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a b s t r a c t 

Personalization is the process of fitting a model to patient data, a critical step towards application of 

multi-physics computational models in clinical practice. Designing robust personalization algorithms is 

often a tedious, time-consuming, model- and data-specific process. We propose to use artificial intelli- 

gence concepts to learn this task, inspired by how human experts manually perform it. The problem is 

reformulated in terms of reinforcement learning. In an off-line phase, Vito, our self-taught artificial agent, 

learns a representative decision process model through exploration of the computational model: it learns 

how the model behaves under change of parameters. The agent then automatically learns an optimal 

strategy for on-line personalization. The algorithm is model-independent; applying it to a new model 

requires only adjusting few hyper-parameters of the agent and defining the observations to match. The 

full knowledge of the model itself is not required. Vito was tested in a synthetic scenario, showing that 

it could learn how to optimize cost functions generically. Then Vito was applied to the inverse problem 

of cardiac electrophysiology and the personalization of a whole-body circulation model. The obtained re- 

sults suggested that Vito could achieve equivalent, if not better goodness of fit than standard methods, 

while being more robust (up to 11% higher success rates) and with faster (up to seven times) conver- 

gence rate. Our artificial intelligence approach could thus make personalization algorithms generalizable 

and self-adaptable to any patient and any model. 

© 2016 Published by Elsevier B.V. 
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1. Introduction 

Computational modeling attracted significant attention in car-

diac research over the last decades ( Frangi et al., 2001; Noble,

2002; Hunter and Borg, 2003; Kerckhoffs et al., 2008; Clayton

et al., 2011; Kuijpers et al., 2012; Krishnamurthy et al., 2013 ). It

is believed that computational models can improve patient strat-

ification and therapy planning. They could become the enabling

tool for predicting disease course and therapy outcome, ultimately

leading to improved clinical management of patients suffering

from cardiomyopathies ( Kayvanpour et al., 2015 ). A crucial prereq-

uisite for achieving these goals is precise model personalization:
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1361-8415/© 2016 Published by Elsevier B.V. 
he computational model under consideration needs to be fitted to

ach patient. However, the high complexity of cardiac models and

he often noisy and sparse clinical data still hinder this task. 

A wide variety of manual and (semi-)automatic model pa-

ameter estimation approaches have been explored, including

ugenstein et al. (2005) ; Schmid et al. (2006) ; Wang et al. (2009) ;

ermesant et al. (2009) ; Aguado-Sierra et al. (2010) ; Konukoglu

t al. (2011) ; Aguado-Sierra et al. (2011) ; Delingette et al. (2012) ;

habiniok et al. (2012) ; Xi et al. (2013) ; Marchesseau et al. (2013) ;

e Folgoc et al. (2013) ; Prakosa et al. (2013) ; Wallman et al. (2014) ;

ettinig et al. (2014) ; Neumann et al. (2014a ); 2014b ); Itu et al.

2014) ; Seegerer et al. (2015) ; Wong et al. (2015) . Most methods

im to iteratively reduce the misfit between model output and

easurements using optimization algorithms, for instance varia-

ional ( Delingette et al., 2012 ) or filtering ( Marchesseau et al., 2013 )

http://dx.doi.org/10.1016/j.media.2016.04.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.04.003&domain=pdf
mailto:dominik.neumann@siemens.com
http://dx.doi.org/10.1016/j.media.2016.04.003
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Fig. 1. Overview of Vito: a self-taught artificial agent for computational model per- 

sonalization, inspired by how human operators approach the personalization prob- 

lem. 
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pproaches. Applied blindly, those techniques could easily fail on

nseen data, if not supervised, due to parameter ambiguity, data

oise and local minima ( Neumann et al., 2014a; Wallman et al.,

014; Konukoglu et al., 2011 ). Therefore, complex algorithms have

een designed combining cascades of optimizers in a very specific

ay to achieve high levels of robustness, even on larger popula-

ions, i.e. 10 or more patients ( Kayvanpour et al., 2015; Seegerer

t al., 2015; Neumann et al., 2014b ). However, those methods are

ften designed from tedious, trial-and-error-driven manual tuning,

hey are model-specific rather than generic, and their generaliza-

ion to varying data quality cannot be guaranteed. On the contrary,

f the personalization task is assigned to an experienced human,

iven enough time, he almost always succeeds in manually per-

onalizing a model for any subject (although solution uniqueness

s not guaranteed, but this is inherent to the problem). 

There are several potential reasons why a human expert is of-

en superior to standard automatic methods in terms of person-

lization accuracy and success rates. First, an expert is likely to

ave an intuition of the model’s behavior from his prior knowl-

dge of the physiology of the modeled organ. Second, knowl-

dge about model design and assumptions, and model limitations

nd implementation details certainly provide useful hints on the

mechanics” of the model. Third, past personalization of other

atasets allows the expert to build up experience. The combi-

ation of prior knowledge, intuition and experience enables to

olve the personalization task more effectively, even on unseen

ata. 

Inspired by humans and contrary to previous works, we pro-

ose to address the personalization problem from an artificial in-

elligence (AI) perspective. In particular, we apply reinforcement

earning (RL) methods ( Sutton and Barto, 1998 ) developed in the

I community to solve the parameter estimation task for computa-

ional physiological models. With its roots in control theory on the

ne hand, and neuroscience theories of learning on the other hand,

L encompasses a set of approaches to make an artificial agent

earn from experience generated by interacting with its environ-

ent. Contrary to standard (supervised) machine learning ( Bishop,

006 ), where the objective is to compute a direct mapping from

nput features to a classification label or regression output, RL aims

o learn how to perform tasks. The goal of RL is to compute an op-

imal problem-solving strategy (agent behavior), e.g. a strategy to

lay the game “tic-tac-toe” successfully. In the AI field, such a be-

avior is often represented as a policy, a mapping from states, de-

cribing the current “situation” the agent finds itself in (e.g. the

urrent locations of all “X” and “O” on the tic-tac-toe grid), to

ctions, which allow the agent to interact with the environment

e.g. place “X” on an empty cell) and thus influence that situa-

ion. The key underlying principle of RL is that of reward ( Kaelbling

t al., 1996 ), which provides an objective means for the agent to

udge the outcome of its actions. In tic-tac-toe, the agent receives

 high, positive reward if the latest action led to a horizontal, ver-

ical or diagonal row full of “X” marks (winning), and a negative

eward (punishment) if the latest action would allow the oppo-

ent to win in his next move. Based on such rewards, the artifi-

ial agent learns an optimal winning policy through trial-and-error

nteractions with the environment. 

RL was first applied to game (e.g. Tesauro, 1994 ) or sim-

le control tasks. However, the past few years saw tremendous

reakthroughs in RL for more complex, real-world problems (e.g.

guyen-Tuong and Peters, 2011; Kveton and Theocharous, 2012;

arreto et al., 2014 ). Some noteworthy examples include Mülling

t al. (2013) , where the control entity of a robot arm learned to

elect appropriate motor primitives to play table tennis, and Mnih

t al. (2015) , where the authors combine RL with deep learning to

rain an agent to play 49 Atari games, yielding better performance

han an expert in the majority of them. 
Motivated by these recent successes and building on our pre-

ious work ( Neumann et al., 2015 ), we propose an RL-based per-

onalization approach, henceforth called Vito , with the goal of de-

igning a framework that can, for the first time to our knowledge,

earn by itself how to estimate model parameters from clinical

ata while being model-independent. As illustrated in Fig. 1 , first,

ike a human expert, Vito assimilates the behavior of the physi-

logical model under consideration in an off-line, one-time only,

ata-driven exploration phase. From this knowledge, Vito learns

he optimal strategy using RL ( Sutton and Barto, 1998 ). The goal

f Vito during the on-line personalization phase is then to sequen-

ially choose actions that maximize future rewards, and therefore

ring Vito to the state representing the solution of the person-

lization problem. To setup the algorithm, the user needs to de-

ne what observations need to be matched, the allowed actions,

nd a single hyper-parameter related to the desired granularity of

he state-space. Then everything is learned automatically. The al-

orithm does not depend on the underlying model. 

