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Abstract

Particle filtering provides a general framework for propagating
probability density functions in non-linear and non-Gaussian
systems. However, the algorithm is based on a Monte Carlo
approach and sampling is a problematic issue, especially for
high dimensional problems. This paper presents a new kernel-
based Bayesian filtering framework, which adopts an analytic
approach to better approximate and propagate density func-
tions. In this framework, the techniques of density interpolation
and density approximation are introduced to represent the like-
lihood and the posterior densities by Gaussian mixtures, where
all parameters such as the number of mixands, their weight,
mean, and covariance are automatically determined. The pro-
posed analytic approach is shown to perform sampling more
efficiently in high dimensional space. We apply our algorithm
to the real-time tracking problem, and demonstrate its perfor-
mance on real video sequences as well as synthetic examples.

1 Introduction

Particle filtering is a Monte Carlo approach to solve the recur-
sive Bayesian filtering problem. Although it provides tractable
solutions to non-linear and non-Gaussian systems, it is faced
with practical issues such as sample degeneracy and sample im-
poverishment [2]. Moreover, to achieve reliable filtering,the
sample size can grow exponentially as the dimension of the
state space increases. To overcome these issues, we explore
an analytic approach to approximate density functions and in-
troduce a new kernel-based filtering scheme. The main idea of
this work is to maintain an analytic representation of relevant
density functions and propagate them over time. In this paper,
kernel-based density representation is adopted.

1.1 Related Work

There have been many parametric density representations pro-
posed for various applications. In [15, 20], the authors suggest
Gaussian mixture models, but their method requires knowledge
of the number of components, which is difficult to know in ad-
vance. A more elaborate density representation is described in
[11], where a 3-component mixture is used for the target mod-
eling in object tracking problem, but this approach cannot over-

come the drawback of parametric methods. Kernel density es-
timation [8] is a widely used non-parametric approach in com-
puter vision. Its major advantage is the flexibility to represent
very complicated densities effectively. But its very high mem-
ory requirements and computational complexity inhibit theuse
of this method.

For Bayesian filtering, Cham and Rehg [3] introduce a piece-
wise Gaussian function to specify the tracker state, in which the
selected Gaussian components characterize the neighborhoods
around the modes. This idea is applied to multiple hypothe-
sis tracking in a high dimensional space body tracker, but the
sampling and the posterior computation are not straightforward.
The closest work to our paper is [13] where the posterior is rep-
resented with a Gaussian mixture in a particle filter framework.
However, this solution may not provide a compact representa-
tion for the posterior, and the prediction and the update steps
are oversimplified.

1.2 Our Approach

In this paper, we extend our previous work [9] which provides
the main framework of Kernel-based Bayesian filtering. We
introduce density approximation and density interpolation to
represent density functions efficiently and effectively. In both
techniques, the density function is represented by a Gaussian
mixture, where the number of mixands, their weights, means
and covariances are automatically determined. The densityap-
proximation is based on a mode finding algorithm [6, 7] de-
rived from variable-bandwidth mean-shift which provides the
methodology to construct a compact representation with a small
number of Gaussian kernels. A density interpolation technique
is introduced to obtain a continuous representation of the mea-
surement likelihood function. Unscented transformation (UT)
[12, 16] is also adopted to deal with non-linear state transition
models. These techniques are integrated into the Bayesian fil-
tering framework. In the new kernel-based Bayesian filtering
algorithm, the continuous representations of density functions
are propagated over time.

The advantage of maintaining an analytic representation of
density functions lies in efficient sampling. This is important
for solving high dimensional problems. A multi-stage sampling
strategy is introduced in density interpolation for accurate ap-
proximation of the measurement likelihood function. The new



algorithm is applied to real-time object tracking, and its perfor-
mance is demonstrated through various experiments.

This paper is organized as follows. Section 2 introduces
the new density propagation technique in the Bayesian filtering
framework. Section 3 and 4 explain the density approximation
and the density interpolation method, respectively. Section 5
demonstrates its performance by various simulation results with
synthetic examples. Finally, it is demonstrated in section6 how
our algorithm can be applied to object tracking in real videos.

2 Bayesian Filtering

In this section, we introduce the new Bayesian filtering frame-
work, where the relevant density functions are approximated by
kernel-based representations and propagated over time.

