∑

j=1:J

c<j>θ<j>
0 }/{

∑
j=1:J

c<j>}. (27)

In practice, we stop scanning when J ≥ Jvalid in order
to further save computation. If there is no sample θ̂<m>

0

passing the detector D, then we still use (26) as the final
estimate. We find that combining the regressor and binary
detector is an effective tool for medical anatomy detection;
it only needs a smaller number of scans to reach a better
performance than the method using only the regressor.

5. Experimental results and discussions

We tested the boosting regression approach to LV de-
tection from 2D echocardiogram. We had in total 527 se-
quences of the A4C view. Though we had video sequences,
we focused on detecting the LV at the end of diastole (ED)
frame, when the LV dilates to its maximum. We randomly
selected 450 ED frames for training and the remaining 77
for testing. We conducted two experiments.

5.1. Experiment-I: 2D translation

In the first experiment, we normalized the scale and ori-
entation of the LV; the normalized image size is 200× 300.
We left the translation parameter (tx, ty) free and empiri-
cally found that the range of tx and ty is tx ∼ [120, 213]
and ty ∼ [52, 104]. Figure 7 (the top row) shows six nor-
malized images, which manifest the significant LV appear-
ance variation. For each ED frame, we randomly sampled
20 image patches and recorded their difference vectors; in
total, we generated 9, 000 training data points.

There are several tuning parameters in the IBRR algo-
rithm. First, we set A = B = Iq for simplicity, which
means that the weighted average formula in (23) is appli-
cable. For the number of threshold levels K for a weak
function, the regularization coefficient λ and the shrinkage
coefficient η, we empirically tested different combinations
and decided to use the following: K = 64, λ = 0.1/K, and



Figure 8. The odd-indexed images show the 100 predicted target outputs (red) and the even-indexed images show only the predicted target
outputs (red) passing the detector. The green point is the final estimate of the target position, the green curve is the 95% confidence curve,
and the yellow point indicates the ground truth position. Note that the region bounded the 95% confidence curve on the even-indexed
images is significantly smaller than that on the odd-indexed images.

η = 0.1. After learning, we ended up with a regressor with
500 weak functions or 1, 000 local rectangle features (as one
weak function has two features). The whole IBRR training
procedure takes about 15 hours on a high-end workstation
with four Xeon 3GHz CPUs and 3GB RAM. We followed
[2] to train a LV detector of three cascades, each with 8, 35,
and 86 local rectangle features, respectively.

We implemented three scanning methods: “IBRR”,
“IBRR+Det”, and “Det”. The “IBRR” means that we ran-
domly scanned the image within the range of tx and ty using
the learned IBRR function and used (26) as the final esti-
mate of the target position. The “IBRR+Det” means that
we further equipped the “IBRR” method with the trained
detector and used (27) as the final estimate. We also set
Jvalid = 5 to enable early exit when scanning. The “Det”
means that we exhaustively scanned the image within the
same range using the detector and used the location that
maximizes the detector response as the final estimate.

Given a testing ED frame, we randomly scanned M posi-
tions to obtain M predictions for the target location. Figure
8 shows M = 100 predicted target positions (the red points)
on three example images: The majority of the prediction
is close to the ground truth position (the yellow point) al-
though there are outliers. In Figure 8, we also showed only
the predicted points that pass the binary detector: All the
outliers are eliminated, thereby significantly improving the
precision of the estimate. This improvement is evidenced
by the smaller region bounded by the confidence curves.

Figure 9 shows the effect of the number of features and
the number of random scans to the detection error, which
measured as tdetected− tgroundtruth in tx and ty separately.
Here we reported the bias and standard deviation of the de-
tection error for the training and testing sets, respectively.
From Figure 9, we observe that (i) There is no conspicuous
difference between the training and testing detection error
for all three methods, implying that the learning generalizes
well; (ii) For the “IBRR” method, the localization uncer-
tainty in the tx is much higher than in ty; (iii) The increase
in the number of features and the number of random scans
does not significantly decrease the detection error and only
marginally improves the detection precision; and (iv) The
“IBRR+Det” method significantly reduces the detection un-
certainty to a level similar to the “Det” method.
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Figure 9. (a) The detection error versus the number of local rectan-
gle features with the number of scans fixed at 100. (b) The detec-
tion error versus the number of scans with the number of selected
features fixed at 400.