Vito was evaluated on three different tasks. First, in a synthetic

xperiment, convergence properties of the algorithm were ana-

yzed. Then, two tasks involving real clinical data were evaluated:

he inverse problem of cardiac electrophysiology and the person-

lization of a lumped-parameter model of whole-body circulation.

he obtained results suggested that Vito can achieve equivalent (or

etter) goodness of fit as standard optimization methods, increased

obustness and faster convergence rates. 

A number of novelties and improvements over ( Neumann et al.,

015 ) are featured in this manuscript. First, an automatic, data-

riven state-space quantization method is introduced that replaces

he previous manual technique. Second, the need to provide user-

efined initial parameter values is eliminated by employing a new

ata-driven technique to initialize personalization of unseen data.

hird, a stochastic personalization policy is introduced, for which

he previously used standard deterministic policy is a special case.

ourth, the convergence properties are evaluated in parameter

pace using a synthetic personalization scenario. In addition, thor-

ugh evaluation of Vito’s performance with increasing amount of

raining samples was conducted and personalization of the whole-

ody circulation model was extended to several variants involving

wo to six parameters. Finally, the patient database used for ex-

erimentation was extended from 28 to 83 patients for the cardiac

lectrophysiology experiments, and from 27 to 56 for the whole-

ody circulation experiments. 

The remainder of this manuscript is organized as follows.

ection 2 presents the method. In Section 3 , the experiments are

escribed and the results are presented. Section 4 concludes the

anuscript with a summary and discussions about potential limi-

ations and extensions of the method. 

. Method 

This section presents the reinforcement-learning (RL) frame-

ork for computational model personalization. Section 2.1 intro-

uces Markov decision process (MDP). Section 2.2 defines the per-

onalization problem and how it can be reformulated in terms of

n MDP. Section 2.3 describes how the artificial agent, Vito, learns
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Fig. 2. A computational model f is a dynamic system that maps model input pa- 

rameters x to model state (output) variables y . The goal of personalization is to tune 

x such that the objectives c , defined as the misfit between y and the corresponding 

measured data z of a given patient, are optimized (the misfit is minimized). 
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how the model behaves. Next, Section 2.4 provides details about

state-space quantization, and Section 2.5 describes how the model

knowledge is encoded in the form of transition probabilities. All

steps mentioned so far are performed in an off-line training phase.

Finally, Section 2.6 explains how the learned knowledge is applied

on-line to personalize unseen data. 

2.1. Model-based reinforcement learning 

2.1.1. MDP definition 

A crucial prerequisite for applying RL is that the problem of in-

terest, here personalization, can be modeled as a Markov decision

process (MDP). An MDP is a mathematical framework for model-

ing decision making when the decision outcome is partly random

and partly controlled by a decision maker ( Sutton and Barto, 1998 ).

Formally, an MDP is a tuple M = (S, A , T , R , γ ) , where: 

• S is the finite set of states that describe the agent’s environ-

ment, n S is the number of states, and s t ∈ S is the state at

time t . 
• A is the finite set of actions, which allow the agent to interact

with the environment, n A is the number of actions, and a t ∈ A
denotes the action performed at time t . 

• T : S × A × S → [0 ; 1] is the stochastic transition function,

where T (s t , a t , s t+1 ) describes the probability of arriving in

state s t+1 after the agent performed action a t in state s t . 
• R : S × A × S → R is the scalar reward function, where r t+1 =

R (s t , a t , s t+1 ) is the immediate reward the agent receives at

time t + 1 after performing action a t in state s t resulting in state

s t+1 . 
• γ ∈ [0; 1] is the discount factor that controls the importance

of future versus immediate rewards. 

2.1.2. Value iteration 

The value of a state, V 

∗( s ), is the expected discounted reward

the agent accumulates when it starts in state s and acts optimally

in each step: 

 

∗(s ) = E 

{ 

∞ ∑ 

k =0 

γ k r t+ k +1 | s t = s 

} 

, (1)

where E {} denotes the expected value given the agent always se-

lects the optimal action, and t is any time step. Note that the

discount factor γ is a constant and the superscript k its expo-

nent. V 

∗ can be computed using value iteration ( Sutton and Barto,

1998 ), an iterative algorithm based on dynamic programming. In

the first iteration i = 0 , let V i : S → R denote an initial guess for

the value function that maps states to arbitrary values. Further, let

Q i : S × A → R denote the i th “state-action value function”-guess,

which is computed as: 

Q i (s, a ) = 

∑ 

s ′ ∈S 
T (s, a, s ′ ) 

[
R (s, a, s ′ ) + γV i (s ′ ) 

]
. (2)

Value iteration iteratively updates V i +1 from the previous Q i : 

∀ s ∈ S : V i +1 (s ) = max 
a ∈A 

Q i (s, a ) , (3)

until the left- and right-hand side of Eq. 3 are equal for all s ∈
S; then V ∗ ← V i +1 and Q 

∗ ← Q i +1 . From this equality relation, also

known as the Bellman equation ( Bellman, 1957 ), one can obtain

an optimal problem-solving strategy for the problem described by

the MDP (assuming that all components of the MDP are known

precisely). It is encoded in terms of a deterministic optimal policy

π ∗ : S → A : 

π ∗(s ) = arg max a ∈A Q 

∗(s, a ) , (4)

i.e. a mapping that tells the agent in each state the optimal action

to take. 
.1.3. Stochastic policy 

In this work not all components of the MDP are known pre-

isely, instead some are approximated from training data. Value it-

ration, however, assumes an exact MDP to guarantee optimality

f the computed policy. Therefore, instead of relying on the de-

erministic policy π ∗ ( Eq. 4 ), a generalization to stochastic policies

˜ ∗ is proposed here to mitigate potential issues due to approxima-

ions. Contrary to Eq. 4 , where for each state only the one action

ith maximum Q 

∗-value is considered, a stochastic policy stores

everal candidate actions with similar high Q 

∗-value and returns

ne of them through a random process each time it is queried. To

his end, the Q 

∗( s , ·)-values for a given state s are first normalized:

˜ 
 

∗
s (a ) = 

Q 

∗(s, a ) − min a ′ ∈A [ Q 

∗(s, a ′ )] 

max a ′ ∈A [ Q 

∗( s, a ′ )] − min a ′ ∈A [ Q 

∗(s, a ′ )] 
. (5)

ll actions whose normalized 

˜ Q 

∗
s -value is below a threshold of

= 

4 
5 (set empirically and used throughout the entire manuscript)

re discarded, while actions with large values are stored as po-

ential candidates. Each time the stochastic policy is queried, a =
˜ ∗ε (s ) , it returns one of the candidate actions a selected randomly

ith probability proportional to its ˜ Q 

∗
s -value: ˜ Q 

∗
s (a ) / 

∑ 

a ′ ˜ Q 

∗
s (a ′ ) ;

he sum is over all candidate actions a ′ . 

