Kernel-Based Bayesian Filtering for Object Tracking
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Abstract come the drawback of parametric methods. Kernel density es-

. o . . timation [8] is a widely used non-parametric approach in eom
Pargclbe_lfllteémg ptrO\fnde?a gen eral fr?mework;or progag@ puter vision. Its major advantage is the flexibility to regeat
probabiity density TUNCLons In non-inear and non-1>aass ery complicated densities effectively. But its very higlem

systems. However, 'Fhe f""go”‘hm IS b?‘se.d ona Mont_e CarKory requirements and computational complexity inhibit tise
approach and sampling is a problematic issue, especially fo f this method

high dimensional problems. This paper presents a hew kern& For Bayesian filtering, Cham and Rehg [3] introduce a piece-

based Bayesian filtering framework, which adopts an arralyt.\/vise Gaussian function to specify the tracker state, in twttie
approach to better approximate and propagate density fun%- '

. . : o . elected Gaussian components characterize the neiglduisrho
tions. In this framework, the techniques of density intéfon . : : _ i
and density approximation are introduced to represent ke | around the modes. This idea is applied to multiple hypothe

lihood and the posterior densities by Gaussian mixturegreh sis tracking in a high dimensional space body tracker, bt th
P y . cEre ampling and the posterior computation are not straigiveiodl.
all parameters such as the number of mixands, their weig

mean, and covariance are automatically determined. The pr he closest work to our paper is [13] where the posteriorps re
X y " Pesented with a Gaussian mixture in a particle filter franméwo

I’ﬁ . . .

o e . . : owever, this solution may not provide a compact representa

?oﬁltﬂznrgéll-rt‘iggTr:Icrl?iﬁnSI?cr;glle?a;?\d \évsn?c?ﬁgrgtl:a ' i?slgm"rtp tion for the posterior, and the prediction and the updatpsste
gp ' P are oversimplified.

mance on real video sequences as well as synthetic examples.

. 1.2 Our Approach
1 Introduction
In this paper, we extend our previous work [9] which provides

Particle filtering is a Monte Carlo approach to solve the recuthe main framework of Kernel-based Bayesian filtering. We
sive Bayesian filtering problem. Although it provides tedaie  introduce density approximation and density interpofatio
solutions to non-linear and non-Gaussian systems, it isdfacrepresent density functions efficiently and effectively. bioth
with practical issues such as sample degeneracy and sample iechniques, the density function is represented by a Gaussi
poverishment [2]. Moreover, to achieve reliable filterinigg  mixture, where the number of mixands, their weights, means
sample size can grow exponentially as the dimension of tland covariances are automatically determined. The deagity
state space increases. To overcome these issues, we expfgaximation is based on a mode finding algorithm [6, 7] de-
an analytic approach to approximate density functions and irived from variable-bandwidth mean-shift which providas t
troduce a new kernel-based filtering scheme. The main ideamfthodology to construct a compact representation withadl sm
this work is to maintain an analytic representation of ralgv number of Gaussian kernels. A density interpolation tegmi
density functions and propagate them over time. In this papés introduced to obtain a continuous representation of taa-m

kernel-based density representation is adopted. surement likelihood function. Unscented transformatidi(
[12, 16] is also adopted to deal with non-linear state ttaorsi
1.1 Reated Work models. These techniques are integrated into the Bayesian fi

tering framework. In the new kernel-based Bayesian filtgrin
There have been many parametric density representations palgorithm, the continuous representations of density tfons
posed for various applications. In [15, 20], the authorgysst) are propagated over time.
Gaussian mixture models, but their method requires knayded The advantage of maintaining an analytic representation of
of the number of components, which is difficult to know in ad-density functions lies in efficient sampling. This is imort
vance. A more elaborate density representation is destiibe for solving high dimensional problems. A multi-stage saimgpl
[11], where a 3-component mixture is used for the target modtrategy is introduced in density interpolation for acteirap-
eling in object tracking problem, but this approach canwete proximation of the measurement likelihood function. Thavne



algorithm is applied to real-time object tracking, and isfpr-  posterior pdf is obtained through equation (4). To prevbat t
mance is demonstrated through various experiments. number of mixands from growing too large, an algorithm of

