
BoostMotion: Boosting a discriminative similarity function for motion estimation

Shaohua Kevin Zhou†, Jie Shao‡, Bogdan Georgescu†, and Dorin Comaniciu†
†Integrated Data Systems Department, Siemens Corporate Research, Princeton NJ 08540
‡Center for Automation Research, University of Maryland, College Park, MD 20742

Abstract

Motion estimation for applications where appearance
undergoes complex changes is challenging due to lack of an
appropriate similarity function. In this paper, we propose to
learn a discriminative similarity function based on an anno-
tated database that exemplifies the appearance variations.
We invoke the LogitBoost algorithm to selectively combine
weak learners into one strong similarity function. The weak
learners based on local rectangle features are constructed
as nonparametric 2D piecewise constant functions, using
the feature responses from both images, to strengthen the
modeling power and accommodate fast evaluation. Be-
cause the negatives possess a location parameter measur-
ing their closeness to the positives, we present a location-
sensitive cascade training procedure, which bootstraps neg-
atives for later stages of the cascade from the regions closer
to the positives. This allows viewing a large number of neg-
atives and steering the training process to yield lower train-
ing and test errors. In experiments of estimating the motion
for the endocardial wall of the left ventricle in echocardiog-
raphy, we compare the learned similarity function with con-
ventional ones and obtain improved performances. We also
contrast the proposed method with a learning-based detec-
tion algorithm to demonstrate the importance of temporal
information in motion estimation. Finally, we insert the
learned similarity function into a simple contour tracking
algorithm and find that it reduces drifting.

1. Introduction

Motion estimation is fundamental to computer vision.
Underlying any motion estimation algorithm lie two ingre-
dients: similarity function and spatiotemporal smoothing.
While many existing approaches [7, 11, 20] investigated the
latter, we concentrate on the former. A similarity function
is a two-input functions(I , I ′) that measures how closely
the test patchI ′ is visually similar to the template patchI .
A typical motion estimation algorithm performs the follow-
ing: given two consecutive frames and a target point(u, v)
whose motion vector to be measured fromt − 1 to t, one

finds the shift that has the (local) maximum similarity.

(δû, δv̂) = arg max
(δu,δv)∈N

s(I t−1(u, v), I t(u+δu, v+δv)),

(1)
whereI t(u, v) is a local patch extracted from the framet,
centered at(u, v), andN is the searching window.

For applications where the observed appearance under-
goes complex changes in an application-dependent fashion,
motion estimation is challenging due to lacking an appro-
priate similarity function. Similarity functions proposed in
the literature are mostly generic and inadequate for handling
complex appearance variations. As a motivating example,
consider a stress echocardiographic video (stress echo), a
series of 2D ultrasound images of the human heart cap-
tured after the patient undergoes exercise or takes special
medicine. We focus on wall motion analysis to characterize
the functionality of the heart. To be specific, we measure
the motion of the endocardium of the left ventricle (LV). As
shown in Figure 1, the LV endocardium presents severe ap-
pearance changes over a cardiac cycle due to nonrigid de-
formation, imaging artifacts like speckle noise and signal
dropout, movement of papillary muscle (which is attached
to the LV endocardium but not a part of the wall), respi-
ratory interferences, unnecessary probe movement, etc. In
the experiments, we illustrate the ineffectiveness of generic
similarity functions when applied to estimating the motion
in the stress echo sequences.

Section 2 gives a brief review of similarity functions as
well as learning-based tracking algorithms. Generic sim-
ilarity functions work for certain imaging scenarios but
break down for others, depending on the way in which the
appearance changes. For example, the sum of squared dis-
tance (SSD) works best for isotropic Gaussian noise, the
sum of absolute distance (SAD) for the Laplacian noise, and
the CD2 [5] for fully developed speckle noise. On one hand,
there does not exist aglobaland generic similarity function
universally good for all scenarios; on the other hand, it is
very likely that differentlocal regions of the image are best
suited for different similarity functions. This strongly mo-
tivates us to take a boosting approach [9, 10] that combines
locally good similarity function (still weak though) into a

Figure 1. An example of stress echo sequence with the annotation of the LV endocardium. Due to the rapid heart rate (177 beats per
second), the LV appearance varies significantly within a short period of six consecutive frames.

globally strong similarity function that works best for the
scenario exemplified by an annotated database.

