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Abstract. Aortic valve disease is an important cardio-vascular disorder,
which affects 2.5% of the global population and often requires elaborate
clinical management. Experts agree that visual and quantitative evalu-
ation of the valve, crucial throughout the clinical workflow, is currently
limited to 2D imaging which can potentially yield inaccurate measure-
ments. In this paper, we propose a novel approach for morphological
and functional quantification of the aortic valve based on a 4D model
estimated from computed tomography data. A physiological model of
the aortic valve, capable to express large shape variations, is generated
using parametric splines together with anatomically-driven topological
and geometrical constraints. Recent advances in discriminative learning
and incremental searching methods allow rapid estimation of the model
parameters from 4D Cardiac CT specifically for each patient. The pro-
posed approach enables precise valve evaluation with model-based dy-
namic measurements and advanced visualization. Extensive experiments
and initial clinical validation demonstrate the efficiency and accuracy of
the proposed approach. To the best of our knowledge this is the first
time such a patient specific 4D aortic valve model is proposed.

1 Introduction
Aortic valve disease represents the most common valvular disease in developed
countries [1], and shows the second highest incidence among congenital valvular
defects [2]. Although, aortic root preserving surgery [3] along with minimally
invasive procedures are emerging, the management of patient with valvular heart
disease (VHD) has remained challenging. Precise knowledge and reliable display
of the four-dimensional valve characteristics are requested by clinicians.

To date, most data on geometry and dynamics were obtained by experimental
studies on explanted valves or using animal models [4], with small numbers
of cases across publications. Standard dimensions of the aortic root are given
in literature, though considerable variations in the geometry is recognized [5].
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Fig. 1. (a) A generic aortic valve model in perspective view. Reproduced with permis-
sion of the author and the European Association for Cardio-Thoracic Surgery from:
Anderson RH (doi:10.1510/mmcts.2006.002527). (b) The proposed aortic valve model
in perspective view, where u and v are the circumferential and height parametric di-
rection, respectively, of the root and leaflets.

Quantitative and visual evaluation methods are limited to 2D images and are
potentially affected by measurement inaccuracies [6].

Computed tomography is a rapidly evolving modality for non-invasive imag-
ing of the heart which enables dynamic four-dimensional evaluation of cardiac
structures throughout the cardiac cycle. However, quantification of the aortic
valve is impaired by the need to translate the four-dimensional data set into
a set of 2D planes in order to obtain measurements. This gives potentially er-
roneous results for the curved anatomy of the basal aorta. A four dimensional
model derived from CT data sets offers the unique possibility to non-invasively
visualize and quantify the dynamics of the human aortic root and leaflets in
functional and diseased valves.

Existent valve models presented in the literature [7, 8] are either used for
hemodynamic studies or for analysis of various prosthetic valves. Although some
of them are generated from volumetric data, these models are generic and obvi-
ously not applicable for the evaluation of individual patients.

In this paper we introduce a new modeling framework for the aortic valve
from 4D cardiac CT data. A dynamic model of the valve is constructed from
anatomic structures together with physiology driven geometrical and topological
constraints (Section 2.1). The patient specific parameters of the model are esti-
mated from CT data by combining learning-based technologies into a three-stage,
coarse-to-fine parameter estimation algorithm (Section 2.2): landmark detection,
full model fitting and model dynamics estimation.

The estimated model enables for the first time precise morphological and
functional quantification as well as enhanced visualization of the aortic valve.
This novel model-based evaluation paradigm has the potential to significantly
advance the management of valvular heart disease.

Extensive experiments on 37 patients with various valvular disorders demon-
strate the accuracy and speed of the proposed model estimation algorithm (Sec-
tion 3.1). Initial clinical validation on various functional and pathological valves
shows a strong correlation among a proposed set of model-based measurements,
manually performed measurements and previously reported aortic valve dimen-
sions (Section 3.2).



2 Physiological Valve Modeling
The morphology and function of the aortic valve is very complex, which is un-
derlined by the lack of consensus regarding its optimal physiological description
[9]. The central anatomical structures of the aortic valve are the leaflets and the
root. Its function is to regulate the blood flow between the left ventricle and
aorta.