This paper is organized as follows. Section 2 introducedensity approximation based on mode finding is applied to de-
the new density propagation technique in the Bayesianifitler rive a compact representation for the posterior pdf.
framework. Section 3 and 4 explain the density approxinmatio
and the densit_y interpolation methopl, res_pectiv_ely. Se_cﬁ 2.2 Prediction by Unscented Transform
demonstrates its performance by various simulation resuth ‘ ‘
synthetic examples. Finally, it is demonstrated in seclitow ~ Denote byx; (i = 1,...,n,) a set of means i®¢ and byP;
our algorithm can be applied to object tracking in real visleo the corresponding covariance matrices at time steyet each

Gaussian have a weighf with 37| x¢ = 1, and let the prior
] . . density function be given by

2 Bayesan Filtering
P(xX¢—1|z14-1) =
In this section, we introduce the new Bayesian filtering feam 1= Ko 1, ; ;
work, where the relevant density functions are approxichbte (2m)/2 Z | Pz |1/2 exp( 2D (Xthxt—l’Pt—l))
kernel-based representations and propagated over time. 5)

21 Overview The unscented transformation [12, 16] is a method for cal-

culating the statistics of a random variable which undesgoe
In a dynamic system, the process and measurement model agg -linear transformation.

given by o = g, 1) @) x50 = ki

7, = h(x¢, vi) (2) Xt(i’{) = X~ (Jd+NP_y); j=1,....d
wherev; andu; are the process and the measurement noise, re\ft(f? = xi 1+ G/ d+NPi_)jq j=d+1,...,2d
spectively. The state variablg (t = 0, ..., n) is characterized Wao = Md+N)

by its probability density function estimated from the sece
of measurements, (t = 1,...,n). In the sequential Bayesian We,j) = 1/2(d+X) j=1,...,2d (6)
filtering framework, the condmonal density of the stateiable , )
given the measurements is propagated through prediction affhere A is a scaling parameter ar{d/(d + A)P;_,); is the
update stages, ith row or column of the matrix square root 6 + \)Pi_;.
W(z ;) Is the weight associated with theth sigma point where
p(x¢|z1:4-1) = /p(xt|xt,1)p(xt,1|z1;t,1)dxt,1 3) Z —o W,;) = 1. These sigma vectors are propagated through
the non-linear function,
%p(zt|xt)p(xt|zl:t—1) (4) Xt(m) (X(w)) 1=0,...,2d @
wherek = [ p(z¢|x:)p(x¢|z1:.—1)dx: is @ normalization con-
stant independent of;. p(x;_1|z1..—1) is the prior probabil-
ity density function (pdf)p(x;|z1..—1) is the predicted pdf an
p(z¢|x:) is the measurement likelihood function. The posterior

p(x¢|z1:4) =
and the mean and covariance fqrare approximated using a

weighted sample mean and covariance of the posterior sigma
d points,

pdf at time step, p(x¢|z1.¢), is used as the prior pdfin time step X = Z W(i,j)Xt(l’j)
t+1. 2
At each time step, the conditional distribution of the state  _ . 2d (i) ) -
variablex given a sequence of measurements represented P, = Z Wi (X7 =x)(X 7 = %) +Q (8)
by a Gaussian mixture. Our goal is to retain such a represen- =0
tation through the stages of prediction and update, andpo rewhereQ is the covariance matrix for the process noise.
resent the posterior probability in the following step witte For each mode in the prior, UT is applied independently and
same mixture form. the density after prediction is as follows.

