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Abstract

Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure to treat severe

aortic valve stenosis. As an emerging imaging technique, C-arm CT plays a more and more important

role in TAVI on both pre-operative surgical planning (e.g., providing 3D valve measurements) and intra-

operative guidance (e.g., determining a proper C-arm angulation). Automatic aorta segmentation and

aortic valve landmark detection in a C-arm CT volume facilitate the seamless integration of C-arm

CT into the TAVI workflow and improve the patient care. In this paper, we present a part-based aorta

segmentation approach, which can handle structural variation of the aorta in case that the aortic arch and

descending aorta are missing in the volume. The whole aorta model is split into four parts: aortic root,

ascending aorta, aortic arch, and descending aorta. Discriminative learning is applied to train a detector

for each part separately to exploit the rich domain knowledge embedded in an expert-annotated dataset.

Eight important aortic valve landmarks (three hinges, three commissures, and two coronary ostia) are

also detected automatically with an efficient hierarchical approach. Our approach is robust under all kinds

of variations observed in a real clinical setting, including changes in the field-of-view, contrast agent

injection, scan timing, and aortic valve regurgitation. Taking about 1.1 seconds to process a volume, it is

also computationally efficient. Under the guidance of the automatically extracted patient-specific aorta

model, the physicians can properly determine the C-arm angulation and deploy the prosthetic valve.

Promising outcomes have been achieved in real clinical applications.

Index Terms

Aorta Segmentation, Aortic Valve Landmark Detection, C-arm CT, Transcatheter Aortic Valve

Implantation

I. INTRODUCTION

The open-heart aortic valve replacement is an effective method to treat severe aortic valve

disease. With 50,000 procedures performed annually, it is the most common valvular heart

surgery in the United States [1]. However, at least 30% of patients cannot tolerate the surgical

trauma due to the advanced age or the presence of various comorbidities [2]. Transcatheter aortic

valve implantation (TAVI) is an emerging, less invasive procedure to treat severe aortic valve

stenosis, where the prosthetic valve is inserted and deployed using a catheter through a small

puncture of the femoral artery (the transfemoral approach) or a small cut at the heart apex (the

transapical approach). After the first in-human TAVI case performed in 2002, the procedure has

been adopted rapidly, especially after the approval for commercial use in Europe in 2007, with
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Fig. 1. The anatomy of the aortic valve with aortic hinges indicated by red arrows, aortic commissures indicated by purple

arrows, and left/right coronary ostium indicated by the green/blue arrow, respectively. Note: The third aortic commissure is at

the back of the valve and blocked in this view.

more than 30,000 TAVI procedures performed in the world so far [3]. TAVI has already accounted

for more than 20% of aortic valve replacement procedures in Germany [4]. It is expected to

grow fast in the United States too after the recent approval for commercial use in November

2011. The recent randomized trails show that TAVI significantly reduces the mortality rate for a

patient who is too sick or weak to be a candidate for surgical valve replacement, compared to the

current standard medical therapy [2]. For a high-risk patient who can still tolerate the surgical

valve replacement, TAVI has comparable outcomes to the open-heart surgical procedure [5].

Before the surgery, several important parameters of the aortic valve (see Fig. 1 for the aortic

valve anatomy) need to be measured for surgical planning. For example, the distance between the

coronary ostia and the aortic valve hinge plane (the lowest level of the valve cusps) is a critical

parameter for patient selection since a short distance increases the risk of blocking coronary

circulation after valve deployment. The diameter of aortic valve annulus needs to be measured

accurately to select a prosthetic valve with an appropriate size. Fluoroscopy is currently the main

working-horse imaging modality for TAVI (see Fig. 2), where real-time images are captured on

a C-arm system to provide guidance to physicians [6]. The aortic root structure is normally
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(a) (b) (c)

Fig. 2. Transapical aortic valve implantation under X-ray guidance. (a) An angiographic C-arm system able to acquire

interventional 3D CT images in an operating room. (b) Contrast injection via a pigtail catheter (the white arrow) immediately

prior to valve (the red arrow) deployment. (c) Implanted valve.

indistinguishable from the background (Fig. 2c), therefore, whenever necessary, the contrast

agent is applied to temporarily enhance the valve structure (Fig. 2b) for a short period. However,

the contrast agent is toxic and its usage should be minimized. Overlaying a patient-specific aorta

model extracted from 3D images onto real-time fluoroscopy provides valuable visual guidance to

the physician. Computed tomography (CT) is often used to provide the necessary 3D geometric

measurements in pre-operative surgical planning. However, CT images are rarely used intra-

operatively during valve implantation because 2D/3D overlay (or registration) of data captured

from different imaging devices is quite difficult.