2.1 Model Representation

We propose a physiology driven parametric 4D model capable to express a large
spectrum of morphological and pathological variations of the aortic valve. A
set of well-defined landmarks, which includes hinges, commissures, leaflet tips
and coronary ostiums, describe key anatomical locations of the valve (see Fig.
1(a)). The aortic root and lefleats form the central anatomic structures and their
geometries are represented by Non uniform rational B-splines (NURBS), which
is the de facto standard in computational modeling. These components together
with topological and geometrical constraints define a physiologically compliant
model of the aortic valve, capable to implicitly handle bicuspid malformations.

The aortic root connects the left ventricular outflow tract to the ascending
aorta and provides the supporting structures for the leaflets. This is represented
by a NURBS surface Croot(u, v) closed in the u parametric direction and can
be imagined as a deformed cylinder constrained by the hinge, commissure and
ostium points:
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Ni,d(u) and Nj,e(u) are the dth and eth degree B-splines basis functions de-
fined on the non-periodic knot vector U and V , respectively. The root surface
Croot passes through the hinges (Lr
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marks at parametric location (uh
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comprehensive description of NURBS is given in [10].
The three valvular leaflets, expressed as NURBS paraboloids, are fixed to the

root on an attachment crown delineated by the hinges and commissures, while
the remaining free edge of the leaflets is constrained by the corresponding tip
point. These open and close during the cardiac cycle allowing one way blood
flow during systole, from the left ventricle to the aorta:
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It is straightforward within the NURBS framework to extend the above pre-
sented 3D model to a dynamic model (4D) using the tensor product, which
introduces a temporal parametric direction t to the model representation [10].

2.2 Model Estimation

The parameters of the valve model proposed in section 2.1 are estimated for each
patient from 4D cardiac CT data. A specific instance of the model is exactly de-
termined by the landmarks and NURBS control points in a four-dimensional
Euclidean space (3D+time), which cumulates into 3T (11 + 300) parameters5.
Due the high dimension of the parameter vector, direct estimation in the orig-
inal space is very difficult. We propose a three-step approach to estimate the
parameters of the dynamic valve model, which are: landmarks detection, full
model fitting and model dynamics estimation.

Landmark Detection. Recent advances in discriminative learning and incremen-
tal searching techniques are applied to automatically determine the landmarks
locations (Lr

h, Lr
c , Lr

o and Lr
t ) from an input volume. A training set, which con-

tains positive and negative samples of the landmarks positions, is created from
a manually annotated database. We train a discriminative classifier H(x, y, z)
based on the Probabilistic Boosting Tree (PBT) [11], which learns the target
distribution by exploiting a divide-and-conquer strategy:

p(Li|xs, ys, zs) = Hi(xs, ys, zs), xs, ys, zs ∈ Di (3)

where p(Li|xs, ys, zs) is the probability of landmark Li at location (xs, ys, zs),
Hi the strong classifier trained for Li and Di the search domain obtain from
the training set. The detection is performed in a coarse-to-fine manner as well
as in incrementally increasing parameter spaces similar to the marginal space
learning (MSL) [12] concept.

A thin-plate-spline (TPS) transformation [13, 14] is computed from the de-
tected set of corresponding points, K =

{
(Lm

i , LI
i ), Lm

i ∈M,LI
i ∈ I, 0 < i ≤ N

}
,

which maps each control point of priorly computed mean shape M at the corre-
sponding location in the image I and provides an initial model estimation.

5 T represents the number of discrete samples in the time dimension (10 for a regular
4D cardiac CT acquisitions), 11 and 300 the number of landmarks and control points,
respectively.



(a) End-Diastole (b) (c) (d) End-Systole (e)
Fig. 2. (a-e) Five frames of the dynamic valve model obtained from a CT sequence.

Full Model Fitting. The initial estimation obtained through landmark detec-
tion and TPS transformation provides a quite accurate global fitting of the
model, however it requires further local processing for precise object delineation.
A boundary detector is trained using the PBT algorithm in combination with
steerable features, proposed in [12]. This is applied locally at a set of discrete
boundary locations and is used to evolve the shape towards high probability
responses of the boundary detector. The final estimation is obtained by fitting
the parametric model to the refined samples by solving a linear least squares
problem [15].

Model Dynamics Estimation. The estimation of the dynamic valve model fol-
lows a physiology-driven strategy and is more accurate and efficient compared
to a sequential computation of the input sequence. Parameter estimation is ini-
tially performed for the dominant shapes observed in the end-diastolic (valve is
completely closed) and end-systolic (valve is completely opened) cardiac phases,
according to the algorithm described above. The estimation for the remaining
frames exploits a prior model constructed as a linear combination of the two
reference shapes, leading to a significant performance boost. Fig. 2 illustrates
the dynamic model of the aortic valve estimated from a CT cardiac sequence.