From another perspective, one wish to have a similarity
function whose response map is highly peaked at the correct
location. In the extreme, the similarity function operates
as a discriminative function: positive if the centers of two
paired image patches are in correspondence and negative if
out of correspondence.

s(I , I ′) = { 1 if (I , I ′) is a corresponding pair;
0 otherwise.

(2)

This fits in the concept of discriminative learning. By treat-
ing the image pairs in correspondence as positives and the
rest as negatives, the similarity function becomes a discrim-
inative function that separates two classes. Given an an-
notated video database, we can learn such a discriminative
function using examples extracted from the database.

Inspired by the above arguments, we propose to learn a
discriminative similarity function using the boosting frame-
work. We invoke the LogitBoost algorithm [10] to se-
lectively combine weak learners into one strong similarity
function. We associate a weak learner with an Haar-like
local rectangle feature [17, 22] to accommodate fast com-
putation. The weak learner takes an image pair as input and
uses the two feature responses collected from both images.
We construct the weak learner as a nonparametric 2D piece-
wise constant function of the two feature responses in order
to strengthen its modeling power, thereby bringing savings
in both training speed and storage requirement. Section 3
addresses the boosting procedure and weak learners. Be-
cause we boost a similarity function for motion estimation,
we call the proposed approachBoostMotion.

Selecting negatives is crucial to the training accuracy
and consequently influences the motion estimation accu-
racy. The negatives implicitly possess a location param-
eter measuring their closeness to the positives. To lever-
age the additional distance structure of the negatives, we
present a location-sensitive cascade training procedure that
bootstraps negatives for later stage of the classifier cascade
from the regions closer to the positives. This allows not
only viewing a large number of negatives as in the regular
cascade training [22] but also steering the training process
with respect to the motion estimation accuracy. In section
4, we empirically show that the location-sensitive cascade
yields lower training and test errors than the regular one.

In section 5, we compare the proposed similarity func-
tion with conventional similarity functions using the stress
echo sequences and obtain improved performance when es-
timating the motion of the LV endocardium. We also con-
trast the BoostMotion approach, which takes a pair of im-
ages as input, with a learning-based detection algorithm,
which takes a single image patch as input, and demonstrate
the importance of temporal information in motion estima-
tion. Then we insert the BoostMotion module into a naive
tracker that estimates the motion vector frame by frame and
hence is prone to drift. In the experiment of tracking regular
echo sequences, we show that using the discriminant simi-
larity function reduces drifting. Section 6 summarizes the
paper.

2. Related work

In this section, we briefly review related work on (i) sim-
ilarity functions commonly used in the motion estimation
algorithms and (ii) learning-based visual tracking.

2.1. Similarity function

The similarity functions for motion estimation proposed
in the literature can be roughly categorized as (i) intensity-
based, (ii) histogram-based, and (iii) application-specific.

Intensity-based similarity function. It includes sum of
square distance (SSD) [4, 14, 19], sum of absolute distance
(SAD), and normalized cross correlation (NCC).

The SSD similarity function corresponds to the ‘bright-
ness constancy’ assumption.

SSD : s(I , I ′) = ||I − I ′||2 (3)

where||.||2 takes theL2 norm. The SSD is also equivalent
to assuming an isotropic Gaussian noise model.

The SSD can be generalized in two ways. First, it can
be based on images derived from the original ones. For ex-
ample, if the gradient image is used, this corresponds to the
‘gradient constancy’ assumption [4]. Second, theL2 norm
can be replaced by anLp norm. If p = 1, the similarity
function becomes the SAD function which is equivalent to
assuming a Laplacian noise model.

The NCC function is defined as

NCC : s(I , I ′) =
(I − µ(I)) • (I ′ − µ(I ′))/N

σ(I)σ(I ′)
, (4)

where• denotes the dot product,N is the number of pixel
in the imageI , andµ(.) andσ(.) take the sample mean and
standard deviation, respectively.