2.1 Overview

In a dynamic system, the process and measurement model are
given by

xt = g(xt−1,ut) (1)

zt = h(xt,vt) (2)

wherevt andut are the process and the measurement noise, re-
spectively. The state variablext (t = 0, . . . , n) is characterized
by its probability density function estimated from the sequence
of measurementszt (t = 1, . . . , n). In the sequential Bayesian
filtering framework, the conditional density of the state variable
given the measurements is propagated through prediction and
update stages,

p(xt|z1:t−1) =

∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (3)

p(xt|z1:t) =
1

k
p(zt|xt)p(xt|z1:t−1) (4)

wherek =
∫

p(zt|xt)p(xt|z1:t−1)dxt is a normalization con-
stant independent ofxt. p(xt−1|z1:t−1) is the prior probabil-
ity density function (pdf),p(xt|z1:t−1) is the predicted pdf and
p(zt|xt) is the measurement likelihood function. The posterior
pdf at time stept, p(xt|z1:t), is used as the prior pdf in time step
t + 1.

At each time step, the conditional distribution of the state
variablex given a sequence of measurementsz is represented
by a Gaussian mixture. Our goal is to retain such a represen-
tation through the stages of prediction and update, and to rep-
resent the posterior probability in the following step withthe
same mixture form.

The proposed filtering framework is described as follows.
First, unscented transformation (UT) [12, 16] is used to derive
a mixture representation of the predicted pdfp(xt|z1:t−1). Sec-
ond, the density interpolation technique with a multi-stage sam-
pling is introduced to approximate the likelihood functionwith
an mixture form. By multiplying two mixture functions, the

posterior pdf is obtained through equation (4). To prevent the
number of mixands from growing too large, an algorithm of
density approximation based on mode finding is applied to de-
rive a compact representation for the posterior pdf.

2.2 Prediction by Unscented Transform

Denote byxi
t (i = 1, . . . , nt) a set of means inRd and byPi

t

the corresponding covariance matrices at time stept. Let each
Gaussian have a weightκi

t with
∑nt

i=1 κi
t = 1, and let the prior

density function be given by

p(xt−1|z1:t−1) =

1

(2π)d/2

nt−1
∑

i=1

κi
t−1

| Pi
t−1 |1/2

exp

(

−1

2
D2
(

xt−1,x
i
t−1,P

i
t−1

)

)

(5)

The unscented transformation [12, 16] is a method for cal-
culating the statistics of a random variable which undergoes a
non-linear transformation.

X (i,0)
t−1 = xi

t−1

X (i,j)
t−1 = xi

t−1 − (
√

(d + λ)Pi
t−1)j j = 1, . . . , d

X (i,j)
t−1 = xi

t−1 + (
√

(d + λ)Pi
t−1)j−d j = d + 1, . . . , 2d

W(i,0) = λ/(d + λ)

W(i,j) = 1/2(d + λ) j = 1, . . . , 2d (6)

whereλ is a scaling parameter and(
√

(d + λ)Pi
t−1)j is the

ith row or column of the matrix square root of(d + λ)Pi
t−1.

W(i,j) is the weight associated with thej-th sigma point where
∑2d

j=0 W(i,j) = 1. These sigma vectors are propagated through
the non-linear function,

X (i,j)
t = g(X (i,j)

t−1 ) i = 0, . . . , 2d (7)

and the mean and covariance forx̄i
t are approximated using a

weighted sample mean and covariance of the posterior sigma
points,

x̄i
t =

2d
∑

i=0

W(i,j)X (i,j)
t

P̄i
t =

2d
∑

i=0

W(i,j)(X (i,j)
t − x̄i

t)(X
(i,j)
t − x̄i

t)
>

+ Q (8)

whereQ is the covariance matrix for the process noise.
For each mode in the prior, UT is applied independently and

the density after prediction is as follows.

p(xt|z1:t−1) =
1

(2π)d/2

nt−1
∑

i=1

κ̄i
t

| P̄i
t |1/2

exp

(

−1

2
D2
(

xt, x̄
i
t, P̄

i
t

)

)

(9)
whereκ̄i

t = κi
t−1. This non-linear transformation is guaranteed

to be accurate up to the second order of the Taylor expansion.