C-arm CT has recently emerged as a new imaging technique with the following advantages,

compared to conventional CT. Since both the 3D volume and 2D fluoroscopic images are

captured on the same device, overlay of the 3D patient-specific aorta model onto a 2D image is

straightforward and accurate (except for relatively small cardiac and respiratory motion). Comment 14Please

refer to Section V for more detail about the 2D/3D overlay of the aorta model. Therefore, besides

providing the 3D valve measurements as CT, C-arm CT can be easily integrated into the intra-

operative TAVI workflow to provide visual guidance. Furthermore, since C-arm CT is scanned

shortly before the valve deployment (instead of days before as conventional CT), it better reflects

the current state of the patient’s anatomy.

In this paper, we propose robust and efficient methods for automatic aorta segmentation and

aortic valve landmark detection in C-arm CT for TAVI, as shown in Fig. 3. Besides providing
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Aortic Valve Area = 453.79 mm2

Aortic Valve Diameter = 24.04 mm 
Ostia Distance = 20.62 mm 
Left Ostium-Hinge Distance = 9.46 mm 
Right Ostium-Hinge Distance = 13.23 mm

(a) (b) (c) (d)

Fig. 3. Applications of C-arm CT to transcatheter aortic valve implantation. (a) A C-arm CT volume. (b) Automatically

segmented aorta together with the detected valve landmarks. (c) 3D geometric measurements of the valve. (d) Overlay of the

segmented aorta onto a 2D fluoroscopic image for visual guidance during valve deployment.

the aforementioned 3D valve measurements, our system has a few specific applications to the

TAVI workflow. For example, the detected aortic hinges can be used to predict a proper C-

arm angulation1 to mitigate the foreshortening of the aorta, therefore reducing the tilting of the

prosthetic valve with respect to the aortic root after deployment. Comment 22Selecting a proper angulation to

reduce foreshortening is important for many fluoroscopy guided interventional procedures, e.g.,

coronary angiography [7]–[9], and C-arm CT can also be used to reduce the overlap with other

irrelevant structures of high attenuation (e.g., spine and ribs) [9]. Overlay of the detected aortic

commissures helps to guide the deployment of some non-rotation-symmetric valves, which need

to be aligned with the valve cusps. In summary there are four major potential applications of

the proposed automatic segmentation system in TAVI.

1) Provide 3D valve measurements for surgical planning.

2) Provide a proper angulation (perpendicular to the aortic annulus) for a C-arm system.

3) Provide orientation guidance for implanting prosthetic valves that are not rotation sym-

metric.

4) Overlay of the detected coronary ostia onto 2D fluoroscopic images provides guidance to

physicians to avoid blocking the ostia after valve deployment.

Various methods have been proposed to segment the aorta. However, they work on a well

established imaging modality, such as CT or Magnetic Resonance Imaging (MRI). Automatic

1The C-arm gantry has two degrees of freedom in rotation. Comment 14Angulation means the gantry orientation after combined rotation

around both axes.
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segmentation of the aorta in a C-arm CT volume is far more challenging. First, the image

quality from different clinical sites varies quite a lot since C-arm CT is too new to have a well

accepted scanning protocol. We also observed significant variations inside the same clinical site

since physicians were testing different scanning parameters (e.g., the amount of contrast agent

and timing of the image acquisition). Conventional image processing techniques, e.g., intensity-

based thresholding, region growing, and the watershed method, are usually not robust under such

large variations. We propose to use machine learning techniques to exploit the rich information

embedded in an expert-annotated dataset. Second, the field-of-view varies quite a lot for C-arm

CT. For example, the aortic arch and descending aorta may be captured in some volumes, but

missing in others. To address this challenge, we propose a part-based aorta model. The whole

aorta is split into four parts: aortic root, ascending aorta, aortic arch, and descending aorta. Using

the part-based model, the whole aorta does not need to be fully present. Depending on the parts

that can be detected, different workflows can be exploited, therefore, a large structural variation

can be elegantly handled.