3 Results
3.1 Results on Valve Model Estimation

We demonstrate the performance of the proposed algorithm on 37 4D cardiac
CT data set, which consist of 364 CT volumes. The scans are acquired from
different patients with various cardiovascular diseases using heterogeneous pro-
tocols, resulting in significant resolution and capture range variation (80 to 350
slices with sizes from 512x 512 to 153x153 pixels and resolution from 0.28 mm
to 2.0 mm). Each volume in the data set is associated to an annotation, which
was manually generated and is considered to be the ground truth. Three-fold
cross validation is performed in order to evaluate our algorithm.

Performance of Landmark Detection The landmark detection is evaluated by
the Euclidean distance between the ground truth and detected positions. Ini-
tially, the detection is performed in low-resolution images and generates a set of
position hypotheses for each landmark. Fig. 3(a) shows the error of the most ac-
curate hypothesis, averaged over all landmarks, with respect to the cardinality of
the hypotheses set. An optimal trade-of between speed and accuracy is achieved
by keeping 100 candidates with an error of 1.59 mm. Detection is refined in
high resolution images (1mm), which enables 10% increase in accuracy for 30%
hypothesis. Averaging over the candidates set results in the final detection error
of 2.28 mm.
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Fig. 3. (a) The detection error for the landmarks with respect to the cardinality of the
candidates set. (b) The error curve for model estimation with respect to the number
of samples. (c-e) Model estimation results in fused visualization.

Performance of Model Estimation The model estimation accuracy is evaluated
by the point-to-mesh measurement, which computes the average distance be-
tween sample pairs of the detected and ground-truth model. The accuracy of
the initial model estimation relative to the rendering and computation resolution
used within the system (2500 samples) is on average 2.00 mm. The model re-
finement improves the estimation accuracy by nearly 40% (see Fig. 3(b)), equiv-
alent to an error of 1.33 mm. The computation time of the proposed method
was evaluated on a standard desktop machine (3.0 GHz CPU, 2.0 GB RAM).
The estimation of the full dynamic valve model from a regular CT sequence (10
volumes), is computed in 21.3 seconds with 70% of the time required for the
landmark detection.

3.2 Results on Clinical Valve Evaluation

We demonstrate the quantitative and visual capabilities and underline the per-
formance of the proposed method by comparing a set of morphological and
dynamic model-based measurements to expert measurements and literature re-
ported valve dimensions. Evaluation is performed on CT images of healthy,
stenotic, dilated aorta and bicuspid valves, while the ground truth is provided
by measurements manually performed by a radiologist with five years of expe-
rience in cardiovascular imaging. Table 1 summarizes the evaluation results and
demonstrates the precision of the proposed model-based quantification method.

The root diameter, important in surgical treatment of dilated and stiff anatomies
[4] is computed at three levels: ventricular-arterial junction (VAJ), sinus of val-
salva (SV) and sinotubular junction (SJ). Severity assessment in patients with
degenerative aortic stenosis is supported through the aortic valve area (AVA)



VAJ (cm) SV (cm) STJ (cm) AVA (cm2) LCT (mm) RCT (mm) NCT (mm)

Mean 0.137 0.166 0.098 0.120 2.211 1.951 2.352

STD 0.017 0.043 0.029 0.380 0.866 0.936 1.162

Table 1. Model-based qunatification error with respect to expert measurements.

measurement [6]. The mean AVA derived from the model was 3.74±1.34cm2, cor-
relation with respect to manual planimetry r = 0.963 and p < 0.0001, and Bland-
Altman systematic bias 0.12± 0.38cm2. Left-coronary tip (LCT), non-coronary
tip (NCT) and right-coronary tip (RCT) orthogonal excursion is proposed for
the evaluation of valve’s function and motion characteristic after surgery. Mea-
surements variation in healthy and diseased valves is illustrated in Fig. 4.

(a) (b)

(c) (d)
Fig. 4. Advanced visualization of (a) calcified aortic valve in endoscopic view and (b)
bicuspid valve in long axis view. (c,d) Valve area and leaflet motion variation in different
pathologies.