2.3 Multi-stage Sampling and Interpolation of
Measurement Likelihood

In contrast to various particle filters, we represent the measure-
ment likelihood function in an analytic form. A continuous ap-
proximation of the likelihood function is interpolated from dis-
crete samples. A multi-stage sampling scheme is introducedto
improve the approximation progressively. The advantage ofthe
analytic representation is that it provides a global view ofthe
landscape of the likelihood function and thus enables efficient
sample placement.

2.3.1 Multi-stage sampling

Unlike the SIR algorithm [10] which uses the predicted pdf as
the proposal distribution, we employ the multi-stage sampling
strategy and progressively update the proposal function based
on the observation. The predicted pdf is used as the initial pro-
posal distributionq0.

q0(xt) = p(xt|z1:t−1) (10)

Assume that in total,N samples are to be drawn to obtain mea-
surement data. In our multi-stage sampling scheme,N/m sam-
ples are drawn in the first stage from the initial proposal distrib-
ution (10), wherem is the number of sampling stages. An initial
approximation of the likelihood functionp1(zt|xt) is obtained
through surface interpolation with Gaussian kernels. Details of
the density interpolation algorithm is provided in section4. The
proposal function is then updated by a linear combination of
the initial proposal distribution and the current approximation
of the likelihood functionp1(zt|xt). We repeatedly approxi-
mate the likelihood function from available samples and update
the proposal distribution.

pj(zt|xt) =
∑

τi 6=0

τ i
t exp

(

−1

2
D2
(

xt,x
i
t,R

i
t

)

)

(11)

qj(xt) = (1 − αj)qj−1(xt) + αj
pj(zt|xt)

∫

pj(zt|xt)dxt
(12)

wherei = 1, . . . , j
mN , j = 1, . . . , m, andαj ∈ [0, 1] is adap-

tation rate.
Since the information of the observation is incorporated into

the proposal distribution to guide sampling, the multi-stage
sampling strategy explores the likelihood surface more effi-
ciently than conventional particle filters. Thus, it is especially
advantageous in dealing with high dimensional state space.

2.3.2 Approximation of likelihood function

As discussed previously, the measurement likelihood is esti-
mated through the multi-stage sampling. With samples drawn
from the improved proposal distributions, intermediate likeli-
hood functions are constructed and used to update the proposal
distributions. Afterm-step repetition of this procedure, the fi-
nal measurement distribution is obtained. Algorithm 1 presents

Algorithm 1 Measurement Step
1: St = φ
2: q0(xt) = p(xt|z1:t−1)
3: for i = 1 to m do
4: draw samples from proposal distribution

Si
t = {s(j)

i |s(j)
i ∼ qi−1(xt), j = 1, . . . , N/m}

5: St = St ∪ Si
t

6: assign mean and covariance for the element inSi
t

m(i−1) N
m

+j = s
(j)
i

Q(i−1) N
m

+j = c diag(KNN1(k) . . . KNNd(k))2 I (25)
7: compute likelihood of each new sample

l(i−1) N
m

+j = h(m(i−1) N
m

+j ,vt)

8: computeA andb for every element inSt

9: w = nnls(A,b) (27)
10: pi(zt|xt) =

∑

τ j

t
6=0 N(τ j

t ,xj
t ,R

j
t )

whereτt = w, xt = m, andRt = Q

11: qi(xt) = (1 − αi)qi−1(xt) + αj
pi(zt|xt)

∫

pi(zt|xt)dxt

(12)

12: end for
13: p(zt|xt) = pm(zt|xt)

the complete procedure to compute the likelihood function,and
the final measurement function withmt Gaussians at timet is
given by

p(zt|xt) =
1

(2π)d/2

mt
∑

i=1

τ i
t

| Ri
t |1/2

exp

(

−1

2
D2
(

xt,x
i
t,R

i
t

)

)

(13)

whereτ i
t , xi

t andRi
t are the weight, mean and covariance matrix

of thei-th kernel.

