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Abstract. We present a Bayesian approach to real-time object track-
ing using nonparametric density estimation. The target model and candi-
dates are represented by probability densities in the joint spatial-intensity
domain. The new location and appearance of the target are jointly de-
rived by computing the maximum likelihood estimate of the parameter
vector that characterizes the transformation from the candidate to the
model. This probabilistic formulation accommodates variations in the
target appearance, while being robust to outliers represented by partial
occlusions. In this paper we analyze the simplest parameterization rep-
resented by translation in both domains and present a gradient-based
iterative solution. Various tracking sequences demonstrate the superior
behavior of the method.
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1 Introduction

Visual object tracking is a task required by various applications such as per-
ceptual user interfaces [4], surveillance [6], augmented reality [11], smart rooms
[18], intelligent video compression [5], and driver assistance [13, 1]. In the general
case, a visual tracker involves both bottom-up and top-down components. The
former are represented by the target representation and localization, appearance
change, and measurement model, while that latter regard the object dynamics,
learning of scene priors, and hypothesis testing and verification.

Common techniques to model the target dynamics are the (extended) Kalman
filter [2] and particle filters [15,10]. The problem of target representation and
localization is related to registration techniques [23, 20, 19]. The difference is that
tracking assumes small changes in the location and appearance of the target
in two consecutive frames. This property can be exploited to develop efficient,
gradient based localization schemes, using the normalized correlation criterion
[3]. Since the correlation is sensitive to illumination, Hager and Belhumeur [12]
model explicitly geometry and illumination changes. The method is robustified
by Sclaroff and Isidoro [21] by using M-estimators [14]. Learning of appearance
models is discussed in [16] by employing a mixture of stable image structure,



motion information and an outlier process. To efficiently accommodate non-rigid
transformations, Comaniciu et al. [8] develop histogram-based tracking. Spatial
gradient optimization becomes possible due to a spatially-smooth cost function
produced by masking the target with an isotropic kernel.

In this paper we present a new approach for target representation and lo-
calization. Our motivation is to develop a framework that is optimal, efficient,
robust to outliers, and that can be easily customized. We formulate the problem
of target localization as a classification problem. Assuming that the probability
density of the target model is known, we search for target candidates whose
probability density under a parameterized transformation matches the density
of the target. The matching criterion is derived by minimizing the probability
of error in choosing the wrong candidate. Bayesian statistics are used to obtain
the maximum likelihood estimates of the best target candidate and parameter
vector. As another novelty, the probability densities characterizing the target
and candidates are estimated in the joint spatial-intensity domain. This implies
that location and target appearance are optimized simultaneously.

The organization of the paper is as follows. Section 2 describes the Bayesian
alignment of probability densities under a general parameterized transformation.
An explicit solution for the translation case is derived in Section 3. Section 4
formulates the density estimation in the spatial-intensity domain. Tracking ex-
periments on different sequences are presented in Section 5.

2 Bayesian Alignment of Densities

Assume that the target model is specified by the d-dimensional sample Q =
{xy,7=1...N} drawn i.i.d. from the probability density g. We hypothesize the
existence of U target candidates generated by transforming a random variable X
of density p under the parameterized transformation 7'(X; 8,,) whereu =1...U
and 0,, is the parameter vector. In other words, starting from the sample {x;,7 =
1...n} drawn from p we obtain samples of the form {T'(x;;0,),i = 1...n},
characterized by the density p,, with u =1...U.

We want to determine a parameter vector 8, with 1 < v < U such that
the probability that the model sample @ = {x,,7 =1... N} and the candidate
sample {T'(x;;0,),7=1...n} belong to the same density source (i.e., ¢ = py) is
maximized (or, equivalently, the probability of error is minimized). This can be
written as

v =argmaz P(q = p.|Q) =argmaz P(Qlq = pu)P(pu) (1)

where the last equality is obtain by applying the Bayes rule. The term P(p,,)
represents a priori information on the presence of candidate u. Depending on the
tracking formulation P(p,,) is obtained either by learning the motion dynamics
or/and the appearance changes. This is a natural way to integrate priors on
motion and appearance.

At this moment, we consider all the hypotheses equally probable, which is
equivalent to maximizing the likelihood P(Q|q = p,). By taking into account



that @ is drawn i.i.d. and applying the log function, it results that

N

v =argimax L, =argmaz Z log pu (%) (2)
r=1

where L, is the log-likelihood. ! The kernel estimate of the density p, computed
at location x is given by
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where h is the bandwidth of kernel K [22]. Hence, the log-likelihood is expressed

by
u—Zlog hdZK(XT X“Ou)) (4)

The best target candidate is obtained by maximizing expression (4) as a function
of 8,. Note the optimality of the above formulation.