.2. Reformulation of the model personalization problem into an MDP

.2.1. Problem definition 

As illustrated in Fig. 2 , any computational model f is governed

y a set of parameters x = (x 1 , . . . , x n x ) 
	 , where n x denotes the

umber of parameters. x is bounded within a physiologically plau-

ible domain �, and characterized by a number of n y (observable)

tate variables y = (y 1 , . . . , y n y ) 
	 . The state variables can be used

o estimate x . Note that some parameters may be pre-estimated

r assigned fixed values. The goal of personalization is to optimize

 set of n c objectives c = (c 1 , . . . , c n c ) 
	 . The objectives are scalars

efined as c i = d(y i , z i ) , where d is a measure of misfit, and z i de-

otes the patient’s measured data ( z ) corresponding to y i . In this

ork d(y i , z i ) = y i − z i . Personalization is considered successful if

ll user-defined convergence criteria ψ = (ψ 1 , . . . , ψ n c ) 
	 are met.

he criteria are defined in terms of maximum acceptable misfit per

bjective: ∀ i ∈ { 1 , . . . , n c } : | c i | < ψ i . 

.2.2. Problem reformulation 

Personalization is mapped to a Markov decision process as fol-

ows: 

States : An MDP state encodes the misfit between the computed

odel state (outcome of forward model run) and the patient’s

easurements. Thus, MDP states carry the same type of informa-

ion as objective vectors c , yet the number of MDP states has to

e finite ( Section 2.1 ), while there are an infinite number of dif-

erent objective vectors due to their continuous nature. Therefore

he space of objective vectors in R 

n c is reduced to a finite set of

epresentative states : the MDP states S, each s ∈ S covering a small

egion in that space. One of those states, ˆ s ∈ S, encodes person-

lization success as it is designed such that it covers exactly the

egion where all convergence criteria are satisfied. The goal of Vito

s to learn how to reach that state. 
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Fig. 3. State-space quantization. Left : Example data-driven quantization of a two-dimensional state-space into n S = 120 representative states. The states are distributed 

according to the observed objective vectors c in one of the experiments in Section 3.2 . The objectives were QRS duration [ms] ( c 1 ) and electrical axis [deg] ( c 2 ). The center 

rectangle (green region) denotes the success state ˆ s where all objectives are met ( ∀ i : | c i | < ψ i ); see text for details. Right: Manual quantization as used in Neumann et al. 

(2015) . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Actions : Vito’s actions modify the parameters x to fulfill the ob-

ectives c . An action a ∈ A consists in either in- or decrementing

ne parameter x i by 1 ×, 10 × or 100 × a user-specified reference

alue δi with δ = (δ1 , . . . , δn x ) 
	 . This empirically defined quantiza-

ion of the intrinsically continuous action space yielded good re-

ults for the problems considered in this work. 

Transition function : T encodes the agent’s knowledge about

he computational model f and is learned automatically as de-

cribed in Section 2.5 . 

Rewards : Inspired by the “mountain car” benchmark ( Sutton

nd Barto, 1998 ), the rewards are defined as always being equal

o R (s, a, s ′ ) = −1 (punishment), except when the agent performs

n action resulting in personalization success, i.e. when s ′ = ˆ s . In

hat case, R (·, ·, ̂  s ) = 0 (no punishment). 

Discount factor : The large discount factor γ = 0 . 99 encourages

olicies that favor future over immediate rewards, as Vito should

lways prefer the long-term goal of successful personalization to

hort-term appealing actions in order to reduce the risk of local

inima. 

.3. Learning model behavior through model exploration 

Like a human operator, Vito first learns how the model “be-

aves” by experimenting with it. This is done through a “self-

uided sensitivity analysis”. A batch of sample transitions is col-

ected through model exploration episodes E p = { e p 
1 
, e 

p 
2 
, . . . } . An

pisode e 
p 
i 

is a sequence of n e -steps consecutive transitions gener-

ted from the model f and the patient p for whom the target mea-

urements z p are known. An episode is initiated at time t = 0 by

enerating random initial model parameters x t within the physio-

ogically plausible domain �. From the outputs of a forward model

un y t = f (x t ) , the misfits to the patient’s corresponding measure-

ents are computed, yielding the objectives vector c t = d(y t , z 
p ) .

ext, a random exploration policy πrand that selects an action ac-

ording to a discrete uniform probability distribution over the set

f actions is employed. The obtained a t ∈ A is then applied to

he current parameter vector, yielding modified parameter values

 t+1 = a t (x t ) . From the output of the forward model run y t+1 =
f (x t+1 ) the next objectives c t+1 are computed. The next action a t+1 

s then selected according to πrand , and this process is repeated

 e -steps − 1 times. Hence, each episode can be seen as a set of con-

ecutive tuples: 

 = { (x t , y t , c t , a t , x t+1 , y t+1 , c t+1 ) , t = 0 , . . . , n e -steps − 1 } . (6)

n this work, n e -steps = 100 transitions are created in each episode

s a trade-off between sufficient length of an episode to cover a
eal personalization scenario and sufficient exploration of the pa-

ameter space. 

The model is explored with many different training patients

nd the resulting episodes are combined into one large training

pisode set E = 

⋃ 

p E p . The underlying hypothesis (verified in ex-

eriments) is that the combined E allows to cancel out peculiari-

ies of individual patients, i.e. to abstract from patient-specific to

odel-specific knowledge. 

.4. From computed objectives to representative MDP state 

As mentioned above, the continuous space of objective vectors

s quantized into a finite set of representative MDP states S . A

ata-driven approach is proposed. First, all objective vectors ob-

erved during training are clustered according to their distance

o each other. Because the ranges of possible values for the indi-

idual objectives can vary significantly depending on the selected

easurements (due to different types of measurements, different

nits, etc.), the objectives should be normalized during clustering

o avoid bias towards objectives with relatively large typical val-

es. In this work the distance measure performs implicit normal-

zation to account for these differences: the distance between two

bjective vectors ( c 1 , c 2 ) is defined relative to the inverse of the

onvergence criteria ψ: 

 c 1 − c 2 ‖ ψ 

= 

√ 

( c 1 − c 2 ) 
	 diag ( ψ ) −1 ( c 1 − c 2 ) , (7)

here diag ( ψ ) −1 denotes a diagonal matrix with ( 1 
ψ 1 

, 1 
ψ 2 

, . . . )

long its diagonal. The centroid of a cluster is the centroid of a

epresentative state. In addition, a special “success state” ˆ s rep-

esenting personalization success is created, which covers the re-

ion in state-space where all objectives are met: ∀ i : | c i | < ψ i .

he full algorithm is described in Appendix A . Finally, an operator

: R 

n c → S that maps continuous objective vectors c to represen-

ative MDP states is introduced: 

(c ) = arg min s ∈S ‖ c − ξs ‖ ψ 

(8)

here ξs denotes the centroid corresponding to state s . For an ex-

mple state-space quantization see Fig. 3 . 

.5. Transition function as probabilistic model representation 

In this work, the stochastic MDP transition function T en-

odes the agent’s knowledge about the computational model f .

t is learned from the training data E . First, the individual sam-

les (x t , y t , c t , a t , x t+1 , y t+1 , c t+1 ) are converted to state-action-

tate transition tuples ˆ E = { (s, a, s ′ ) } , where s = φ(c t ) , a = a t and
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Fig. 4. Vito’s probabilistic on-line personalization phase. See text for details. 
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s ′ = φ(c t+1 ) . Then, T is approximated from statistics over the ob-

served transition samples: 

T (s, a, s ′ ) = 

∣∣{ (s, a, s ′ ) ∈ 

ˆ E } ∣∣∑ 

s ′′ ∈S 
∣∣{ (s, a, s ′′ ) ∈ 

ˆ E } ∣∣ , (9)

where | {·} | denotes the cardinality of the set { ·} . If n S and n A are

large compared to the total number of samples it may occur that

some state-action combinations are not observed: |{ (s, a, ·) ∈ 

ˆ E }| =
0 . In that case uniformity is assumed: ∀ s ′′ ∈ S : T (s, a, s ′′ ) = 1 / n S . 