Aortic valve landmarks play an important role in the surgical planning and visual guidance

for TAVI. However, there is very limited work on automatic aortic valve landmark detection,

except coronary ostium detection in CT angiography (CTA) for coronary analysis [10]–[14]. In

this work, we detect eight important aortic valve landmarks (three hinges, three commissures,

and two coronary ostia). Independent detection of each landmark [15] is not robust since some

landmarks are barely visible due to imaging noise and the washout of contrast agent. The detected

landmarks may be inconsistent in their relative positioning due to the lack of constraints in

independent detection.

In this paper, we propose to use a hierarchical approach by first detecting a global object

comprised with all eight valve landmarks. The global object is detected efficiently using the

marginal space learning (MSL) method [16]. From the position, orientation, and scale of this

global object, we can infer the rough position of individual landmarks. Each landmark is then

refined in a small region under the guidance of its own specific landmark detector. There is no

standard way to define the pose of the global object and an ad hoc solution is by no means

optimal. We propose an optimization based method to define global object pose to minimize the

error of the inferred landmark position. Besides the improved robustness, our approach is also

more efficient than the independent detection scheme [15].
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Full automation, robustness, and efficiency are the keys for the success of a system in a real

day-to-day clinical utilization. Our approach is robust under all kinds of variations observed in a

real clinical setting, including changes in the field-of-view, contrast agent injection, scan timing,

and aortic valve regurgitation. Taking about 1.1 seconds to process a volume on a computer

with 2.33 GHz quad-core processors and 3 GB memory, it is much more computationally

efficient than the previous work [12], [17], [18]. Automation and segmentation speed may be

less of a concern for pre-operative surgical planning, but extremely important for an intra-

operative application. The patient is lying on the table with many medical devices inserted (e.g.,

transesophageal echocardiographic transducer and various catheters). The whole surgery team

(including interventional cardiologists, cardiac surgeons, nurses, and technicians, etc.) may be

halted, waiting for the segmentation result. In such a clinical setting, an efficient, automatic

segmentation system is highly appreciated, being much easier to be seamlessly integrated into

the workflow. Under the guidance of our system, promising outcomes have been achieved

in real clinical applications. To the best of our knowledge, this is the first work to apply

automatic segmentation to C-arm CT for TAVI, and our preliminary results have been published

as conference papers [19], [20].

Comment 11The proposed methods are built upon our previous work on MSL [16], which is applied to

detect/segment the aortic root, aortic arch, and the global valve landmark object. However, besides

the novel application to the TAVI procedure, this work also presents two major contributions to

the detection/segmentation techniques. First, using a part-based aorta model, MSL is extended

to segment the aorta under large structural variations due to the limited field-of-view. Second, a

novel method is proposed to reduce the shape initialization error. After estimating the pose of the

global valve landmark object using MSL, a mean shape (composed with eight valve landmarks)

is aligned to the estimated pose to generate the initial position of the landmarks. In this work,

we propose an optimization based method to determine the best mean shape from a training set

so that the landmark initialization error is minimized. This technique can be extended for better

initialization of other non-rigid structures, e.g., heart chambers and livers.

The remaining of the paper is organized as follows. The related work on aorta segmentation

and aortic valve landmark detection is reviewed in Section II. The part-based aorta modeling

and segmentation is presented in Section III, followed by detailed description of the proposed

aortic valve landmark detection method in Section IV. In Section V, we briefly describe how
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the automatic detection/segmentation is integrated in the TAVI workflow. Quantitative evaluation

is performed in Section VI for the aorta segmentation, aortic valve landmark detection, and the

3D valve measurements derived from the automatic segmentation. Furthermore, the accuracy of

the imaging guidance is evaluated. This paper concludes with Section VII for discussions of the

future work.