The proposed filtering framework is described as follows. Lo i )
First, unscented transformation (UT) [12, 16] is used tdweer _ < 2 i >
V! . ; ! P(X¢|Z1:4-1) = - exp| —=D x,x,P
a mixture representation of the predicted p(#, |z1.,_1). Sec- (eelere-1) (2m)d/2 Z | P} |1/2 (e, %1, P2)
ond, the density interpolation technique with a multi-stagm- (9)
pling is introduced to approximate the likelihood functisith ~ wherer! = xi_,. This non-linear transformation is guaranteed
an mixture form. By multiplying two mixture functions, the to be accurate up to the second order of the Taylor expansion.




2.3 Multi-stage Sampling and Interpolation of  Algorithm 1 Measurement Step
Measurement Likelihood 1. S =¢
2: qo(x¢) = p(X¢|Z1:4-1)
3: fori =1tomdo
draw samples from proposal distribution
Si= {55 ~ qi1(x1),5 =1,...,N/m}
Si =S US}

assign mean and covariance for the elemestin
)

In contrast to various particle filters, we represent thesuss
ment likelihood function in an analytic form. A continuoys-a
proximation of the likelihood function is interpolated fnadis-
crete samples. A multi-stage sampling scheme is introdtaed
improve the approximation progressively. The advantadbef
analytic representation is that it provides a global vievhef

landscape of the likelihood function and thus enables effici Me_nXi; =98
sample placement. Q(i—1y2 4, = cdiag(KNNy(k).. .KNNy (k)21 (25)
7: compute |Ike|lh00d of each new sample
2.3.1 Multi-stage sampling 1(1—1)%4” = h(m(z—l)%-i,-javt) '
8: computeA andb for every element irb;
Unlike the SIR algorithm [10] which uses the predicted pdf asg:  w = nnis(A,b) 27)
the proposal distribution, we employ the multi-stage samgpl 10.  p,(z,|x,) = 3 iz N(,x], R])
strategy and progressively update the proposal functieeda wherer, = w, ;t — m,andR; = Q
on the qbs'ervgtlon. The predicted pdf is used as the init@l p 11 gixe) = (1 — ai)gio1(x:) + a; i (Zg|Xy) (12)
posal distributioryg. [ pi(Zi]X0)dx,
12: end for
qo(xt) = p(X¢|z1:4-1) (10) 13 p(ze|xt) = pon(ze|x¢)

Assume that in totalV samples are to be drawn to obtain mea-
surement data. In our multi-stage sampling scheMyen sam-
ples are drawn in the first stage from the initial proposatritiis
ution (10), wheren is the number of sampling stages. An initial

the complete procedure to compute the likelihood functio,
the final measurement function with; Gaussians at timeis

enb
approximation of the likelihood functiom (z:|x;) is obtained g y
through surface interpolation with Gaussian kernels. iBeté e 1, P
the density interpolation algorithm is provided in sec#The p(ze[xt) = d/2 Z <] Rv |1/2 _§D (xt’ Xt Rt)

proposal function is then updated by a linear combination of
the initial proposal distribution and the current approaiion (13)

of the likelihood functionp, (z|x;). We repeatedly approxi- wherer?, xi andR’ are the weight, mean and covariance matrix
mate the likelihood function from available samples andai@d ot the-th kernel.

the proposal distribution.

pj(z¢|x4) = Z Tt exp (—— (Xuxi,Ri)) (11)

7i7#0

24 Update

Since both the predicted pdf and the measurement functions
are represented by Gaussian mixtures, the posterior pdf, as

qj(xt) = (1 — o) g1 (x¢) + %M (12) the product of two Gaussian mixtures, can also be represente
 pj(zelx)dx by a Gaussian mixture. Denote the Gaussian components of
wherei = 1,..., %N,j =1,...,m, anda; € [0,1] is adap- the predicted pdf and the likelihood function bﬂ/(ﬁi,ii,f’%)
tation rate ' (i=1,...,n1) andN(r/,x],R]) (j = 1,...,m,) respec-

Since the information of the observation is incorporated in tively, the DdeUCt of the two distributions is as follows.
the proposal distribution to guide sampling, the multgsta . .
sampling strategy explores the likelihood surface more effi N(&i, %!, P : N(+ % R’ —
ciently than conventional particle filters. Thus, it is esiply 2 N(RLx P | | 2N Xt RY)

. . . . . . 7=1
advantageous in dealing with high dimensional state space. !