Histogram-based similarity function.Assuming that the
histogram ofI is given byh(I), the Bhattacharyya distance
[8] is defined as

BHA : s(I , I ′) =
∫ √

h(I)h(I ′)dλ. (5)

Other histogram-based similarity functions include theχ2

distance, earth moving distance, KL divergence, etc.
Application-specific similarity function.In the paper, we

focus on ultrasound images. The ultrasound-specific CD2

similarity function proposed by Cohen and Dinstein [5] is
specially designed for handling a fully-developed speckle
noise in an ultrasound image and shown to be effective by
Boukerrouiet al. [3]. DenotingĨ = log(I), the CD2 func-
tion is defined as

CD2 : s(I , I ′) =
∑

{̃i−ĩ′−log[exp(2̃i−2̃i′)+1]}, (6)

wherẽi’s are the pixels belonging to the imageĨ .

2.2. Learning-based visual tracking

It should be emphasized that visual tracking is different
from motion estimation. The latter concerns only two suc-
cessive frames; while the former concerns the motion esti-
mation of a whole video sequence. While a naive tracker es-
timates motion recursively frame by frame, tracking is more
than motion estimation as the above naive tracker is prone
to drift away. To overcome drifting, the tracking algorithm
does the following: (i) updates the appearance model strate-
gically and/or (ii) performs temporal smoothing/fusion.

Underlying learning-based tracking algorithms lies a
data-driven procedure. In most cases, a binary classifier
(except [13]) that discriminates the object of interest and the
background is learned, whether offline or online. If the clas-
sifier is learned offline, this solves tracking as a detection
problem [17, 22]. In [16], temporal smoothing is enforced
by casting the detector output as the observation likelihood
in a particle filter setting. Avidan [1] proposes a support
vector tracking algorithm that learns a support vector ma-
chine (SVM) from the training data using the polynomial
kernel. The SVM score, after the Taylor expansion, is ana-
lytically maximized for every frame. In [24], Williamset al.
build on the relevance vector machine to perform tracking,
where temporal fusion is applied. In [13], Lepetitet al. ar-
tificially generates exemplars (using affine transform or 3D
model) for each feature point that is treated as a class and
use 1-NN neighbor searching to determine the class label.

If the classifier is learned online, the appearance model
updating is embedded into the classifier. In the work of
Collins and Liu [6], the appearance model is represented by

Two-class LogitBoost (positive – y=1, negative – y=0)

0. Input: (i) Training data{xi; i = 1, 2, . . . , N} and their
corresponding class labels{yi; i = 1, 2, . . . , N}. (ii) The
structural spaceF .

1. Start with weightswi = 1/N , i = 1, 2, . . . , N , F (x) = 0,
and probability estimatesp(xi) = 1/2.

2. Repeat form = 1, 2, ..., M :

• (a) Compute working responses and weights:

zi =
yi − p(xi)

p(xi)(1− p(xi))
; (7)

wi = p(xi)(1− p(xi)). (8)

• (b) Fit the functionfm(x) by a weighted least-squares
(LS) regression ofzi to xi with weightswi.

fm(x) = arg min
f∈F

{ε(f) =

NX
i=1

wi(zi − f(xi))
2}.

(9)

• (c) UpdateF (x) ← F (x) + 1
2
fm(x) andp(x) via

p(x) =
exp(F (x))

exp(F (x)) + exp(−F (x))
. (10)

3. Output the classifiersign[F (x)].

Figure 2. The two-class LogitBoost algorithm [10].

a set of features that are selected online based on the vari-
ance ratio of the log likelihood function, which is empiri-
cally estimated. Ensemble tracking [2] developed by Avi-
dan invokes the AdaBoost to learn the classifier. After track-
ing, the classifier is updated by adding the recently tracked
results. Since the AdaBoost is a feature selection process,
the ensemble tracker also represents the appearance model
by features that are updated over time.

The approaches reviewed above commonly learn a clas-
sifier to differentiate the foreground object from the back-
ground. However, such a classifier gives no account of tem-
poral information essential to motion estimation, which per-
forms pairwise comparison along the temporal dimension.
In other words, the input to the classifier is always a single
image patch not a pair of images. The proposed BoostMo-
tion approach explores the possibility of using image pairs
as inputs and embeds the temporal statistics into a learned
similarity function. In [23], the temporal difference images
are used in boosting a pedestrian detector (again not a sim-
ilarity function). Incidently, learning the spatial statistics of
optical flow is addressed in [18].