II. RELATED WORK

There is far more prior work on aorta segmentation than valve landmark detection, while the

latter is dominated by the detection of coronary ostia for coronary analysis. Aorta segmentation

is primarily used for aortic aneurysm analysis [21]–[33] and coronary analysis [10]–[14], though

it can also be applied for aortic calcium detection [34], connective tissue disorder detection [17],

blood flow quantification [35], and pulse wave velocity measurement [36], etc. Only recently,

we see its application on TAVI [6], [18], [37]. Most of the proposed methods focus on one

part of the aorta, e.g., the descending aorta for aneurysm analysis and the ascending aorta for

coronary analysis. CT and MRI are the major imaging modalities of the aorta, with only a few

exceptions using ultrasound [38] and C-arm CT [6], [37]. With a tubular shape, the aorta can

be detected and segmented using generic tubular structure segmentation approaches [39]–[41]

as those applied to a coronary artery, which mainly use various vesselness filters to enhance

and extract the centerline, followed by lumen segmentation. Since the aorta is a much bigger

structure than a coronary artery, more efficient methods (e.g., region growing, active contours,

and level sets) have been proposed to segment the lumen directly without extracting the centerline

first [10], [17].

Aortic aneurysm analysis (including aneurysm detection, segmentation, measurement, stent

simulation, and virtual endoscopy) is a major application of aorta segmentation in previous work.

Accurate segmentation of the aorta (including the lumen and thrombus outer wall) facilitates the

measuring of the maximum aneurysm diameter and thrombus volume, which are critical for a

physician to decide if the patient should be treated immediately or can still be on monitoring [33].

Normally, CT angiography (CTA) is the imaging modality and only the abdominal or thoracic

part of the descending aorta is segmented. The intersection of the descending aorta with a CT

image slice has an elliptic shape, which is relative easy to track along slices. Compared to the

thrombus outer wall, the lumen is much easier to segment in contrasted CTA images. However,
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most algorithms are not fully automatic and a user still needs to click at least one or two points

to initialize the segmentation [24], [25]. Thrombus segmentation needs more interactive user

corrections [24] or to be constrained by the segmented lumen [25].

The ascending aorta is often segmented on CTA images to detect coronary ostia, therefore

providing seeds for the following coronary artery centerline extraction and lumen segmentation.

Many methods require at least one user click inside the aorta to initialize the segmentation. For

example, in [10], starting from a user clicked point, the aorta is segmented using a slice-by-slice

region growing algorithm. It is possible to detect the intersection of the ascending aorta on each

slice using a Hough transform based circle detector, therefore making the whole procedure fully

automatic [13]. To avoid leakage into the left ventricle, some heuristic rules have to be exploited

to stop the region growing or circle tracking [10], [13]. To improve computational efficiency,

the Hough transform is performed only once in [14] to detect a seed point, followed by region

growing based tracing. Tek et al. [12] proposed a significantly different method for automatic

aorta segmentation. The left ventricle is segmented first and used to constrain the search for the

aorta. Since the left ventricle is segmented too, the whole procedure is time consuming, taking

about 6.2 s on a computer with a 2.8 GHz CPU.

Magnetic resonance imaging (MRI) is another important imaging modality of the aorta to

detect the connective tissue disorder [17], and to measure the aorta elasticity [42], blood flow [35],

and pulse wave velocity [36], etc. In these applications the whole aorta is often presented in

the volume and need to be segmented, therefore the tortuous aortic arch needs to be handled

properly [42]. Zhao et al. [17] proposed a semi-automatic method to segment the aorta in cine MR

images. Starting from user specified seed points, a fast marching method is applied to provide

an initial segmentation. The optimal surface method incorporating the motion information is

developed to refine the segmentation.

Most of the previous methods are semi-automatic (a user needs to click at least one point [17])

and slow (taking up to 450 s to process one volume [40]). Furthermore, the previous work

on aorta segmentation focuses on a relatively consistent imaging protocol with much fewer

variations than ours. For example, a roughly same portion of the aorta is captured and the usage

of contrast agent is consistent, resulting in stable image characteristics. However, our C-arm

CT data exhibit large variations in both contrast agent injection and field-of-view (resulting in
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missing aorta part in a volume). Comment 16In the robust active shape model (ASM) methods, the missing

part can be treated as outliers, which are detected based on random sub-sampling [43], [44] or

checking the ratio of inter-landmark distances [45]. However, the robust estimation methods have

an implicit assumption that the majority of the landmarks are inliers. Therefore, the performance

starts to break down quickly when the outlier ratio is more than 50% [45]. In our application,

more than half of the aorta is often missing from a volume. Specific to aorta segmentation, the

method proposed by Peters et al. [46], [47] can also handle variation in the field-of-view, where

the segmented heart chambers are used to predict the initial aorta position. Therefore, one can

determine which part of the aorta is presented in the volume and process it properly. However, in

our application, we cannot rely on the segmentation of heart chambers since they are normally

not contrasted in C-arm CT for TAVI, therefore difficult to segment.