Nnt—1 my

N(&ir], m{, 57 14
2.3.2 Approximation of likelihood function ; ; (Rimi,my’, B;7) (14)
As discussed previously, the measurement likelihood is es{yhere
mated thr.ough the multl-stage. sa'mpl.lng. Wlth samples _drawn m? = X7 ((P})~'x! + (R))~'x]) (15)
from the improved proposal distributions, intermediateli- S _ (P14 (RI)~1)~L 16
hood functions are constructed and used to update the @bpos (P)™+ (R (16)
distributions. Afterm-step repetition of this procedure, the fi-  The resulting density functionin (14) is a weighted Gaussia
nal measurement distribution is obtained. Algorithm 1 prés mixture. However, the exponential increase in the number of



components over time could make the whole procedure itheck for the maximum involves the computation of the Hessia
tractable. In order to avoid this situation, a density agpna-  matrix
tion technique is proposed to maintain a compact yet aceurat ) 1 n . 1
densny_ representation even after dens_|ty propagatla_mgh H(x) = (zﬂ)dﬂz | P4|1/28Xp (—§D2 (X,X“Pi)) %
many time steps. Details of the density approximation algo- =1 |1
rithm is given in section 3. P ((xi — x)(xi —x)T — P;)P; ! (22)
After the update step, the final posterior distribution igegi
by which should be negative definite. If it is not negative defi-
nite, the convergence point might be a saddle point or a local
1 ~ Ky 1, Py minimum. In this case, kernels associated with such modes
p(x¢|z1:4) = (27)d/2 Z | Pi [1/2 exp (_§D (X“ Xt Pt)) should be restored and considered as separate modes Farfurt
=t processing.

(17) The approximate density is obtained by detecting the mode
location for every sample poink; and assigning a single
Gaussian kernel for each mode. Suppose that the approximate
density has:’ unique modes ok; (j = 1...n’) with associ-

3 Density Approxi mation ated weights; which is equal to the sum of the kernel weights
converged tac;. The Hessian matri¥l; of each mode is used

In this section, we review an iterative procedure of modedet for the computation oP; as follows.

tion derived from variable-bandwidth mean-shift [7], arehd )

sity approximation using the mode detection technique [9]. . R at2 .
P; = : —(-H; ) (23)
| 2m(—H; ) |72

wheren; is the number of components at time step

3.1 Mode Detection and Density Approximation
The basic idea of equation (23) is to fit the covariance ugieg t

Suppose thatV(x;, x;, P;) (i = 1...n) is a Gaussian ker- cyrvature in the neighborhood of the mode. The final density
nel with weightx;, meanx;, and covariance®; in the d-  gpproximation is then given by

dimensional state space, whér&._, x; = 1. Then, we define
the sample point density estimator computed at poiby -

&k Loy o
f(x)= (27T)d/2 ; | Pz‘ |1/2 EXp(—iD (X;XuPz))

1 & K 1
fx)= Z exp(——D2 (x, xi, PJ) (18) (24)
(2m)/2 = | Pi /2 2 andn’ < n is satisfied in most cases. The approximation error

||f(x) — f(x)|| can be evaluated straightforwardly.

D? (x,x;,P;) = (x — x;) Py (x — x;). 19) 3.2 Performance of Approximation

Our purpose is to obtain the compact representation of tl:lré:1e accuracy of the dgnsity .approgimgtio.n is demonstrateq i
density function which is a Gaussian mixture. The mode loca-'9ure 1. From a one-dimensional distribution composedef i
tion and its weight are found by mean-shift algorithm, arel thWelghted Gaussians, 200 samples are drawn, and the scale par

covariance matrix associated with each mode is computed BFt€" IS assigned as discussed in section 4.1. Mean Ingegrat
using Hessian matrix quared Error (MISE) between the original and the approxi-