3 Translation Case

The transformation 7" is application dependent and related to the expected trans-
formation of the target during tracking. We will show in this section how to max-
imize the log-likelihood for the translation case. The following computations are
similar in strategy to those shown Section 4.2 of [8]. However, their significance
is different: we deal here with the maximum likelihood alignment of densities,
while in [8] the task was to maximize the Bhattacharyya coefficient between
histograms.

The transformation T'(x;; 0,) is replaced by (x; —y) and the density p, is
now denoted by p(x +y), being expressed by

pxty) = ﬁZjK (=) )

For the convenience of notation, we introduce the profile of the kernel K as
the function k : [0,00) — R such that K(x) = k(||x]|?). Employing the profile

notation we have
2
Pix+y) = Zk( ) (6)

! By applying the law of large numbers [9, p.286] it can be easily shown that condition
(2) is equivalent to minimizing the Kullback-Leibler distance D(q||py). This is not
required by our derivation. Note, however, that the other divergence, D(pul||q), is
not appropriate for the task.

x+y




while log-likelihood (4) becomes

N N 1 n
Ly:Zlogp(xr—i-y) —;logW;k<

r=1

X +y X
h

) (7)

Assume that the optimization is started with an initial value y = y,. Using
Taylor expansion around the values p(x,+y,) the log-likelihood is approximated

) (8)

N N 1 1 n
Ly =~ logp(x, +yy) — N+ _— k
= ol N D e &
The last term in (8) represents a weighted sum of density estimates computed
at locations x, + y. It is natural to employ the mean shift procedure [7] to
maximize this term. By taking the gradient of this term with respect to y, after
N 1 n XrtY,—X:
Y= 5y 2imt (Xi = Xr)g <H+

some algebra the new value of y is obtained as
)
. p— (9)
1 n 'r‘ A
2r1 Py 2ie1 Y <H+ )

where g(z) = —k’(x) for the definition domain. At y; the log-likelihood function
is larger than that at y,. Expression (9) is computed iteratively until conver-
gence. The new position is determined by weighted sums of local point dif-
ferences. Since the measurements are local (due to the kernel weighting), the
algorithm is robust to outliers in the data.

A more intuitive expression is obtained by replacing k and g by the normal
profile and its derivative. The normal profile is

Xrt+y —X;
h

Y1 =

k(z) = (2m)~Y2exp (%m) . (10)

hence, g(z) = k(x)/2. Since k is identical to g up to a constant, expression (9)
simplifies to
)
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This shows that the log-likelihood is maximized by computing weighted sums of
local differences.

4 Density Estimation in the Joint Domain

The idea of density estimation in the joint domain is detailed in [7]. Each im-
age pixel z is characterized by a location x = (xl,:rg)T and a range vector c.



The range vector is one dimensional in the case of gray level images or three
dimensional in the case of color images. In other words, an input image of n
pixels is represented as a collection of d-dimensional points z; = (x; , ¢, )" with
i = 1...n. The space constructed as above is called the joint spatial-intensity
domain or spatial-color domain. The concept can be extended by adding a tem-
poral component. To estimate the probability density in the joint space we use
a product kernel with bandwidth o, for the spatial components and o, for the
range.?

Due to the use of product kernel, different transformations can be accommo-
dated in the two spaces. For example one can define an affine transformation in
the spatial domain and a translation in the range. The optimization, however,
is performed jointly for both spaces, i.e., for both location and appearance.

Fig.1. Fuace sequence. 750 frames.

5 Experiments

We tested the new tracking framework for various sequences and the results are
very promising. Although only translation in the joint domain (spatial/intensity

2 The normal kernel is separable, so the idea of product kernel is implicit when a
normal kernel is used.



or spatial/color) has been considered, the algorithm proved to be robust to
illumination variations and high percentage of occlusions. For all the sequences
we used o5 = 3 and o, = 20. A three level pyramid was used for efficient
implementation of the optimization. The tracker runs in real-time (30fps) on a
1GHz PC.

A gray level tracking sequence is shown in Figure 1. The optimization is per-
formed in a three dimensional space (two spatial dimensions and one intensity
dimension). The model is captured in the first frame. We tested the behavior of
the algorithm with respect to outliers generated by hand occlusion. As one can
see, a large amount of occlusion is tolerated. We also tested the adaptation of the
algorithm to illumination changes. The changes were induced by applying the
back-light correction of the camera. The model adapted gracefully to the new
condition while the tracking continued unperturbed. We again tested the robust-
ness to outliers within the new conditions. Finally, the back-light correction was
stopped determining the model to adapt again.