Previous work on aortic valve landmark detection focuses on coronary ostia in CTA for

coronary analysis. The process starts from segmenting the ascending aorta and a coronary artery

is detected as a thin tubular structure attached to the aorta. The position of the attachment

is taken as the detected ostium. For example, the largest connected components on each side

of the aortic root are picked as the left and right coronary arteries in [10]. However, simple

connected component analysis is not robust under imaging noise, resulting in a success rate of

only 57%. Alternatively, coronary centerlines can be tracked from the aorta surface in order

to detect coronary ostia [12]. Since the computationally expensive centerline tracing algorithm

needs to run on the whole aorta surface, it is more time consuming. Compared to coronary

ostium detection, there is less work on the detection of other aortic valve landmarks, i.e., the

aortic hinges and commissures in this case. Ionasec et al. [48] presented a comprehensive aortic

valve model, which includes all eight valve landmarks. Since the trajectory of the landmarks

in the whole dynamic sequence is detected holistically, the detection accuracy on a static 3D

volume is not clear. In their early work [15], the landmarks are detected independently to each

other in a static volume. Independent detection of multiple landmarks is time consuming and

may result in unrealistic geometric configurations due to the lack of constraints.

With the rapid adoption of TAVI, recently, we see some work on aorta segmentation for TAVI

surgical planning [6], [18], [37], [49], [50]. For example in [18], the cardiac chambers and the

aorta are segmented in pre-operative CT, and a more detailed aortic valve model is proposed

and integrated into the heart model. The initial position of coronary ostia is predicted from the
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Fig. 4. Diagram of marginal space learning based non-rigid object detection and segmentation [16].

segmented aortic valve, followed by model-based adaptation for the final detection. More closely

related to our work, Gessat et al. [6], [37] proposed a semi-automatic method on pre-operative

C-arm CT for TAVI surgical planning. The aorta is segmented using a region growing method

starting from a user specified point. The coronary ostia and aortic hinges are manually labeled.

The extracted aorta model is then manually aligned and overlaid onto intra-operative fluoroscopy

to provide guidance. In our approach, all these steps are fully automatic and can be finished in

about one second. Since the segmentation is performed on intra-operative C-arm CT, the overlay

of the aorta model to fluoroscopy is also automatic using the intrinsic C-arm coordinate system.

III. PART-BASED AORTA SEGMENTATION

In this section, we first give a brief introduction of our generic 3D object detection and

segmentation method using marginal space learning (MSL) [16], which is used to segment the

aortic root and aortic arch. We then present our part-based aorta detection and segmentation

method in detail.

A. Marginal Space Learning for 3D Object Segmentation

Recently, we proposed marginal space learning (MSL) [16] as an efficient and robust method

for 3D anatomical structure detection and segmentation in medical images. Here, we give a brief

overview of MSL and interested readers are referred to [16] for more details. Our technique is

based on recent advances in learning discriminative models to exploit rich information embedded

in a large expert-annotated database. We formulate the segmentation as a two-step learning

problem: anatomical structure localization and boundary delineation.

Object localization (or detection) is a prerequisite for an automatic segmentation system and

discriminative learning based approaches have proved to be efficient and robust for solving 2D
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object detection problems [51]. In these methods, object detection is formulated as a classification

problem: whether an image block contains the target object or not. The object pose parameter

space is quantized into a large set of discrete hypotheses and exhaustive search is used to pick

the best hypothesis. To be specific, each hypothesis is tested by the the trained classifier to get a

detection score and the hypothesis with the largest score is taken as the final detection result. To

accurately localize a 3D object, nine pose parameters need to be estimated (three for translation,

three for orientation, and three for anisotropic scaling). With the exponential increase of potential

pose parameter combinations, exhaustive search is not practical for 3D object detection. The

idea of MSL is not to learn a classifier directly in the full similarity transformation space but

to incrementally learn classifiers on marginal spaces. In our case, we split the estimation into

three steps: position estimation, position-orientation estimation, and position-orientation-scale

estimation. After each step, we only keep a small number of promising hypotheses, therefore,

the pose parameter space is pruned significantly to increase the detection efficiency.