M is now fully defined. Value iteration ( Section 2.1 ) is applied

and the stochastic policy ˜ π ∗
ε is computed, which completes the off-

line phase. 

2.6. On-line model personalization 

On-line personalization, as illustrated in Fig. 4 , can be seen as

a two-step procedure. First, Vito initializes the personalization of

unseen patients from training data. Second, Vito relies on the com-

puted policy ˜ π ∗
ε to guide the personalization process. 

2.6.1. Data-driven initialization 

Good initialization can be decisive for a successful personal-

ization. Vito’s strategy is to search for forward model runs in the

training database E for which the model state f (x ) = y ≈ z p is sim-

ilar to the patient’s measurements. To this end, Vito examines all

parameters 
 = { x ∈ E | f (x ) ≈ z p } that yielded model states simi-

lar to the patient’s measurements. Due to ambiguities induced by

the different training patients, data noise and model assumptions,


 could contain significantly dissimilar parameters. Hence, picking

a single x ∈ 
 might not yield the best initialization. Analyzing 


probabilistically instead helps Vito to find likely initialization can-

didates. The details of the initialization procedure are described in

Appendix B . Given the patient’s measurements z p , the procedure

outputs a list of initialization candidates X 0 = (x ′ 
0 
, x ′′ 

0 
, . . . ) . The list

is sorted by likelihood with the first element, x ′ 
0 
, being the most

likely one. 

2.6.2. Probabilistic personalization 

The first personalization step initializes the model parameter

vector x 0 with the most likely among all initialization candidates,

x 0 ∈ X 0 (see previous section for details). Then, as illustrated in

Fig. 4 , Vito computes the forward model y 0 = f (x 0 ) and the mis-

fit between the model output and the patient’s measurements

c 0 = d(y 0 , z 
p ) to derive the first state s 0 = φ(c 0 ) . Given s 0 , Vito

decides from its policy the first action to take a 0 = ˜ π ∗
ε (s 0 ) , and

walks through state-action-state sequences to personalize the com-

putational model f by iteratively updating the model parameters

through MDP actions. Bad initialization could lead to oscillations

between states as observed in previous RL works ( Kveton and

Theocharous, 2012; Neumann et al., 2015 ). Therefore, upon detec-

tion of an oscillation, which is done by monitoring the parameter

traces to detect recurring sets of parameter values, the personal-

ization is re-initialized at the second-most-likely x 0 ∈ X 0 , etc. If

all |X 0 | initialization candidates have been tested, a potential re-

initialization defaults to fully random within the physiologically
lausible parameter domain �. The process terminates once Vito

eaches state ˆ s (success), or when a pre-defined maximum num-

er of iterations is reached (failure). 

. Experiments 

Vito was applied to a synthetic parameter estimation prob-

em and to two challenging problems involving real clinical data:

ersonalization of a cardiac electrophysiology (EP), and a whole-

ody-circulation (WBC) model. All experiments were conducted

sing leave-one-out cross-validation. The numbers of datasets and

ransition samples used for the different experiments are denoted

 datasets and n samples , respectively. 

.1. Synthetic experiment: the Rosenbrock function 

First, Vito was employed in a synthetic scenario, where the

round-truth model parameters were known. The goals were to

est the ability of Vito to optimize cost functions generically, and

o directly evaluate the performance in the parameter space. 

.1.1. Forward model description 

The Rosenbrock function ( Rosenbrock, 1960 ), see Fig. 5 , left

anel, is a non-convex function that is often used to benchmark

ptimization algorithms. It was treated as the forward model in

his experiment: 

f α(x 1 , x 2 ) = (α − x 1 ) 
2 + 100 · (x 2 − x 2 1 ) 

2 , (10)

here x = (x 1 , x 2 ) 
	 were the model parameters to estimate for any

, and f α : � → R . As described in Section 2.2.2 , each of Vito’s ac-

ions a ∈ A in- or decrements a parameter value by multiples (1 ×,

0 ×, 100 ×) of parameter-specific reference values. The reference

alues were set to δ = (0 . 01 , 0 . 01) 	 , determined as 0.1% of the de-

ned admissible parameter space per dimension, � = [ −5 ; 5] 2 . The

arameter α ∈ R defines a family of functions { f α}. The goal was to

nd generically arg min x 1 ,x 2 
f α(x 1 , x 2 ) . 

The Rosenbrock function has a unique global minimum at x =
(α, α2 ) 	 , where both terms T 1 = (α − x 1 ) and T 2 = (x 2 − x 2 

1 
) eval-

ate to 0. The personalization objectives were therefore defined as

 = (| T 1 − 0 | , | T 2 − 0 | ) 	 , with the measured data z = (0 , 0) 	 were

ero for both objectives and the computed data y = (T 1 , T 2 ) 
	 . The

onvergence criteria were set empirically to ψ = (0 . 05 , 0 . 05) 	 . 

.1.2. Evaluation 

Vito was evaluated on n datasets = 100 functions f α with ran-

omly generated α ∈ [ −2 , 2] . In the off-line phase, for each

unction, n samples = 10 · n e -steps = 10 0 0 samples, i.e. ten training

pisodes, each consisting in n e -steps = 100 transitions ( Section 2.3 ),

ere generated to learn the policy. The number of representative

tates was set to n S = 100 . To focus on Vito’s on-line personal-

zation capabilities, both the data-driven initialization and the re-

nitialization on oscillation ( Section 2.6 ) were disabled. In total,

41 experiments with different initializations (sampled on a 21 ×21
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Fig. 5. Synthetic experiment. Left : Contour plot of the Rosenbrock function f α=1 with global minimum at x = (1 , 1) 	 (red dot). The color scale is logarithmic for visualization 

purposes: the darker, the lower the function value. Mid : Maximum L 2 -error in parameter space after personalization over all functions for varying initial parameter values. 

See text for details. Yellow represents errors ≥ 5 (maximum observed error ≈ 110). Right : Same as mid panel, except the extended action set was used. The red dots are 

the 100 ground-truth parameters x = (α, α2 ) 	 generated for random α. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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niform grid spanned in �) were conducted. For each experi-

ent all 100 functions were personalized using leave-one-family-

unction-out cross validation, and the error value from the func-

ion exhibiting the maximum L 2 -error (worst-case scenario) be-

ween ground-truth ( α, α2 ) and estimated parameters was plotted.

s one can see from the large blue region in Fig. 5 , mid panel, for

he majority of initial parameter values Vito always converged to

he solution (maximum L 2 -error < 0.25; the maximum achievable

ccuracy depended on the specified convergence criteria ψ and on

he reference values δ, which “discretized” the parameter space).

owever, especially for initializations far from the ground-truth

near border regions of �), Vito was unable to personalize some

unctions properly, which was likely due to the high similarity of

he Rosenbrock function shape in these regions. 

To investigate this issue, the experiment was repeated after ad-

itional larger parameter steps were added to the set of avail-

ble actions: A 

′ = A ∪ {±50 0 δ1 ;±50 0 δ2 } . As shown in Fig. 5 , right

anel, Vito could now personalize successfully starting from any

oint in �. The single spot with larger maximum error (bright spot

t approximately x = (−1 , 2) 	 ) can be explained by Vito’s stochas-

ic behavior: Vito may have become unlucky if it selected many un-

avorable actions in sequence due to the randomness introduced by

he stochastic policy. Enabling re-initialization on oscillation solved

his issue entirely. In conclusion, this experiment showed that Vito

an learn how to minimize a cost function generically. 