3. Boosting

We invoke the framework of boosting to learn the sim-
ilarity function. Boosting iteratively selects weak learn-

(a) 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

g(I)

g
(I

’)

the field of w*z for all positives

(b) 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4
the field of −w*z for all negatives

g(I)

g(
I’)

(c) g(I) interval

g
(I

’)
 in

te
rv

al

The fitted 2D piecewise constant function

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

(d)
Figure 3. (a) A weak similarity function compares two local rectangle regions belonging to imagesI andI ′, respectively. Panels from (b)
to (d) illustrate the process of fitting a 2D PWC function: (b) the field ofw ∗ z for all positives; (c) the field of−w ∗ z for all negatives;
and (d) the fitted 2D PWC function.

ers to form a strong learner using an additive form:
F (x) =

∑
fm(x)∈F fm(x), where F (x) is the strong

learner,fm(x)’s are the weak learners, andF is the struc-
tural space where the weak learners reside.

Boosting has three key components: (i) structural space;
(ii) noise model or cost function; and (iii) selection algo-
rithm. Different variants of boosting are proposed in the
literature depending on different choices of the key com-
ponents. We decide to use the LogitBoost algorithm [10]
summarized in Figure 2. The LogitBoost algorithm dif-
fers from the commonly used AdaBoost algorithm [9] in
the following two aspects. First, they optimize different
cost functions. The AdaBoost algorithm minimizes an up-
per bound of the target misclassification error; the Log-
itBoost algorithm directly minimizes a negative binomial
log-likelihood, which is a natural choice for a binary classi-
fication problem. Second, the weak learner in the AdaBoost
is a hard classifier while that in the LogitBoost is not: ex-
perimental evidence seems to favor the latter.

The crucial step in the LogitBoost algorithm is step2(b)
in Figure 2: fitting a weighted LS regression ofzi to xi with
weightswi. It operates as a feature selection oracle: picking
up from the structural spaceF the weak learner (or feature
function) that minimizes its weighted LS costε(f).

In our context, a data pointx is an image pairx =
(I , I ′). One obvious choice for the boosted similarity func-
tion s(I , I ′) is the probability of the class labely(I , I ′)
being1, that iss(I , I ′) = p(I , I ′).

3.1. Weak learner

We now define the weak leanerf(I , I ′). Given the fact
that different similarity functions are effective for different
local regions, we construct the weak learners based on Haar-
like local rectangle features [17, 22], whose rapid evaluation
is enabled by the means of integral image.

A weak similarity function compares two local rectangle
regions belonging to the two imagesI andI ′, respectively.
As illustrated in Figure 3(a), we parameterize the rectangle
featureg by (r, c, dr, dc, t) where(r, c) is the starting point
of the rectangle,(dr, dc) is the height and width, andt is the
feature type. There are six feature types as shown in Figure

3(a). Given a rectangle featureg and an image pair(I , I ′),
we compute two feature responsesg(I) andg(I ′) from the
two integral images associated withI andI ′, respectively.
In principle, we can allow that two local rectangles have
different parameters; however we refrain from doing this
because empirically this shows no clear advantage but sig-
nificantly increases training complexity.

We focus on the 2D feature space of the two feature re-
sponsesg(I) andg(I ′) and model the weak learnerf(I , I ′)
as a 2D piecewise constant (PWC) function ofg(I) and
g(I ′), which has the following form:

f(I , I ′) =
J∑

j=1

K∑

k=1

αjk[g(I) ∈ Tj] ∧ [g(I ′) ∈ T ′k], (11)

where [π] is an indicator function of the predicateπ and
αjk is the constant associated with the regionRjk. In the
above, we use a tessellation of the 2D feature space into
non-overlapping regions{Rjk = Tj ∧ T ′k}J,K

j,k=1, where
{Tj}J

j=1 and{T ′k}K
k=1 are theJ andK non-overlapping in-

tervals for the feature responseg(I) andg(I ′), respectively.
We empirically determine the interval boundary points by
uniformly dividing the feature responses.

It is easy to show that, given a weak learnerf that is as-
sociated with a featureg, the optimal weightαjk that min-
imizes the weighted LS costε(f) in (9) is the weighted re-
sponsez of all data points falling into the regionRjk.