2.4 Update

Since both the predicted pdf and the measurement functions
are represented by Gaussian mixtures, the posterior pdf, as
the product of two Gaussian mixtures, can also be represented
by a Gaussian mixture. Denote the Gaussian components of
the predicted pdf and the likelihood function byN(κ̄i

t, x̄
i
t, P̄

i
t)

(i = 1, . . . , nt−1) andN(τ j
t ,xj

t ,R
j
t ) (j = 1, . . . , mt) respec-

tively, the product of the two distributions is as follows.

(

nt−1
∑

i=1

N(κ̄i
t, x̄

i
t, P̄

i
t)

)





mt
∑

j=1

N(τ j
t ,xj

t ,R
j
t )



 =

nt−1
∑

i=1

mt
∑

j=1

N(κ̄i
tτ

j
t ,mij

t ,Σij
t ) (14)

where
m

ij
t = Σ

ij
t ((P̄i

t)
−1xi

t + (Rj
t )

−1x
j
t ) (15)

Σ
ij
t = ((P̄i

t)
−1 + (Rj

t )
−1)−1 (16)

The resulting density function in (14) is a weighted Gaussian
mixture. However, the exponential increase in the number of



components over time could make the whole procedure in-
tractable. In order to avoid this situation, a density approxima-
tion technique is proposed to maintain a compact yet accurate
density representation even after density propagation through
many time steps. Details of the density approximation algo-
rithm is given in section 3.

After the update step, the final posterior distribution is given
by

p(xt|z1:t) =
1

(2π)d/2

nt
∑

i=1

κi
t

| Pi
t |1/2

exp

(

−1

2
D2
(

xt,x
i
t,P

i
t

)

)

(17)

wherent is the number of components at time stept.

3 Density Approximation

In this section, we review an iterative procedure of mode detec-
tion derived from variable-bandwidth mean-shift [7], and den-
sity approximation using the mode detection technique [9].

3.1 Mode Detection and Density Approximation

Suppose thatN(κi,xi,Pi) (i = 1 . . . n) is a Gaussian ker-
nel with weight κi, meanxi, and covariancePi in the d-
dimensional state space, where

∑n
i=1 κi = 1. Then, we define

the sample point density estimator computed at pointx by

f̂(x) =
1

(2π)d/2

n
∑

i=1

κi

| Pi |1/2
exp

(

−1

2
D2 (x,xi,Pi)

)

(18)

where

D2 (x,xi,Pi) ≡ (x − xi)
>P−1

i (x − xi). (19)

Our purpose is to obtain the compact representation of the
density function which is a Gaussian mixture. The mode loca-
tion and its weight are found by mean-shift algorithm, and the
covariance matrix associated with each mode is computed by
using Hessian matrix.

To find the gradient ascent direction atx, the variable-
bandwidth mean-shift vector atx is given by

m(x) =

(

n
∑

i=1

ωi(x)P−1
i

)−1( n
∑

i=1

ωi(x)P−1
i xi

)

− x (20)

where the weights

ωi(x) =
κi | Pi |−1/2 exp

(

− 1
2D2 (x,xi,Pi)

)

∑n
i=1 κi | Pi |−1/2 exp

(

− 1
2D2 (x,xi,Pi)

) (21)

satisfy
∑n

i=1 ωi(x) = 1. By computing the mean-shift vector
m(x) and translating the locationx by m(x) iteratively, a local
maximum of underlying density function is detected. A formal

check for the maximum involves the computation of the Hessian
matrix

Ĥ(x) =
1

(2π)d/2

n
∑

i=1

κi

| Pi|1/2
exp

(

−1

2
D2 (x,xi,Pi)

)

×

P−1
i

(

(xi − x)(xi − x)> − Pi

)

P−1
i (22)

which should be negative definite. If it is not negative defi-
nite, the convergence point might be a saddle point or a local
minimum. In this case, kernels associated with such modes
should be restored and considered as separate modes for further
processing.

The approximate density is obtained by detecting the mode
location for every sample pointxi and assigning a single
Gaussian kernel for each mode. Suppose that the approximate
density hasn′ unique modes of̃xj (j = 1 . . . n′) with associ-
ated weight̃κj which is equal to the sum of the kernel weights
converged tõxj . The Hessian matrix̂Hj of each mode is used
for the computation of̃Pj as follows.