.2. Personalization of cardiac electrophysiology model 

Vito was then tested in a scenario involving a complex model

f cardiac electrophysiology coupled with 12-lead ECG. Personal-

zation was performed for real patients from actual clinical data.

 total of n datasets = 83 patients were available for experimenta-

ion. For each patient, the end-diastolic bi-ventricular anatomy was

egmented from short-axis cine magnetic resonance imaging (MRI)

tacks as described in Zheng et al. (2008) . A tetrahedral anatomical

odel including myofibers was estimated and a torso atlas affinely

egistered to the patient based on MRI scout images. See Zettinig

t al. (2014) for more details. 

.2.1. Forward model description 

The depolarization time at each node of the tetrahedral

natomical model was computed using a shortest-path graph-

ased algorithm, similar to the one proposed in Wallman et al.

2012) . Tissue anisotropy was modeled by modifying the edge costs

o take into account fiber orientation. A time-varying voltage map

as then derived according to the depolarization time: at a given

ime t , mesh nodes whose depolarization time was higher than

 were assigned a trans-membrane potential of −70 mV, 30 mV
therwise. The time-varying potentials were then propagated to

 torso model where 12-lead ECG acquisition was simulated, and

RS duration (QRSd) and electrical axis (EA) were derived ( Zettinig

t al., 2014 ). The model was controlled by the conduction velocities

in m/s) of myocardial tissue and left and right Purkinje network:

 = (v Myo , v LV , v RV ) 
	 . The latter two domains were modeled as fast

ndocardial conducting tissue. The admissible parameter space �

as set to [20 0; 10 0 0] for v Myo and [50 0; 50 0 0] for both v LV and

 RV . Reference increment values to build the action set A were set

o δ = (5 , 5 , 5) 	 m/s for the three model parameters. The goal of

P personalization was to estimate x from the measured QRSd and

A. Accounting for uncertainty in the measurements and errors in

he model, a patient was considered personalized if QRSd and EA

isfits were below ψ = (5 ms , 10 ◦) 	 , respectively. 

.2.2. Number of representative states 

In contrast to Neumann et al. (2015) , where state-space quan-

ization required manual tuning of various threshold values, the

roposed approach relies on a single hyper-parameter only: n S ,
he number of representative states ( Section 2.4 ). To specify n S ,
ight patients were selected for scouting. Exhaustive search was

erformed for n S ∈ { 10 , 20 , . . . , 490 , 500 } representative states. The

oodness of a given configuration was evaluated based on the suc-

ess rate (relative number of successfully personalized cases ac-

ording to convergence criteria ψ) over five independent, consec-

tive, leave-one-patient-out cross-validated personalization runs of 

he eight patients. Furthermore, the average number of required

orward model runs was considered. To this end, 100 training

pisodes ( 100 · n e -steps = 10 4 transition samples) per patient were

enerated for each personalization run as described in Section 2.3 .

s one can see from Fig. 6 , good performance was achieved from

0 to 300 representative states. 

The large range of well performing n S indicates a certain level

f robustness with respect to that hyper-parameter. A slight perfor-

ance peak at 120 representative states was observed. Therefore,

 S = 120 was selected for further experimentation as compromise

etween maintaining a low number of states and sufficient state

ranularity. An example quantization with n S = 120 is visualized

n Fig. 3 . The eight scouting datasets were discarded for the fol-

owing experiments to avoid bias in the analysis. 

.2.3. Reference methods 

Vito’s results were compared to two standard personalization

ethods based on BOBYQA ( Powell, 2009 ), a widely-used gradient-

ree optimizer known for its robust performance and fast conver-

ence. The first approach, “BOBYQA simple”, mimicked the most

asic estimation setup, where only the minimum level of model

nd problem knowledge were assumed. The objective function was
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Fig. 6. Hyper-parameter scouting. Vito’s performance for varying number of representative states n S on eight scouting datasets. The solid and dashed curves represent 

success rate and average number of forward runs until convergence, respectively, aggregated over five personalization runs with varying training data. 

Fig. 7. Absolute errors over all patients after initialization with fixed parameter values (blue), after data-driven initialization for increasing amount of training data (white), 

and after full personalization with Vito (green). Data-driven initialization yielded significantly reduced errors if sufficient training data were available ( > 10 2 ) compared to 

initialization with fixed values. Full personalization further reduced the errors by a significant margin. The red bar and the box edges indicate the median absolute error, and 

the 25 and 75 percentiles, respectively. Left : QRS duration errors. Right : Electrical axis errors. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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the sum of absolute QRSd and EA errors: 
∑ n c 

i =1 
| c i | . It was min-

imized in a single optimizer run where all three parameters in

x were tuned simultaneously. The algorithm terminated once all

convergence criteria ψ were satisfied (success) or if the number

of forward model evaluations exceeded 100 (failure). The second

approach, “BOBYQA cascade”, implemented an advanced estima-

tor with strong focus on robustness, which computed the opti-

mum parameters in a multi-step iterative fashion. It is based on

Seegerer et al. (2015) , where tedious manual algorithm and cost

function tuning was performed on a subset of the data used in this

manuscript. In a first step, the myocardial conduction velocity was

tuned to yield good match between computed and measured QRS

duration. Second, left and right endocardial conduction velocities

were optimized to minimize electrical axis error. Both steps were

repeated until all parameter estimates were stable. 

To remove bias towards the choice of initial parameter val-

ues, for each of the two methods all datasets were personalized

100 times with different random initializations within the range of

physiologically plausible values �. The differences in performance

were striking: only by changing the initialization, the number of

successfully personalized cases varied from 13 to 37 for BOBYQA

simple, and from 31 to 51 for BOBYQA cascade (variability of more

than 25% of the total number of patients). These results highlight

the non-convexity of the cost function to minimize. 

3.2.4. Full personalization performance 

First, Vito’s overall performance was evaluated. The full per-

sonalization pipeline consisting in off-line learning, initialization,

and on-line personalization was run on all patients with leave-

one-patient-out cross-validation using 10 0 0 training episodes

( n samples = 10 0 0 · n e -steps = 10 5 transition samples) per patient. The

maximum number of iterations was set to 100. The green box plots

in the two panels of Fig. 7 summarize the results. 
The mean absolute errors were 4.1 ± 5.6 ms and 12.4 ± 13.3 °
n terms of QRSd and EA, respectively, a significant improvement

ver the residual error after initialization. In comparison to the ref-

rence methods, the best BOBYQA simple run yielded absolute er-

ors of 4.4 ± 10.8 ms QRSd and 15.5 ± 18.6 ° EA on average, and the

est BOBYQA cascade run 0.1 ± 0.2 ms QRSd and 11.2 ± 15.8 ° EA,

espectively. Thus, in terms of EA error all three methods yielded

omparable performance, and while BOBYQA simple and Vito per-

ormed similarly in terms of QRSd, BOBYQA cascade outperformed

oth in this regard. However, considering success rates, i.e. success-

ully personalized patients according to the defined convergence

riteria ( ψ) divided by total number of patients, both the perfor-

ance of Vito (67%) and BOBYQA cascade (68%) were equivalent,

hile BOBYQA simple reached only 49% or less. In terms of run-

ime, i.e. average number of forward model runs until convergence,

ito (31.8) almost reached the high efficiency of BOBYQA simple

best: 20.1 iterations) and clearly outperformed BOBYQA cascade

best: 86.6 iterations), which means Vito was ≈ 2.5 × faster. 