Fig. 2. Walking sequence. 540 frames.

We also tested two color sequences with natural illumination. The optimiza-
tion is performed in a five dimensional space (two spatial dimensions and three
color dimensions). In the first sequence we track a person walking in a garden
(Figure 2). Partial occlusion is present from various flowers. In the second se-
quence we track a car at the exit from the tunnel (Figure 3). The camera gain
adapts due to the change in illumination. In both sequences the tracker adapted
correctly.



Fig. 3. Pursuit sequence. 300 frames.

6 Discussion

This paper presented a Bayesian approach to real-time tracking. Using a new
formulation of the target representation and localization problem, we have de-
veloped a tracking framework that is both efficient and effective. It can naturally
tolerate outliers and changes in the illumination. Results regarding optimization
for other type of transformations such as similarity, affine and homography, will
be reported in subsequent papers. Techniques that gradually introduce more
complex transformation models can be employed [17].

Acknowledgments

I thank Visvanathan Ramesh and Huseyin Tek from Siemens Corporate Research
for stimulating discussions on the subject.

References

1. S. Avidan. Support vector tracking. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, Kauai, Hawaii, volume I, pages 184-191, 2001.

2. Y. Bar-Shalom and T. Fortmann. Tracking and Data Association. Academic Press,
1988.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

B. Bascle and R. Deriche. Region tracking through image sequences. In Proc. 5th
Intl. Conf. on Computer Vision, Cambridge, MA, pages 302-307, 1995.

G. R. Bradski. Computer vision face tracking as a component of a perceptual
user interface. In Proc. IEEE Workshop on Applications of Computer Vision,
Princeton, NJ, pages 214-219, October 1998.

A. D. Bue, D. Comaniciu, V. Ramesh, and C. Regazzoni. Smart cameras with
real-time video object generation. In Proc. IEEFE Intl. Conf. on Image Processing,
Rochester, NY, page to appear, 2002.

. R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade. Algorithms for cooperative

multisensor surveillance. Proceedings of the IEEE, 89(10):1456 1477, 2001.

D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space
analysis. IEEFE Trans. Pattern Anal. Machine Intell., 24(5):603-619, 2002.

D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects us-
ing mean shift. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
Hilton Head, SC, volume 11, pages 142 149, June 2000.

T. Cover and J. Thomas. FElements of Information Theory. John Wiley & Sons,
New York, 1991.

A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling
methods for Bayesian filtering. Statistics and Computing, 10(3):197-208, 2000.
V. Ferrari, T. Tuytelaars, and L. V. Gool. Real-time affine region tracking and
coplanar grouping. In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition, Kauai, Hawaii, volume 11, pages 226233, 2001.

G. Hager and P. Belhumeur. Real-time tracking of image regions with changes in
geometry and illumination. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, San Francisco, CA, pages 403—410, 1996.

U. Handmann, T. Kalinke, C. Tzomakas, M. Werner, and W. von Seelen. Computer
vision for driver assistance systems. In Proceedings SPIE, volume 3364, pages 136
147, 1998.

P. J. Huber. Robust Statistical Procedures. SIAM, second edition, 1996.

M. Isard and A. Blake. Condensation - Conditional density propagation for visual
tracking. Intl. J. of Computer Vision, 29(1), 1998.

A. Jepson, D. Fleet, and T. El-Maraghi. Robust online appearance models for
visual tracking. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
Hawaii, volume I, pages 415-422, 2001.

K. Kanatani. Image mosaicing by stratified matching. In Proc. Statistical Methods
in Video Processing Workshop, Copenhagen, Denmark, 2002.

J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and S. Shafer. Multi-
camera multi-person tracking for EasyLiving. In Proc. IEEE Intl. Workshop on
Visual Surveillance, Dublin, Ireland, pages 3—10, 2000.

C. Olson. Image registration by aligning entropies. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition, Kauai, Hawaii, volume 11, pages 331 336,
2001.

A. Roche, G. Malandain, and N. Ayache. Unifying maximum likelihood approaches
in medical image registration. Technical Report 3741, INRIA, 1999.

S. Sclaroff and J. Isidoro. Active blobs. In Proc. 6th Intl. Conf. on Computer
Vision, Bombay, India, pages 1146-1153, 1998.

D. W. Scott. Multivariate Density Estimation. Wiley, 1992.

P. Viola and W. Wells. Alignment by maximization of mutual information. Intl.
J. of Computer Vision, 24(2):137-154, 1997.