αjk =
∑N

i=1 wizi[g(I i) ∈ Tj] ∧ [g(I ′i) ∈ T ′k]∑N
i=1 wi[g(I i) ∈ Tj] ∧ [g(I ′i) ∈ T ′k]

, (12)

where(I i, I ′i) is theith training image pair. Figure 3(b,c,d)
illustrates the fitting process. Figure 3(b) visualizes the field
of wi ∗ zi = yi− p(xi) = 1− p(xi) for all positives, where
the color intensity corresponds to the value ofw ∗ z: the
redder the plus sign is, the less likely the data pointx is
positive. The diagonal structure in Figure 3(b) shows that
the two feature responses of the positives are roughly same.
Figure 3(c) visualizes the field of−wi ∗ zi = p(xi) for all
negatives: the greener the circle sign is, the less likely the
data pointx is negative. As shown in Figure 3(c), the nega-
tives are characterized by a widely-dispersed nature. Figure

(a) (b) 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

11

of stages

m
o

ti
o

n
 e

st
im

at
io

n
 e

rr
o

r LS cascade (testing)
reg. cascade (testing)
Detection (testing)
LS cascade (training)
reg. cascade (training)
Detetion (training)

(c)
Figure 4. (a) Two successive frames and their corresponding positives and negatives. (b) Location-sensitive cascade training. (c) Perfor-
mance comparison among location-sensitive cascade, regular cascade, and detection.

3(d) shows the fitted 2D PWC function: the constant co-
efficientsαjk along the diagonal lines are high, while off-
diagonal ones are low. For the step 2(a) in Figure 2, the
weak functionf with the smallest weighted LS costε(f) is
selected.

The use of nonparametric 2D PWC functions as weak
learners is beneficial. Take the 1D case for example; 1D
simple regression stumps [21, 22] that ‘binarize’ the fea-
ture response are often used as weak learners in the liter-
ature. It is easy to verify that any 1D PWC function can
be constructed by combining multiple 1D simple regression
stumps. The similar holds for the 2D case. Such a combina-
tion strengthens the modeling power of weak learners and
consequently accelerates the training process. Our empiri-
cal evidence shows that the learning time is almost inversely
proportional to the number of thresholds used in the weak
learner. One may argue that it brings the risk of overfitting.
But boosting has the incredible capability of combating the
overfitting (in terms of classification though) even when the
weak learner overfits. Further, in practice we smooth the
fields of w ∗ z andw before taking the division in (12) to
ameliorate the overfitting of the weak learner itself.

Boosting training requires huge memory space because
one has to evaluate a huge matrix, whose row corresponds to
the local rectangle feature and whose column to the training
image pair. It is desired to store such a matrix in the mem-
ory in order to speedup the training process. Typically, the
number of rectangle features is huge (e.g. more than150K
for a 24 × 24 image by an exhaustive construction [22]).
In one of our experiments, we keep about 40K rectangle
features and the number of the training image pair is about
10K, storing the above matrix in afloat precision requires
about40K × 10K × 4 × 2 = 3.2GB memory space, ex-
ceeding the 2GB limit, which is the maximum contiguous
block of memory of 32-bit operating systems. However,
in order to learn the PWC function in our setting, we only
need to store the interval index in the memory. In practice,
we use16 intervals, which implies that anunsigned charis
enough to store two indices, leading to a moderate memory
requirement of about400MB.

4. Location-sensitive cascade training

Generating positives and negatives, which are pairs of
images, from annotated videos is illustrated in Figure 4(a).
Given a pair of two successive frames (the left and right im-
ages in Figure 4(a)), it contributes one positive by cropping
two image patches centered at the target pixel (denoted by
the red color) from the left and right frames, respectively.

To generate negatives, we maintain the same image patch
cropped from the left frame, i.e., centered at the target pixel,
but force the center of the image patch cropped from the
right frame away from the target pixel. Therefore, the neg-
ative possesses an additional location parameter that mea-
sures its distance to the target. Obviously, the number of
negatives is theoretically infinite if a non-integer pixel grid
is used. To cover as many negatives as possible, we follow
[22] to train a cascade of strong classifiers, which is a de-
generate decision tree. To train the strong classifier at a later
stage, we maintain the same set of positives but bootstrap
a new set of negatives that pass all previous strong classi-
fiers (i.e., false positives). During scanning all test subwin-
dows, the cascade structure is able to eliminate the negatives
quickly.