To find the gradient ascent direction &t the variable- mated densitigs i.s calculated for the error estimatipn.
bandwidth mean-shift vector atis given by The result in figure 1 shows that the mode finding based on
mean-shift and the covariance estimation using the Hessian
n -1 /5 very accurate.
m(x) = <Z Wi(X)PZ‘1> <Z Wi(X)Pi1Xi> —x (20) Figure 2 shows the performance of the density approxima-
i=1 i=1 tion which is accurate enough to replace kernel densitynesti

_ tion in the multi-dimensional case.
where the weights

) = | Pi |71/ exp(—3D? (x,x;, Py)) 1) 4 Density Interpolation

! S ki | Py |2 exp(—4D2 (x,x,, P;))
The density approximation presented in section 3 is an algo-

satisfy """, wi(x) = 1. By computing the mean-shift vector rithm to find a compact representation when the mean, the co-
m(x) and translating the locatiahby m(x) iteratively, alocal variance and the weight for each kernel are given. In the mea-

maximum of underlying density function is detected. A formasurement step of Bayesian filtering, the likelihood values a



By this method, samples in dense areas have small scales
and the density will be represented accurately, but sparse a
eas convey only relatively rough information about the dgns
function.

4.2 Interpolation

o @ @ ;% o @ w A Gaussian kernel is assigned to each sample for which mean

€) (b) and covariance corresponds to the sample location andale sc
Fi 1 c . b K | densi is initialized by the method in section 4.1, respectivelyhé&
\gure .. omparisons between kernel density esfip, yiajinood value on each sample is given, the weight for

mation and density approximation (1D). For the approx: .
imation, 200 samples are drawn from the original diséach kernel can be computed by the Non-Negative Least Square

tribution — N(0.2,10,22), N(0.35,17,42), N(0.15,27,82), (NNLS)method [14].
N(0.2,50,16%), and N (0.1,71,322). (a) kernel density esti- Denotex; as the mean location arld; as the covariance

mation (b) density approximation (MISE3=3234 x 10~°) matrix for thei-th sample{ = 1,...,n). Also, suppose thd
is the likelihood value on théth sample. The likelihood at;
induced by the-th kernel is given by

1 1
pl‘(Xj) = Wexp<—§D2(xj,x“Pl)) . (26)

Define ann x n matrix A having an entry;(x;) in (¢, j), and
ann x 1 vectorb havingl; in its i-th row. Then, the weight
vectorw can be computed by solving the following constrained
(b) least square problem,

Figure 2: Comparison between kernel density estimation and min ||Aw — b||? (27)
density approximations (2D). (a) kernel density estinratio) w
density approximation (400 samples, MISH 5237 x 10~%) subject tow; > 0fori=1,...,n,
. _ and it is denoted by = nnis(A,b). The size of matrixA is
knawn for a set of samples. In th|§ case, the “ke."hOOd .:wrfa determined by the number of samples. When the sample size is
can be interpolated from sample likelihood. In this sectiva large, sparse matrix operation methods can be used to solve
describe the density interpolate algorithm. efficiently.
Usually, many of the weights will be zero and the final den-

4.1 |Initial Scale Selection sity function will be a mixture of Gaussians with a small niemb
of components. The density interpolation simulates theyea
tailed density function more accurately than the densiprexy-

ation introduced in section 3, while the density approedm
Ion generally produces a more compact representation.

One of the limitations of kernel-based algorithms is thayth
involve the specification of a scale parameter. Variousarese
has been performed for the scale selection problem [1, 17, 1
but itis very difficult to find the optimal scale in general.|8s,
we explain a strategy to determine the scale parameter éor th )
density estimation based oearest neighbors 4.3 Performance of Interpolation
The basic idea of this method is very simple, and similar aps

. . - ure 3 shows one-dimensional density interpolation re-
proaches are discussed in [4, 5]. Each sample is intended y P

cover the local reaion around itself in thiedimensional state sults. For each case, 100 samples are drawn and the ini-
v gl und 1 : : ' tial scale for each sample is given as explained in sec-