Fused visualization of direct volume rendering (DVR) of the 4D CT dataset
and the estimated model provides further anatomical insight. Advanced tech-
niques [16] enable visualization via post color-attenuated transferfunctions [17]
of the aortic lumen from CTA and integration of the valve model geometry into
the DVR. Combination of CT data and model geometry can be directly used for
visual validation of the estimated parameters with respect to the anatomy and
visual quantification of pathological valves. For real-time 4D rendering of the
sequence we use GPU Raycasting to efficiently stream the volume and geometry
data to the graphics card. The combination of these techniques is capable of
rendering high quality images, at interactive frame rates (Fig. 4(a), 4(b)).

4 Discussion

This paper proposes a novel quantitative and visual evaluation approach of the
aortic valve, based on a dynamic model estimated from 4D CT sequences. A



robust and computationally efficient algorithm, which combines learning-based
technologies into a coarse-to-fine approach, was proposed for estimating a patient
specific valve model from imaging data. Automatic model-based measurements
provide a significant advance in morphological and functional clinical evaluation
of the aortic valve, currently limited to 2D imaging methods, operator-dependent
and potentially inaccurate measurements. Future research will include high-level
information provided by soft tissue composition and mechanical constrains, as
well as investigations for other modalities (e.g. Ultrasound and MRI).

References

1. Nkomo, V., Gardin, J., et al.: Burden of valvular heart diseases: a population-based
study. Lancet 368(10) (2006) 1005–1011

2. Hoffman, J., Kaplan, S.: The incidence of congenital heart disease. J Am Coll
Cardiol 39(12) (2002) 1890–1900

3. Yacoub, M.: Late results of a valve-preserving operation in patients with aneurysms
of the ascending aorta and root. J. Thorac. Cardiovasc. Surg. 115 (1998) 1080–90

4. Dagum, P., Green, G., et al.: Deformational dynamics of the aortic root: modes
and physiologic determinants. J. Thorac. Cardiovasc. Surg. 100(19) (1999) II54–62

5. Labrosse, M.: Geometric modeling of functional trileaflet aortic valves: develop-
ment and clinical applications. J Biomech 39(14) (2006) 2665–72

6. Vahanian, A., Baumgartner, H., et al.: Guidelines on the management of valvular
heart disease: The task force on the management of valvular heart disease of the
european society of cardiology). European heart journal 28(2) (2007) 230–268

7. Peskin, C.S., McQueen, D.M.: Fluid dynamics of the heart and its valves. In:
Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology.
Prentice-Hall, Englewood Cliffs, NJ, USA (1996) 309–337 H.G. Othmer and F.R.
Adler and M.A. Lewis and J.C. Dallon, Editors.

8. De Hart, J., Peters, G., et al.: A three-dimensional computational analysis of
fluidstructure interaction in the aortic valve. J. Biomechanics 36(1) (2002) 103–10

9. Anderson, R.: The surgical anatomy of the aortic root. Multimedia Manual of
Cardiothoracic Surgery (MMCTS) (2006) doi:10.1510/mmcts.2006.002527.

10. Piegl, L., Tiller, W.: The NURBS book. Springer-Verlag, London, UK (1995)
11. Tu, Z.: Probabilistic boosting-tree: Learning discriminative methods for classifica-

tion, recognition, and clustering. In: ICCV 2005. (2005) 1589–1596
12. Zheng, Y., Barbu, A., et al.: Fast automatic heart chamber segmentation from 3d

ct data using marginal space learning and steerable features. ICCV (2007)
13. Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la

flexion des plaques minces. RAIRO Analyse Numerique 10 (1976) 5–12
14. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of

deformations. IEEE PAMI 11(6) (1989) 567–585
15. DeBoor, H.: A Practical Guide to Splines. Springer, New York, NY, USA (1978)
16. Scharsach, H., Hadwiger, M., Neubauer, A., Wolfsberger, S., Buhler, K.: Per-

spective Isosurface and Direct Volume Rendering for Virtual Endoscopy Appli-
cations. Proceedings of Eurovis/IEEE-VGTC Symposium on Visualization 2006
(2006) 315–322

17. Zhang, Q., Eagleson, R., Peters, T.: Rapid Voxel Classification Methodology for In-
teractive 3D Medical Image Visualization. In: MICCAI 2007 Proceedings. Lecture
Notes in Computer Science, Springer (October 2007)