.2.5. Residual error after initialization 

A major advantage over standard methods such as the two

OBYQA approaches is Vito’s automated, data-driven initializa-

ion method ( Section 2.6.1 ), which eliminates the need for user-

rovided initial parameter values. To evaluate the utility of this

tep, personalization using Vito was stopped directly after initial-

zation (the most likely x 0 was used) and the errors in terms

f QRSd and EA resulting from a forward model run f with the

omputed initial parameter values were quantified. This experi-

ent was repeated for increasing number of transition samples

er dataset: n samples = 10 0 . . . 1 0 5 , and the results were compared

o the error after initialization when fixed initial values were used

the initialization of the best performing BOBYQA experiment was

sed). As one can see from Fig. 7 , with increasing amount of
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Fig. 8. EP personalization results. Personalization success rate in blue and average number of iterations in red. Left : Vito’s performance for increasing number of training 

transition samples per dataset. Each dot represents results from one experiment (cross-validated personalization of all 75 datasets), solid/dashed line is low-pass filtered 

mean, shaded areas represent 0.5 × and 1 × standard deviation. Right : Performance of both reference methods. Each shade represents 10% of the results, sorted by perfor- 

mance. 
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Table 1 

WBC parameters x , their default values and domain �. The last column denotes the 

experiment setups in which a parameter was personalized (e.g. “5”: parameter was 

among the estimated parameters in 5p experiment). Default values were used in 

experiments where the respective parameters were not personalized. 

x Default value � Setups 

Initial volume 400 mL [20 0; 10 0 0] mL 6, 5, 3, 2 

LV max. elastance 2 .4 mmHg/mL [0 .2; 5] mmHg/mL 6, 5, 3, 2 

Aortic resistance 1100 g/(cm 

4 s) [50 0; 250 0] g/(cm 

4 s) 6, 5, 3 

Aortic compliance 1 .4 · 10 9 cm 

4 s 2 /g [0 .5; 6] · 10 9 cm 

4 s 2 /g 6, 5 

Dead volume 10 mL [ −50 ; 500] mL 6, 5 

Time to E max 300 ms [10 0; 60 0] ms 6 
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raining data both errors decreased notably. As few as 10 2 tran-

itions per dataset already provided more accurate initialization

han the best tested fixed initial values. Thus, not only does this

rocedure simplify the setup of Vito for new problems (no user-

efined initialization needed), this experiment showed that it can

educe initial errors by a large margin, even when only few train-

ng transitions were available. It should be noted that Vito further

mproves the model fit in its normal operating mode (continue

ersonalization after initialization), as shown in the previous ex-

eriment. 

.2.6. Convergence analysis 

An important question in any RL application relates to the

mount of training needed until convergence of the artificial

gent’s behavior. For Vito in particular, this translates to the

mount of transition samples required to accurately estimate the

DP transition function T to compute a solid policy on the one

and, and to have enough training data for reliable parameter ini-

ialization on the other hand. To this end, Vito’s overall perfor-

ance (off-line learning, initialization, personalization) was evalu-

ted for varying number of training transition samples per dataset.

s one can see from the results in Fig. 8 , with increasing amount

f training data the performance increased, suggesting that the

earning process was working properly. Even with relatively limited

raining data of only n samples = 10 2 samples per patient, Vito out-

erformed the best version of BOBYQA simple (49% success rate).

tarting from n samples ≈ 30 0 0, a plateau at ≈ 66% success rate was

eached, which remained approximately constant until the maxi-

um tested number of samples. This was almost on par with the

op BOBYQA cascade performance (68% success rate). Also the run-

ime performance increased with more training data. For instance,

ito’s average number of iterations was 36.2 at 10 3 samples, 31.5

t 10 4 samples, or 31.8 at 10 5 samples. 

These results suggested that not only Vito can achieve simi-

ar performance as an advanced, manually engineered method, but

lso the number of required training samples was not excessive. In

act, a rather limited and thus well manageable amount of data,

hich can be computed in a reasonable time-frame, sufficed. 

.3. Personalization of whole-body circulation model 

Next, Vito was asked to personalize a lumped-parameter whole-

ody circulation (WBC) model from pressure catheterization and

olume data. A subset of n datasets = 56 patients from the EP exper-

ments were used for experimentation. The discrepancy was due to

issing catheterization data for some patients, which was required

or WBC personalization only. For each patient, the bi-ventricular

natomy was segmented and tracked from short-axis cine MRI

tacks throughout one full heart cycle using shape-constraints,
earned motion models and diffeomorphic registration ( Wang et al.,

013 ). From the time-varying endocardial meshes, ventricular vol-

me curves were derived. Manual editing was performed when-

ver necessary. 

.3.1. Forward model description 

The WBC model to personalize was based on Itu et al. (2014) . It

ontained a heart model (left ventricle (LV) and atrium, right ven-

ricle and atrium, valves), the systemic circulation (arteries, cap-

llaries, veins) and the pulmonary circulation (arteries, capillaries,

eins). Time-varying elastance models were used for all four cham-

ers of the heart. The valves were modeled through a resistance

nd an inertance. A three-element Windkessel model was used

or the systemic and pulmonary arterial circulation, while a two-

lement Windkessel model was used for the systemic and pul-

onary venous circulation. We refer the reader to Itu et al. (2014) ;

eumann et al. (2015) ; Westerhof et al. (1971) for more details.

ersonalization was performed with respect to the patient’s heart

ate as measured during catheterization. 

The goal of this experiment was to compare Vito’s personaliza-

ion performance for the systemic part of the model in setups with

ncreasing number of parameters to tune and objectives to match.

o this end, Vito was employed on setups with two to six parame-

ers (2p, 3p, 5p, 6p): initial blood volume, LV maximum elastance,

ime until maximum elastance is reached, total aortic resistance

nd compliance, and LV dead volume. The reference values δ to

efine Vito’s allowed actions A were set to .5% of the admissi-

le parameter range � for each individual parameter, see Table 1

or details. The personalization objectives were MRI-derived end-

iastolic and end-systolic LV volume, ejection time (time dura-

ion during which the aortic valve is open and blood is ejected),

nd peak-systolic, end-diastolic, and mean aortic blood pressures

s measured during cardiac catheterization, see Fig. 9 . To account

or measurement noise, personalization was considered successful

f the misfits per objective were below acceptable threshold values

 as listed in Table 2 . 
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Fig. 9. Goodness of fit in terms of time-varying LV volume and aortic pressure for Vito personalizing an example patient based on the different WBC setups. The added 

objectives per setup are highlighted in the respective column. With increasing number of parameters and objectives Vito manages to improve the fit between model and 

measurements. 

Table 2 

WBC objectives c , their convergence criteria ψ and range of measured values 

in the patient population used for experimentation. 

c ψ Measured range Setups 

End-diastolic LV volume 20 mL [129; 647] mL 6, 5, 3, 2 

End-systolic LV volume 20 mL [63; 529] mL 6, 5, 3, 2 

Mean aortic pressure 10 mmHg [68; 121] mmHg 6, 5, 3 

Peak-systolic aortic pressure 10 mmHg [83; 182] mmHg 6, 5 

End-diastolic aortic pressure 10 mmHg [48; 99] mmHg 6, 5 

Ejection time 50 ms [115; 514] ms 6 
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3.3.2. Number of representative states 

Along the same lines as Section 3.2.2 , the hyper-parameter for

state-space quantization was tuned based on the eight scouting pa-

tients. The larger the dimensionality of the state-space, the more

representative states were needed to yield good performance. In

particular, for the different WBC setups, the numbers of represen-

tative states ( n S ) yielding the best scouting performance were 70,

150, 40 0 and 60 0 for the 2p, 3p, 5p and 6p setup, respectively. The

scouting datasets were discarded for the following experiments. 