Method IBRR IBRR+Det Det
# of features 400 400+129 129
Training err. in tx 0.58 ± 6.36 −0.09 ± 2.96 −0.53 ± 1.26
Training err. in ty 1.10 ± 3.17 0.64 ± 2.39 0.40 ± 1.92
Testing err. in tx −0.42 ± 6.21 −0.26 ± 2.41 −0.29 ± 1.25
Testing err. in ty 0.51 ± 3.24 0.24 ± 2.90 −0.19 ± 2.38
# of eff. scans 100 58 3174
Avg. speed 20ms 16ms 122ms

Table 1. Performance comparison of the three methods for the 2-
parameter case.

In Table 1, we profiled the three methods2. In terms of
localization performance, there is no systematic detection
bias observed in all three methods. The “Det” method gives
the best localization precision and the “IBRR” method is the
worst while the “IBRR+Det” is comparable to the “Det”. In
terms of speed, the “Det” method is the slowest due to its
exhaustive native and the “IBRR+Det” is the fastest, more
than 7.5 times faster than the “Det”, while the “IBRR” is
slower than the “IBRR+Det”. The speed, which can be fur-
ther tuned, was recorded on a laptop with a Pentium 2.1GHz
CPU and 2GB RAM. In short, the “IBRR+Det” achieves
appealing detection performance while running the fastest.

2To count the number of effective scans in Table 1, we excluded those
scans if their associated image patches have less than 40% of their pixels
inside the known fan.



Figure 10. The inferred LV box versus the ground truth. The red box is from the “IBRR” method, the green is from the “IBRR+Det”
method, and the blue is the ground truth.

5.2. Experiment-II: 5D parameter

In the second experiment, we evaluated the 5-parameter
setting for the unaligned LV in the A4C view. Figure 7 (the
bottom row) shows six ED images with the unaligned LV
present. The range of the five parameters is empirically
found as: tx ∼ [43, 118], ty ∼ [24, 70], sx ∼ [26, 86],
sy ∼ [37, 92] and α ∼ [−25, 35]. We scanned the im-
age following the above range. The average image size is
111 × 151.

Using the same set of training parameter in Experiment-
I, we trained the regressor based on 450 randomly selected
ED frames, each yielding 30 image patches; in total we
had 13,500 training data. It takes more than two days to
train the regressor, which consists of 10,000 local rectan-
gle features (or 200 weak functions). Training the detec-
tor is not as straightforward as in Experiment-I because
here the image rotation is considered. We followed [12]
to train the detector, which is able to simultaneously detect
the object as well as infer its rotation yet using only one
integral image. We experimented the same three methods:
“IBRR”, “IBRR+Det”, and “Det”. We set Jvalid = 10 in
the “IBRR+Det” method. For the “Det” method, we ex-
haustively scanned the image every 4 pixels in translation
and every 4 pixels in scale.

Table 2 compares the three scanning methods. The
error in scale is measured as sdetected/sgroundtruth − 1.
Because we did not observe significant performance dif-
ference between training and testing, we pooled them to-
gether and jointly reported the results. We note that the
“IBRR+Det” runs the fastest, about 7 times faster than the
“IBRR” method and more than 50 times faster than the
“Det” method, while yielding comparable performance to
the “IBRR” in terms of bias and improving the localization
precision. The slowest “Det” method does not yield the best
performance any more in terms of either bias or variance be-
cause it does not exhaust all possible configurations. Figure
10 shows example images with estimated and ground truth
boxes overlaid.

6. Conclusion

We have presented an image-based boosting ridge re-
gression (IBRR) approach to fast medical anatomy de-
tection. The IBRR, a general learning algorithm for
multiple regression with multidimensional output, exhibits

Method IBRR IBRR+Det Det
# of features 1000 1000+1201 1201
err. in tx 0.32 ± 3.13 0.65 ± 2.07 1.69 ± 3.40
err. in ty 0.67 ± 2.40 1.25 ± 1.95 0.84 ± 3.73
err. in sx 0.02 ± 0.12 0.04 ± 0.12 0.05 ± 0.17
err. in sy 0.01 ± 0.08 0.02 ± 0.08 0.04 ± 0.15
err. in α −1.76 ± 7.17 −0.98 ± 6.39 0.22 ± 6.74
# of eff. scans 200 38 29383
Avg. speed 704ms 118ms 6300ms

Table 2. Performance comparison of the three methods for the 5-
parameter case.

good generalization capability and training efficiency. The
regression-based detection algorithm replaces the exhaus-
tive scanning of the query image required by the classifier-
based detector by a sparse scanning and reaches improved
accuracy with significantly less computation and no need
for image rotation. In the future, we will investigate regres-
sion approaches with prediction confidence and extend the
same approach to other medical applications.
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