The motion estimation accuracy is directly related to the
selection of the negatives. On one hand, if the negatives are
far away from the positives, it is easy to learn a perfect clas-
sifier but the accuracy is not guaranteed. On the other hand,
if the negatives are too close to the positives, the accuracy
is improved but it is hard to train a flawless classifier and
might step into the zone of overfitting because the training
positives and negatives are too confusing. Often in medi-
cal applications, different experts disagree with each other
about the ground truth; thus, motion estimation only needs
to be addressed in a pre-specified precision. To this end, we
design a location-sensitive cascade training procedure that
takes into account the location factor of the negatives.

The pixels of a video frame are divided into several re-
gions according to their distances to the target pixel as illus-
trated in Figure 4(a), where the target pixel is denoted by the
red color and the regions are color-banded. While preserv-
ing the features of the regular cascade training, the location-

(a) (b)
Figure 5. (a) Two successive original frames and their ground truth landmarks and contours. (b) From left to right: the response maps of
the similarity functions of NCC, CD2 and BoostMotion.

sensitive cascade training imposes an additional constraint:
the negatives for several consecutive stages of the cascade
are restricted to be from the same region. Further, the later
stages use negatives closer to the positives; however, nega-
tive bootstrapping is still applied even across the boundary
of the stages using negatives from different regions. This
procedure is graphically illustrated in Figure 4(b). Refer to
section 5.1 for a comparison between the location-sensitive
cascade training and regular one, where we show that the
location-sensitive cascade yields lower training and test er-
rors (also see Figure 4(c)).

In practice, we need to convert the cascade output into
the similarity function that measures the confidence of be-
ing positive. Suppose that the cascade consists ofL stages
and stagel has a strong classifierFl(I , I ′) that can be con-
verted to posterior probabilitysl(I , I ′) using Eq. (10).
Given the degenerate nature of the cascade, we approximate
the final similarity function as:

s(I , I ′) ≈
L∏

l=1

sl(I , I ′) =
L∏

l=1

exp(2Fl(I , I ′))
exp(2Fl(I , I ′)) + 1

. (13)

For the negatives rejected at an early stageL′ < L, we
stop evaluating them at later stages and simply set a dummy
probabilitysl(I , I ′) = ε; l > L′, whereε < 0.5 is a small
amount (we setε = 0.1 in our experiments).

5. Experimental results

We conducted extensive experiments using echocardio-
graphic sequences that are ultrasound images of human
hearts. As shown in Figure 5(a), we parameterized the
LV endocardial wall by 17 landmark points along the con-
tour and then interpolated the whole contour using a cubic
spline.

5.1. Motion estimation

In the first experiment, we used the apical four cham-
ber (A4C) view of stress echo sequences. The A4C view
is a standard cardiac view used in clinical practices. We
have 339 sequences that provides 3162 frame pairs. We ran-
domly divided 339 sequences into two sets: the training set
contains 270 sequences with 2543 pairs of frames and the
test set 69 sequences with 619 pairs of frames. To reduce

appearance variation, we aligned each video frame with re-
spect to a mean shape using a rigid similarity transform and
conducted experiments on the aligned domain.

We reported the results of estimating the motion vec-
tor of the left annulus point, i.e., the left end point of the
LV endocardium, that is characterized by drastic appear-
ance changes mainly due to the valve movement. Given the
correct left image patch (see Figure 4 for illustration), we
exhaustively searched within a searching neighborhood the
best right image patch that maximizes the similarity func-
tion (e.g., Eq. (1)). We estimated the motion vector for all
test image pairs and measured the estimation error in terms
of absolute displacement. For an image pair, we set the size
of the left and right images as35 × 35 and the searching
windowN as[−21, 21]× [−21, 21].

We used the location-sensitive cascade training to learn
a cascade of eight stages. We divided the whole search
neighborhood into eight regions depending on their close-
ness to the center: specifically, they areR1 = {21, 20, 19},
R2 = {18, 17, 16}, R3 = {15, 14, 13}, R4 = {12, 11},
R5 = {10, 9}, R6 = {8, 7}, R7 = {6, 5}, R8 = {4, 3}
pixels away from the center. To train theith stage of strong
classifier, we selected out negatives from the regionRi. For
comparison, we also trained a regular cascade by randomly
selecting out negatives at least three pixels away from the
ground truth. Figure 4(c) plots the curves of the training
and test errors against the number of cascade stages. The
location-sensitive cascade training consistently reduces the
test error till overfitting is reached; while the regular cas-
cade training saturates the performance even at the second
stage. Apart from that it yields lower training and test er-
rors, the location-sensitive cascade training provides a steer-
able way to control the training process.