P̃j =
κ̃

2
d+2

j

| 2π(−Ĥ−1
j ) | 1

d+2

(−Ĥ−1
j ) (23)

The basic idea of equation (23) is to fit the covariance using the
curvature in the neighborhood of the mode. The final density
approximation is then given by

f̃(x) =
1

(2π)d/2

n′

∑

i=1

κ̃i

| P̃i |1/2
exp

(

−1

2
D2
(

x, x̃i, P̃i

)

)

(24)
andn′ � n is satisfied in most cases. The approximation error
||f̂(x) − f̃(x)|| can be evaluated straightforwardly.

3.2 Performance of Approximation

The accuracy of the density approximation is demonstrated in
Figure 1. From a one-dimensional distribution composed of five
weighted Gaussians, 200 samples are drawn, and the scale para-
meter is assigned as discussed in section 4.1. Mean Integrated
Squared Error (MISE) between the original and the approxi-
mated densities is calculated for the error estimation.

The result in figure 1 shows that the mode finding based on
mean-shift and the covariance estimation using the Hessianis
very accurate.

Figure 2 shows the performance of the density approxima-
tion which is accurate enough to replace kernel density estima-
tion in the multi-dimensional case.

4 Density Interpolation

The density approximation presented in section 3 is an algo-
rithm to find a compact representation when the mean, the co-
variance and the weight for each kernel are given. In the mea-
surement step of Bayesian filtering, the likelihood values are
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Figure 1: Comparisons between kernel density esti-
mation and density approximation (1D). For the approx-
imation, 200 samples are drawn from the original dis-
tribution – N(0.2, 10, 22), N(0.35, 17, 42), N(0.15, 27, 82),
N(0.2, 50, 162), andN(0.1, 71, 322). (a) kernel density esti-
mation (b) density approximation (MISE =5.3234× 10−5)
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Figure 2: Comparison between kernel density estimation and
density approximations (2D). (a) kernel density estimation (b)
density approximation (400 samples, MISE =1.5237× 10−8)

known for a set of samples. In this case, the likelihood surface
can be interpolated from sample likelihood. In this section, we
describe the density interpolate algorithm.

4.1 Initial Scale Selection

One of the limitations of kernel-based algorithms is that they
involve the specification of a scale parameter. Various research
has been performed for the scale selection problem [1, 17, 19],
but it is very difficult to find the optimal scale in general. Below,
we explain a strategy to determine the scale parameter for the
density estimation based onnearest neighbors.

The basic idea of this method is very simple, and similar ap-
proaches are discussed in [4, 5]. Each sample is intended to
cover the local region around itself in thed-dimensional state
space with its scale. For this purpose,k-nearest neighbors
(KNN) is used, and the kernel bandwidth (scale) is determined
by the distance to thek-th nearest neighbor of a sample. Define
KNNi

j(k) (1 ≤ j ≤ d) to be the distance tok-th nearest neigh-
bor from samplei in thej-th dimension, and then the covariance
matrixPi for i-th sample is given by

Pi = c diag(KNNi
1(k) KNNi

2(k) . . . KNNi
d(k))2 I (25)

wherec is a constant dependent upon the number of samples
and the dimensionality, andI is ad-dimensional identity matrix.

By this method, samples in dense areas have small scales
and the density will be represented accurately, but sparse ar-
eas convey only relatively rough information about the density
function.

4.2 Interpolation

A Gaussian kernel is assigned to each sample for which mean
and covariance corresponds to the sample location and the scale
is initialized by the method in section 4.1, respectively. When
the likelihood value on each sample is given, the weight for
each kernel can be computed by the Non-Negative Least Square
(NNLS) method [14].

Denotexi as the mean location andPi as the covariance
matrix for thei-th sample (i = 1, . . . , n). Also, suppose thatli
is the likelihood value on thei-th sample. The likelihood atxj

induced by thei-th kernel is given by

pi(xj) =
1

(2π)d/2 | Pi |1/2
exp

(

−1

2
D2(xj ,xi,Pi)

)

. (26)

Define ann × n matrixA having an entrypi(xj) in (i, j), and
an n × 1 vectorb having li in its i-th row. Then, the weight
vectorw can be computed by solving the following constrained
least square problem,

min
w

||Aw − b||2 (27)

subject towi ≥ 0 for i = 1, . . . , n,

and it is denoted byw = nnls(A,b). The size of matrixA is
determined by the number of samples. When the sample size is
large, sparse matrix operation methods can be used to solvew

efficiently.
Usually, many of the weights will be zero and the final den-

sity function will be a mixture of Gaussians with a small number
of components. The density interpolation simulates the heavy-
tailed density function more accurately than the density approx-
imation introduced in section 3, while the density approxima-
tion generally produces a more compact representation.