Slsl?lile .W'th |tds Sczli'] I;or thff, ptérp%siﬁnearfst_n?gthb;r_s tion 4.1. The estimated density function approximates the
( ) 1s used, and the kernel bandwidth (scale) is deter Ineoriginal density very accurately as seen in figure 3. Two

by the distance to the-th nearest neighbor of a sample. Deﬁnedifferent Gaussian mixtures (0.2, 10,22) N(0.35,17, 42)
KNN; (k) (1 < j < d) to be the distance tb-th nearest neigh- ) 15 97 82 N(0.2,50,162) N(0.1,71,32%) in exam-
bor from samplé in thej-th dimension, and then the covarlanceple 1, and N(0.15,12,52) N(0.1,15,42) N(0.35,60,82)
matrix P; for ¢-th sample is given by N(0.25,75,162%) N(0.15,90, 32%) in example 2 — are tested for

P; = ¢ diag(KNN’ (k) KNNi(k) .. . KNN’, (k)21 (25) theinterpolation. o

When 50 independent realizations are performed, MISE and

wherec is a constant dependent upon the number of samplés variance are very small for both examples as shown iretabl
and the dimensionality, arflds ad-dimensional identity matrix. 1.



original density density interpolation
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o1 : : o1 Figure 4: Comparison between original density function and
density interpolation (2D). (a) original density functii) den-
’ ’ ’ ’ sity interpolation with 30 non-zero weight components

- - fz The first process model is given by the following equation,
0.02 0.02 ‘in 5( “
oot /\ oot [ 4 gj \/\/‘\ Xy = X1 2511 8cos(1.2(t—1))1 +u; (28

0 20 40 60 80 100 0 \\zLo AOJ‘ 60 80 100 ¢ 2 + 1 + Xz—‘_lxt—l + ( . ( )) + i ( )

(b) example 2 .
wherel is the vector whose elements are all ones. The process
Figure 3: Two examples of original density functions andrthe noiseu, is drawn from a Gaussian distributiov(1, 0, (v/21)?)

interpolations. In the interpolation graphs (right), astars —herel is the identity matrix. The measurement model is given
represent the sample locations (100 samples). In case da) gﬂ, a non-linear function

(b), 22 and 24 components have non-zero weights, resplctiv
1

Z: = §X?Xt + vy (29)
Table 1: Error of density interpolation
| I MISE | VAR | wherev; is drawn from a Gaussian distributiov(1, 0, I?). For
example 1[] 3.9479 x 10~° | 2.5613 x 107 the estimation of the measurement function, fifty parti¢le®
example 2|| 2.6871 x 1075 | 9.5103 x 1019 particlesx 5 stages) are drawn, and the posterior is estimated

and propagated through the time step < ¢ < 50).

Figure 5 demonstrates simulation results by comparing
MSE’s and variances of both algorithms. According to our

Also, a multi-dimensional density function is interpolhia  €xperiment with the first model, the SIR filter shows better or
the same manner, and its performance is discussed next- In fagluivalent performance in low dimensions such as 2D and 3D,
ure 4, the density interpolation produces a very accuratstm  but our method starts to outperform in high dimensions — more
ble result when 200 samples are drawn from the original tensithan 5D.
function (MISE =4.5467 x 1072, VAR = 7.3182 x 10~ '® on
average over 50 runs).

These results show that surface interpolation is a suffigien
accurate method to approximate density function given sesnp
and their corresponding likelihood.