We also contrasted the BoostMotion approach, which
uses pairs of images as inputs, with a detection algorithm,
which uses single image patches as inputs. For the detec-
tion algorithm, we also trained a cascade of eight stages.
From Figure 4(c), even the training error of the detector is
higher than that of the BoostMotion, which implies that the
positives and negatives, which are single image patches, are
very confusing even they are far apart. Using the paired in-
puts significantly reduces the training and test errors. This is
expected because motion estimation compares two images
and thus temporal information is its key. Motion estimation

Approach SSD NCC BHA CD2 BoostMotion Detection
(a) Motion estimation training error 4.62± 2.48 4.59± 2.38 11.15± 6.66 4.39± 2.28 2.32± 1.72 8.34± 4.99

Motion estimation test error 4.54± 2.57 4.49± 2.45 11.40± 6.75 4.38± 2.17 3.47± 2.14 8.68± 5.07

(b) Tracking contour distance 10.56± 2.37 11.14± 2.45 14.31± 3.19 7.32± 2.45 4.28± 1.24 na
Table 1. (a) Motion estimation training and test errors and (b) tracking performance based on the contour distance obtained using different
similarity functions and a detector approach.

Figure 6. Sample frames of two echocardiographic sequences with the ground truth (yellow) and tracking result (green) overlaid. Top row:
frames 1, 4, 6, 8, 11, and 14 of the first sequence. Bottom row: frames 1, 3, 5, 7, 8, and 11 of the second sequence.

based on one image is insufficient.
We compared the learned similarity function with the

four conventional similarity functions reviewed in section
2.1. Table 1(a) reports the mean and standard deviation of
the estimation error. For the BoostMotion and detection ap-
proaches, we reported the minimum test error. The Boost-
Motion approach yields the lowest training and test errors.
In terms of test error, on average, it is only3.47 pixels away
from the ground truth, while the best among the others is
the CD2 similarity function whose estimation error is4.38
pixels. The poor performance of the Bhattacharyya similar-
ity function is probably due to the highly noisy nature of the
ultrasound image and that only gray image is used. Figure 5
displays the response maps of different similarity functions
for the sample pair of frames in Figure 5(a). The response
map of the BoostMotion is peaked around the ground truth
with a compact support region. Most of the off-center pix-
els are black because they are rejected by early stages of the
cascade.

5.2. Echocardiography tracking

In the second experiment, we invoked the naive track-
ing algorithm that estimates motion vector frame by frame
to perform echocardiography tracking [3, 5, 12, 15, 25].
We used 445 regular echocardiographic sequences of api-
cal two chamber (A2C) view where appearance changes are
less pronounced than the stress echo. The A2C view is an-
other canonical echo view used in clinical practices. We

randomly divided the 445 sequences into a training set with
356 sequences and a test set with 89 sequences. The align-
ment is conducted in a recursive fashion.

To calibrate the contour tracking accuracy, we need to
measure the proximity between two contours. We simply
used the average distance of the landmark displacement de-
fined as

∑17
i=1 |pi − gi|2/17, wherepi andgi areith land-

mark point on the probe contour and the ground truth con-
tour, respectively.

The tracking performances in terms of the above distance
are listed in Table 1(b). Since each test sequence yields
a contour distance, Table 1(b) documents its median and
standard deviation. Using the BoostMotion similarity func-
tion substantially reduces the tracking error, with its corre-
sponding error being4.28 pixels; while the best similarity
function (CD2) other than the proposed one yields a track-
ing error of 7.32 pixels. Therefore, utilizing the boosted
similarity function greatly reduces drifting and produces a
temporally smooth contour. Some tracking examples are
presented in Figure 6.