4.3 Performance of Interpolation

Figure 3 shows one-dimensional density interpolation re-
sults. For each case, 100 samples are drawn and the ini-
tial scale for each sample is given as explained in sec-
tion 4.1. The estimated density function approximates the
original density very accurately as seen in figure 3. Two
different Gaussian mixtures –N(0.2, 10, 22) N(0.35, 17, 42)
N(0.15, 27, 82) N(0.2, 50, 162) N(0.1, 71, 322) in exam-
ple 1, and N(0.15, 12, 52) N(0.1, 15, 42) N(0.35, 60, 82)
N(0.25, 75, 162) N(0.15, 90, 322) in example 2 – are tested for
the interpolation.

When 50 independent realizations are performed, MISE and
its variance are very small for both examples as shown in table
1.
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Figure 3: Two examples of original density functions and their
interpolations. In the interpolation graphs (right), black stars
represent the sample locations (100 samples). In case (a) and
(b), 22 and 24 components have non-zero weights, respectively.

Table 1: Error of density interpolation
MISE VAR

example 1 3.9479× 10−5 2.5613× 10−9

example 2 2.6871× 10−5 9.5103× 10−10

Also, a multi-dimensional density function is interpolated in
the same manner, and its performance is discussed next. In fig-
ure 4, the density interpolation produces a very accurate and sta-
ble result when 200 samples are drawn from the original density
function (MISE =4.5467 × 10−9, VAR = 7.3182 × 10−18 on
average over 50 runs).

These results show that surface interpolation is a sufficiently
accurate method to approximate density function given samples
and their corresponding likelihood.

5 Simulation

In this section, synthetic tracking examples are simulated, and
the performance of the kernel-based Bayesian filtering is com-
pared with the SIR algorithm [10]. Two different process mod-
els – one linear and the other non-linear – are selected, and sim-
ulations are performed for various dimensions such as 2D, 3D,
5D, 10D, 12D and 15D. The accumulated Mean Squared Er-
ror (MSE) through 50 time steps is calculated in each run, and
50 identical experiments are made based on the same data for
accurate error estimation.
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Figure 4: Comparison between original density function and
density interpolation (2D). (a) original density function(b) den-
sity interpolation with 30 non-zero weight components

The first process model is given by the following equation,

xt =
xt−1

2
+

25xt−1

1 + xT
t−1xt−1

+ 8 cos(1.2(t − 1))1 + ut (28)

where1 is the vector whose elements are all ones. The process
noiseut is drawn from a Gaussian distributionN(1,0, (

√
2I)2)

whereI is the identity matrix. The measurement model is given
by a non-linear function

zt =
1

2
xT

t xt + vt (29)

wherevt is drawn from a Gaussian distributionN(1,0, I2). For
the estimation of the measurement function, fifty particles(10
particles× 5 stages) are drawn, and the posterior is estimated
and propagated through the time stept (1 ≤ t ≤ 50).

Figure 5 demonstrates simulation results by comparing
MSE’s and variances of both algorithms. According to our
experiment with the first model, the SIR filter shows better or
equivalent performance in low dimensions such as 2D and 3D,
but our method starts to outperform in high dimensions – more
than 5D.
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Figure 5: MSE and variance of for MSE. Kernel-based
Bayesian filtering with 50 particles (blue star), SIR with 50
particles (red circle), and SIR filter with 500 particles (black
square) for model 1.

The second process model is very simple linear model given
by

xt =
xt−1

2
+ 2 cos(2(t − 1))1 + ut (30)



whereut ∼ N(1,0, (
√

2I)2). The same observation model as
equation (29) is employed, and fifty samples are drawn for every
simulation.

Kernel-based Bayesian filtering yields smaller error in the
high dimension as in previous case, and the detailed resultsare
presented in figure 6.
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Figure 6: MSE and variance of for MSE kernel-based Bayesian
filtering with 50 samples (blue star), SIR filter with 50 particles
(red circle), and SIR filter with 500 particles (black square) for
model 2.