MSE
[ O R S - S

5 Simulation e S S S

dimension dimension

(a) Error (b) Variance
In this section, synthetic tracking examples are simulaaed

the performance of the kernel-based Bayesian filteringis-co Figure 5: ~ MSE and variance of for MSE. Kernel-based

; ; : Bayesian filtering with 50 particles (blue star), SIR with 50
pared W'th. the SIR algorithm [10]. TWO different process r)nOdparticIes (red circle), and SIR filter with 500 particlesai
els —one linear and the other non-linear — are selected iamnd Ssquare) for model 1.
ulations are performed for various dimensions such as 2D, 3D

5D, 10D, 12D and 15D. The accumulated Mean Squared Er-
ror (MSE) through 50 time steps is calculated in each run, arlfl
50 identical experiments are made based on the same data 1ér X1
accurate error estimation. X =

The second process model is very simple linear model given

+2cos(2(t—1))1 4+ uy (30)



whereu; ~ N(1,0, (v/2I)?). The same observation model asby the inverse exponentiation of the Bhattacharyya distémes
equation (29) is employed, and fifty samples are drawn fanevetween the target and the candidate histograms as suggasted i
simulation. [18]. Based on the likelihood of each particle and the ihit@

Kernel-based Bayesian filtering yields smaller error in th&ariance matrix derived by the method in section 4.1, the-mea
high dimension as in previous case, and the detailed remmalts surement density is constructed by density interpolation.

presented in figure 6. Two sequences are tested in our experiment. In the first se-
guence, two objects — a hand carrying a can — are tracked with
200 samples (40 samples 5 stages). The state space is de-
scribed by a 10 dimensional vector, which is the concatenati

of two 5 dimensional vectors representing two independent e
lipses as follows.

(1, y1, lxe, Ly, 71, T2, Y2, Loy, ly2, 72) (31)

(a) Error (b) Variance wherezx; andy; (i = 1, 2) are the location of ellipseéy; is the
length ofz-axis,ly; is the length ofj-axis, andr; is the rotation

Figure 6: MSE and variance of for MSE kernel-based Bayesiap, jahle. The tracking result is shown in figure 7, and our al-

filtering with 50 samples (blue star), SIR filter with 50 peldis

(red circle), and SIR filter with 500 particles (black sqUde gorithm successfully tracks two objects for the whole segee
model 2. except the period that the side of the can is completely detlu

around 470th frame.

Two different process models produce almost similar result
and kernel-based Bayesian filtering shows better perfocman
in high dimensional cases as expected. In order to demo
strate the benefit of kernel-based particles, we run the BIR 3
gorithm with 500 samples, and compare the performance wit
our kernel-based Bayesian filtering with 50 samples. SsHpri
ingly, the MSE'’s of the two cases are almost the same, and oUf
algorithm has smaller variance of MSE than the SIR algorith

This result suggests that kernel-based Bayesian filteidng c
be applied effectively to high dimensional applicationspe
cially, when many samples are not available and the obsernvat
process is very time-consuming.

(d) | — 456 (€)t =570 ©)t _ 898

6 ObJ ect Tr aCkmg Figure 7: Object tracking result cinsequence.

Particle filtering provides a convenient method for estintat

and propagating the density of state variables regardfeb®o ) )

underlying distribution and the given system in the Bayesia 1h€ upper bodies of two persons are tracked in the second
framework. Additionally, our kernel-based Bayesian fiigr ~S€duence, in which one occludes the other completely devera
has an advantage of managing multi-modal density functiohénes. The state vector is constructed by the same methed as i

with a relatively small number of samples. In this sectioe, wtheécansequence, but two rectangles are used instead of ellipses.

demonstrate the performance of the kernel-based Bayebian ft 6 dimensional vector £z, y, scale) for each rectangle — is
tering by tracking objects in real videos. used to describe the state, and 100 samples (20 samples

The overall tracking procedure is equivalent to what is de3t@ges) are used. Figure 8 (a) demonstrates the trackulgsies
scribed in section 5, and we explain the process and the mé4ld our algorithm shows good performance in spite of severe

surement models briefly. occlusions.

A random walk is assumed for the process model since it is The tracker based on SIR algorithmis also implemented, and
very difficult to describe the accurate motion before theeobs compared with our algorithm. As seen in figure 8 (b), the SIR
vation, even though our algorithm can accommodate the gealgorithm shows unstable performance for the same sequence
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in section 2.3, and the likelihood of each particle is coredut with our algorithm using 100 samples.
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