3.3.3. Reference method 

A gradient-free optimizer ( Lagarias et al., 1998 ) based on the

simplex method was used to benchmark Vito. The objective func-

tion was the sum of squared differences between computed and

measured values, weighted by the inverse of the convergence cri-

teria to counter the different ranges of objective values (e.g. due to

different types of measurements and different units): ‖ c ‖ ψ 

( Eq. 7 ).

Compared to non-normalized optimization, the algorithm con-

verged up to 20% faster and success rates increased by up to

8% under otherwise identical conditions. Personalization was ter-

minated once all convergence criteria were satisfied (success), or

when the maximum number of iterations was reached (failure). To

account for the increasing complexity of optimization with increas-

ing number of parameters n x , the maximum number of iterations

was set to 50 · n x for the different setups. 

As one can see from Fig. 10 , right panels, with increasing num-

ber of parameters to be estimated, the performance in terms of

success rate and number of forward model runs decreased slightly.

This is expected as the problem becomes harder. To suppress

bias originating from (potentially poor) initialization, the reference
ethod was run 100 times per setup (as in EP experiments), each

ime with a different, randomly generated set of initial parameter

alues. The individual performances varied significantly for all se-

ups. 

.3.4. Convergence analysis 

For each WBC setup the full Vito personalization pipeline was

valuated for increasing training data ( n samples = 10 0 . . . 1 0 5 ) using

eave-one-patient-out cross-validation. The same iteration limits as

or the reference method were used. The results are presented

n Fig. 10 , left panels. With increasing data, Vito’s performance,

oth in terms of success rate and run-time (iterations until conver-

ence), increased steadily until reaching a plateau. As one would

xpect, the more complex the problem, i.e. the more parameters

nd objectives involved in the personalization, the more training

ata was needed to reach the same level of performance. For in-

tance, Vito reached 80% success rate with less than n samples = 50

raining samples per dataset in the 2p setup, whereas almost 90 ×
s many samples were required to achieve the same performance

n the 6p setup. 

Compared to the reference method, given enough training

ata, Vito reached equivalent or better success rates (e.g. up to

1% higher success rate for 6p) while significantly outperforming

he reference method in terms of run-time performance. In the

ost basic setup (2p), if n samples ≥ 10 3 , Vito converged after 3.0 it-

rations on average, while the best reference method run required

2.6 iterations on average, i.e. Vito was seven times faster. For the

ore complex setups (3p, 5p, 6p), the speed-up was not as dras-

ic. Yet, in all cases Vito outperformed even the best run of the

eference method by a factor of 1.8 or larger. 

. Conclusion 

.1. Summary and discussion 

In this manuscript, a novel personalization approach called

ito has been presented. To our knowledge, it is the first time

hat biophysical model personalization is addressed using artificial

ntelligence concepts. Inspired by how humans approach the per-

onalization problem, Vito first learns the characteristics of the

omputational model under consideration using a data-driven

pproach. This knowledge is then utilized to learn how to
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Fig. 10. WBC model personalization results (top: success rate, bottom: average number of forward model runs until convergence) for various estimation setups (different 

colors), see text for details. Left : Vito’s performance for increasing number of training transition samples per dataset. Each dot represents results from one experiment (cross- 

validated personalization of all 48 datasets), solid/dashed lines are low-pass filtered mean, shaded areas represent 0.5 × and 1 × standard deviation. Right : Performance 

of reference method. Each shade represents 10% of the results, sorted by performance; darkest shade: best 10%. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Table 3 

Applications considered in this manuscript described in terms of the 

number of parameters ( n x ), objectives ( n c ) and datasets ( n datasets ) used 

for experimentation (in brackets: excluding scouting patients, if ap- 

plicable); and Vito’s hyper-parameters: the number of representative 

MDP states ( n S ) and the number of actions per parameter ( n A / n x ). 

The last column ( n plateau ) denotes the approximate number of samples 

needed to reach the performance “plateau” (see convergence analyses 

in Section 3.2.6 and Section 3.3.4 ). 

Application n x n c n datasets n S n A / n x n plateau 

Rosenbrock 2 2 100 100 6 n/a 

Rosenbrock ext. 2 2 100 100 8 n/a 

EP 3 2 83 (75) 120 6 3 0 0 0 

WBC 2p 2 2 56 (48) 70 6 450 

WBC 3p 3 3 56 (48) 150 6 2 0 0 0 

WBC 5p 5 5 56 (48) 400 6 3 500 

WBC 6p 6 6 56 (48) 600 6 20 0 0 0 
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1 Potential solution non-existence may be due to possibly invalid assumptions of 

the employed EP model for patients with complex pathologies. 
ersonalize the model using reinforcement learning. Vito is generic

n the sense that it requires only minimal and intuitive user in-

ut (parameter ranges, authorized actions, number of representa-

ive states) to learn by itself how to personalize a model. 

Vito was applied to a synthetic scenario and to two challeng-

ng personalization tasks in cardiac computational modeling. The

roblem setups and hyper-parameter configurations are listed in

able 3 . In most setups the majority of hyper-parameters were

dentical and only few ( n S ) required manual tuning, suggesting

ood generalization properties of Vito. Another key result was that

ito was up to 11% more robust (higher success rates) compared to

tandard personalization methods. Vito’s ability to generalize the

nowledge obtained from a set of training patients to personal-

ze unseen patients was shown as all experiments reported in this

anuscript were based on cross-validation. Furthermore, Vito’s ro-

ustness against training patients for whom we could not find a

olution was tested. In particular, for about 20% of the patients, in

one of the electrophysiology experiments in Section 3.2 any per-

onalization (neither Vito nor the reference methods) could pro-
uce a result that satisfied all convergence criteria. Hence, for

ome patients no solution may exist under the given electrophys-

ology model configuration. 1 Still, all patients were used to train

ito, and surprisingly Vito was able to achieve equivalent success

ate as the manually engineered personalization approach for car-

iac EP. 

Generating training data could be considered Vito’s computa-

ional bottleneck. However, training is i) performed off-line and

ne-time only, and ii) it is independent for each training episode

nd each patient. Therefore, large computing clusters could be em-

loyed to perform rapid training by parallelizing this phase. On-

ine personalization, on the contrary, is not parallelizable in its cur-

ent form: the parameters for each forward model run depend on

he outcome of the previous iteration. Since the forward compu-

ations are the same for every “standard” personalization method

not including surrogate-based approaches), the number of forward

odel runs until convergence was used for benchmarking: Vito

as up to seven times faster compared to the reference methods.

he on-line overhead introduced by Vito (convert data into an MDP

tate, then query policy) is negligible. 

As such, Vito could become a unified framework for personal-

zation of any computational physiological model, potentially elim-

nating the need for an expert operator with in-depth knowledge

o design and engineer complex optimization procedures. 

.2. Challenges and outlook 

Important challenges still remain, such as the incorporation of

ontinuous actions, the definition of states and their quantization.

n this work we propose a data-driven state-space quantization

trategy. Contrary to Neumann et al. (2015) , where a threshold-

ased state-quantization involving several manually tuned thresh-

ld values ( Fig. 3 ) was employed, the new method is based on a

ingle hyper-parameter only: the number of representative states.
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Fig. A.11. Preprocessing of k -means input data to enforce the success state ˆ s . Left : Continuous state-space with observed objective vectors c (blue points). The points 

with dashed outline will be canceled out. Right : Delineation of ˆ s in green, enforced by inserted vectors (green / red points) with large weights. See text for details. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Although it simplifies the setup of Vito, this quantization strat-

egy may still not be optimal, especially if only little training data

is available. Therefore, advanced approaches for continuous rein-

forcement learning with value function approximation ( Sutton and

Barto, 1998; Mnih et al., 2015 ) could be integrated to fully circum-

vent quantization issues. 