Two different process models produce almost similar results,
and kernel-based Bayesian filtering shows better performance
in high dimensional cases as expected. In order to demon-
strate the benefit of kernel-based particles, we run the SIR al-
gorithm with 500 samples, and compare the performance with
our kernel-based Bayesian filtering with 50 samples. Surpris-
ingly, the MSE’s of the two cases are almost the same, and our
algorithm has smaller variance of MSE than the SIR algorithm.

This result suggests that kernel-based Bayesian filtering can
be applied effectively to high dimensional applications, espe-
cially, when many samples are not available and the observation
process is very time-consuming.

6 Object Tracking

Particle filtering provides a convenient method for estimating
and propagating the density of state variables regardless of the
underlying distribution and the given system in the Bayesian
framework. Additionally, our kernel-based Bayesian filtering
has an advantage of managing multi-modal density functions
with a relatively small number of samples. In this section, we
demonstrate the performance of the kernel-based Bayesian fil-
tering by tracking objects in real videos.

The overall tracking procedure is equivalent to what is de-
scribed in section 5, and we explain the process and the mea-
surement models briefly.

A random walk is assumed for the process model since it is
very difficult to describe the accurate motion before the obser-
vation, even though our algorithm can accommodate the gen-
eral non-linear function by unscented transformation described
in section 2.2. 5-stage sampling is incorporated as introduced
in section 2.3, and the likelihood of each particle is computed

by the inverse exponentiation of the Bhattacharyya distance be-
tween the target and the candidate histograms as suggested in
[18]. Based on the likelihood of each particle and the initial co-
variance matrix derived by the method in section 4.1, the mea-
surement density is constructed by density interpolation.

Two sequences are tested in our experiment. In the first se-
quence, two objects – a hand carrying a can – are tracked with
200 samples (40 samples× 5 stages). The state space is de-
scribed by a 10 dimensional vector, which is the concatenation
of two 5 dimensional vectors representing two independent el-
lipses as follows.

(x1, y1, lx1, ly1, r1, x2, y2, lx1, ly2, r2) (31)

wherexi andyi (i = 1, 2) are the location of ellipses,lxi is the
length ofx-axis,lyi is the length ofy-axis, andri is the rotation
variable. The tracking result is shown in figure 7, and our al-
gorithm successfully tracks two objects for the whole sequence
except the period that the side of the can is completely occluded
around 470th frame.

(a) t = 43 (b) t = 304 (c) t = 387

(d) t = 456 (e) t = 570 (c) t = 898

Figure 7: Object tracking result ofcansequence.

The upper bodies of two persons are tracked in the second
sequence, in which one occludes the other completely several
times. The state vector is constructed by the same method as in
thecansequence, but two rectangles are used instead of ellipses.
A 6 dimensional vector –(x, y, scale) for each rectangle – is
used to describe the state, and 100 samples (20 samples× 5
stages) are used. Figure 8 (a) demonstrates the tracking results,
and our algorithm shows good performance in spite of severe
occlusions.

The tracker based on SIR algorithm is also implemented, and
compared with our algorithm. As seen in figure 8 (b), the SIR
algorithm shows unstable performance for the same sequence.
According to experiments, one would need to run the SIR al-
gorithm using about 400 particles to obtain a comparable result
with our algorithm using 100 samples.



(a) result by our method

(a) result by the SIR algorithm

Figure 8: Object tracking result ofpersonsequence att =
1, 95, 133, 193, 217, 300.

7 Discussion and Conclusion

In this paper, we proposed a new Bayesian filtering framework
where analytic representations are used to approximate rele-
vant density functions. Density approximation and interpola-
tion technique are introduced in density propagation. Various
simulations and tests on object tracking in real videos show
the effectiveness of our density approximation methods andthe
kernel-based Bayesian filtering. By maintaining analytic repre-
sentations of the density functions, we can sample in the state
space more effectively and more efficiently. This advantageis
significant for high dimensional problems. In addition, theap-
proximation error can be monitored and analyzed. Our future
work is focused on analyzing the approximation error in the
posterior distribution and its propagation over time.
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