6. Summary

We presented an approach to learning a similarity func-
tion for motion estimation for applications with complex
appearance changes, which are exemplified by an annotated
video database. We used the LogitBoost algorithm to selec-
tively combine weak learners into a strong similarity func-
tion. The weak learners were constructed as nonparametric

2D piecewise constant functions of the feature responses,
which enhanced modeling power and brought savings in
training time and storage requirement. Because the mo-
tion estimation accuracy is tied with the selection of neg-
atives, whose have an additional location parameter mea-
suring their distance to the positives, we proposed to train
a cascade structure in a steerable manner using a location-
sensitive negative bootstrapping. Compared with the reg-
ular cascade, the location-sensitive cascade achieved lower
training and test error. Finally, we experimented the learned
similarity function on echocardiographic sequences. It out-
performed by a large margin conventional similarity func-
tions and the detector algorithm, which ignores the temporal
information. It also reduced drifting. Future works include
combining spatial statistics [18] with the learned similarity
function in motion estimation. For more robust tracking, we
will investigate incorporating appearance update and tem-
poral smoothing.

Acknowledgement

We thank Dr. Sriram Krishnan of CAD, Siemens Medi-
cal Solutions for providing the data.

References

[1] S. Avidan. Support vector tracking. InCVPR, volume 1,
pages 184–191, 2001.

[2] S. Avidan. Ensemble tracking. InCVPR, volume 2, pages
494–501, 2005.

[3] D. Boukerroui, J. Alison, and M. Brady. Velocity estimation
in ultrasound images: A block matching approach. InIPMI,
pages 586–598, 2003.

[4] T. Brox, A. Bruhn, N. Papenberg, and J. Wiecker. High ac-
curacy optical flow estimation based on a theory of warping.
In ECCV, volume 4, pages 25–36, 2004.

[5] B. Cohen and I. Dinstein. New maximum likelihood motion
estimation schemes for noisy ultrasound images, 2002.

[6] R. Collins and Y. Liu. On-line selection of discriminative
tracking features. InICCV, 2003.

[7] D. Comaniciu. Nonparametric information fusion for motion
estimation. InCVPR, pages 59–66, 2003.

[8] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking
of non-rigid objects using mean shift. InCVPR, volume 2,
pages 142–149, 2000.

[9] Y. Freund and R. Schapire. A decision-theoretic generaliza-
tion of online leaning and an application to boosting.Journal
of Computer and System Sciences, 5(1):119.

[10] J. Friedman, T. Hastie, and R. Tibshirani. Additive logis-
tic regression: a statistical view of boosting.Ann. Statist.,
28(2):337–407, 2000.

[11] B. Horn and B. Schunk. Determining optical flow.Artificial
Intelligence, pages 185–204, 1981.

[12] G. Jacob, A. Noble, and A. Blake. Robust contour track-
ing in echocardiographic sequence. InProc. Intl. Conf. on
Computer Vision, pages 408–413, 1998.

[13] V. Lepetit, J. Pilet, and P. Fua. Point matching as a classifi-
cation problem for fast and robust object pose estimation. In
CVPR, 2004.

[14] B. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. InProc. DARPA
IU Workshop, pages 121–130, 1981.

[15] I. Mikic, S. Krucinski, and J. Thomas. Segmentation and
tracking in echocardiographic sequences: Active contours
guided by optical flow estimates.IEEE Trans. Medical Imag-
ing, 17:274–284, 1998.

[16] K. Mikolajczyk, R. Choudhury, and C. Schmid. Face detec-
tion in a video sequence - a temporal approach. InCVPR,
2001.

[17] C. Papageorgiou, M. Oren, and T. Poggio. A general frame-
work for object detection. InICCV, 1998.

[18] S. Roth and M. Black. On the spatial statistics of optical
flow. In ICCV, 2005.

[19] J. Shi and C. Tomasi. Good features to track. InCVPR, pages
593–600, 1994.

[20] A. Singh and P. Allen. Image-flow computation: An
estimation-theoretic framework and a unified perspective.
CVGIP: Image Understanding, 56:152–177, 1992.

[21] A. Torralba, K. Murphy, and W. Freeman. Sharing features:
efficient boosting procedures for multiclass object detection.
In CVPR, 2004.

[22] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. InCVPR, pages 511–518, 2001.

[23] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using
patterns of motion and appearance. InICCV, pages 734–
741, 2003.

[24] O. Williams, A. Blake, and R. Cipolla. A sparse probabilistic
learning algorithm for real-time tracking. InICCV, pages
353–360, 2003.

[25] X. S. Zhou, D. Comaniciu, and A. Gupta. An information fu-
sion framework for robust shape tracking.PAMI, 27(1):115–
129, January 2005.