At the same time, such methods could improve Vito’s scala-

bility towards high-dimensional estimation tasks. In this work we

showed that Vito can be applied to typical problems emerging

in cardiac modeling, which could be described as medium-scale

problems with moderate number of parameters to personalize

and objectives to match. In unreported experiments involving > 10

parameters, however, Vito could no longer reach satisfactory per-

formance, which is likely due to the steeply increasing number of

transition samples needed to sample the continuous state-space of

increasing dimensionality sufficiently during training. The trends in

Section 3.3 confirm the need for more data. In the future, experi-

ence replay ( Lin, 1993; Adam et al., 2012 ) or similar techniques

could be employed to increase training data efficiency. Further-

more, massively parallel approaches ( Nair et al., 2015 ) are starting

to emerge, opening up new avenues for large-scale reinforcement

learning. 

Although the employed reinforcement learning techniques guar-

antee convergence to an optimal policy, the computed personal-

ization strategy may not be optimal for the model under consid-

eration as the environment is only partially observable and the

personalization problem ill-posed: there is no guarantee for solu-

tion existence or uniqueness. Yet, we showed that Vito can solve

personalization more robustly and more effectively than standard

methods under the same conditions. However, a theoretical analy-

sis in terms of convergence guarantees and general stability of the

method would be desirable, in particular with regards to the pro-

posed re-initialization strategy. As a first step towards this goal,

in preliminary (unreported) experiments on the EP and the WBC

model we observed that the number of patients which do not re-

quire re-initialization (due to oscillation) to converge to a success-

ful personalization consistently increased with increasing training

data. 

The data-driven initialization proposed in this work simpli-

fies Vito’s setup by eliminating the need for user-provided ini-

tialization. However, currently there is no guarantee that the

first initialization candidate is the one that will yield the “best”

personalization outcome. Therefore, one could investigate the ben-

efits of a fuzzy personalization scheme: many personalization pro-

cesses could be run in parallel starting from the different initial-

ization candidates. Parameter uncertainty quantification techniques

( Neumann et al., 2014a ) could then be applied to compute a prob-
bility density function over the space of model parameters. Such

pproaches aim to gather complete information about the solution-

pace, which can be used to study solution uniqueness and other

nteresting properties. 

An important characteristic of any personalization algorithm is

ts stability against small variations of the measured data. A pre-

iminary experiment indicated good stability of Vito: the com-

uted parameters from several personalization runs, each involv-

ng small random perturbations of the measurements, were con-

istent. Yet in a small group of patients some parameter variability

as observed, however, it was below the variability of the refer-

nce method under the same conditions. To what extent certain

egrees of variability will impact other properties of the personal-

zed model such as its predictive power will be subject of future

esearch. We will also investigate strategies to improve Vito’s sta-

ility further. For instance, the granularity of the state-space could

rovide some flexibility to tune the stability: less representative

tates means a larger region in state space per state, thus small

ariations in the measured data might have less impact on per-

onalization outcome. However, this could in turn have undesirable

ffects on other properties of Vito such as success rate or conver-

ence speed (see Section 3.2.2 ). 

Beyond these challenges, Vito showed promising performance

nd versatility, making it a first step towards an automated, self-

aught model personalization agent. The next step will be to in-

estigate the predictive power of the personalized models, for in-

tance for predicting acute or long-term response in cardiac resyn-

hronization therapy ( Sermesant et al., 2009; Kayvanpour et al.,

015 ). 

ppendix A. Data-driven state-space quantization 

This section describes the details of the proposed data-driven

uantization approach to define the set of representative MDP

tates S (see Section 2.4 ). It is based on clustering, in particular

n the weighted k -means algorithm described in Arthur and Vas-

ilvitskii (2007) . To this end, all objective vectors C = { c ∈ E} are

xtracted from the training data ( Section 2.3 ). C ⊂ R 

n c represents

ll observed “continuous states”. The goal is to convert C into the

nite set of representative MDP states S while taking into account

hat Vito relies on a special “success state” ˆ s encoding personaliza-

ion success. 

The success state ˆ s does not depend on the data, but on the

aximum acceptable misfit ψ. In particular, since personalization

uccess implies that all objectives are met, ˆ s should approximate

 hyperrectangle centered at 0 and bounded at ±ψ, i.e. a small
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egion in R 

n c where ∀ i : | c i | < ψ i . To enforce ˆ s , the input to

eighted k -means is preprocessed as follows. 

First, the 0 -vector is inserted into C, along with two vectors per

imension i , where all components are zero, except the i th com-

onent, which is set to ± 2 ψ i . These 2 n c + 1 inserted vectors are

ater converted into centroids of representative states to delineate

he desired hyperrectangle for ˆ s as illustrated in Fig. A.11 . 

Furthermore, to avoid malformation of ˆ s , no other representa-

ive state should emerge within that region. Therefore, all vectors

 ∈ C, where ∀ i : | c i | < 2 ψ i (except for the inserted vectors) are

anceled out by assigning zero weight, while the inserted vectors

re assigned large weights → ∞ and all remaining vectors weights

f 1. 

Next, k -means is initialized by placing a subset of the initial

entroids at the locations of the inserted states, and the remain-

ng n S − 2 n c − 1 centroids at random vectors in C. Both the large

eight and the custom initialization enforce the algorithm to con-

erge to a solution where one cluster centroid is located at each

nserted vector, while the other centroids are distributed according

o the training data. To ensure equal contribution of all objectives

cancel out different units, etc.), similarity is defined relative to the

nverse of the user-defined convergence criteria ( Eq. 7 ). 

Finally, after k -means converged, the resulting centroids, de-

oted ξs , are used to delineate the region in R 

n c assigned to a rep-

esentative state s . 

ppendix B. Data-driven initialization 

This section describes the details of the proposed data-driven

nitialization approach to compute a list of candidate initialization

arameter vectors X 0 = (x ′ 0 , x ′′ 0 , . . . ) for a new patient p based on

he patient’s measurements z p and the training database E (see

ection 2.6.1 ). 

First, all model states are extracted from the training database:

= { y ∈ E} . Next, Y is fed to a clustering algorithm (e.g. k -means).

s in Appendix A , the distance measure is defined relative to the

nverse of the convergence criteria ( Eq. 7 ). The output is a set of

entroids (for simplicity, in this work the number of centroids was

et to n S ), and each vector is assigned to one cluster based on

ts closest centroid. Let Y p ⊆Y denote the members of the cluster

hose centroid is closest to z p and 
p = { x ∈ E | f (x ) ∈ ϒp } the

et of corresponding model parameters. For each cluster, an ap-

roximation of the likelihood over the generating parameters is

omputed in terms of a probability density function. In this work

 Gaussian mixture model is assumed: 

MM p (x ) = 

M ∑ 

m =1 

νm 

N (x ;μm 

, �m 

) . (B.1)

he parameter vectors in 
p are treated as random samples drawn

rom GMM p . Its properties, namely the number of mixture com-

onents M , their weights νm 

, and their means μm 

and covariance

atrices �m 

, are estimated from these samples using a multi-

ariate kernel density estimator with automated kernel bandwidth

stimation, see Kristan et al. (2011) for more details. Finally, the

 estimated means are selected as initialization candidates and

tored in a list X 0 = ( μm 

′ , μm 

′′ , . . . ) . The elements of X 0 are sorted

n descending order according to their corresponding νm 

-values to

rioritize more likely initializations: μm 

′ is the mean with m 

′ =
rg max m 

νm 

. 
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