After objection detection, we get the position, orientation, and scale of the object. The mean

shape is aligned to the estimated transformation to get a rough estimate of the object shape. We

then deform the shape to fit the object boundary. Active shape models (ASM) [52] are widely

used to deform an initial estimate of a non-rigid shape under the guidance of image evidences

and shape prior. The non-learning based generic boundary detector in the original ASM [52] is

not robust under complex background or weak edges. We use a learning based method to exploit

more image evidences to achieve robust boundary detection. Fig. 4 shows the system diagram

for MSL based non-rigid object detection and segmentation.

MSL provides a generic framework for automatic object detection and segmentation. Its

efficiency can be further boosted by exploiting the prior constraints among the pose parameters in

the marginal spaces [53], resulting in detection speed of less than a second for most applications.

MSL has been successfully applied to many 3D anatomical structure detection and segmentation

problems in all major medical imaging modalities [53], e.g., livers in abdominal CT, and heart

chambers in both CT and ultrasound images.

B. System Diagram for Part-Based Aorta Segmentation

Due to the variation in the field-of-view, the aorta in a C-arm CT volume has no consistent

structure, therefore, our MSL based approach cannot be applied directly. In this paper, we propose
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Fig. 5. A part-based aorta model. The whole aorta is split into four parts, namely aortic root, ascending aorta, aortic arch, and

descending aorta.
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Fig. 6. System diagram for part-based aorta segmentation.

a part-based aorta model (as shown in Fig. 5) by splitting the whole aorta into four parts: aortic

root, ascending aorta, aortic arch, and descending aorta. The aortic root and aortic arch are

consistent in anatomy, therefore, we can apply MSL to train two separate detectors with one

for each. The length of the ascending and descending aorta parts varies, therefore we use a

tracking-based method to handle this variation. Fig. 6 shows the system diagram of the proposed

part-based aorta segmentation method. We first detect the aortic root since it should always be

present in the volume. The aortic arch detector is then applied. If the aortic arch is not presented,
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(a) (b) (c) (d)

Fig. 7. Aortic root segmentation results under the variations of contrast agent and aortic valve regurgitation.

therefore, not detected, the descending aorta is often also missing in the volume 2. We track

the ascending aorta starting from the aortic root until the top volume border. If the aortic arch

is detected, we track the ascending aorta starting the aortic root until the arch. We also track

the descending aorta downward from the arch if the arch is detected. After tracking, we get the

centerline of the whole aorta and a tube is synthesized as an initial rough estimate of the shape.

We then adjust each mesh point along the surface normal to an optimal position, which has

the largest response from a learning-based boundary detector. Generic mesh smoothing [54] is

applied to enforce the smoothness constraint. Mesh point adjustment and mesh smoothing can

be iterated a few times to improve the boundary delineation accuracy.

C. Aortic Root Segmentation

In anatomy, the aortic root refers to the aorta segment between the aortic hinges and the

sinotubular junction. Previous non-model-based approaches [10], [13], [14] have difficulty to

exactly delineate the boundary between the aortic root and the left ventricular outflow tract

(LVOT) since they are fully connected and both contrasted in CTA. In C-arm CT the contrast

agent is directly applied to the aortic root, therefore, the boundary is clear if the aortic valve

is fully closed. However, due to the aortic valve regurgitation, the contrast agent may leak into

the LVOT in about 20-30% of cases. The amount of leakage varies depending on the severity

of the regurgitation, which creates an extra challenge to an automatic segmentation method. As

2 Comment 17Volumes with missing aortic arch are reconstructed with slice size of 256×256 pixels, instead of 512×512 pixels. The slice

resolution is roughly the same, resulting in a much smaller trans-axial field-of-view. Therefore, the descending aorta is also

outside the volume.
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a consistent anatomy, the aortic root is segmented using MSL in our system by fitting a surface

mesh model into the data. Fig. 7 shows the aortic root segmentation results on a few data,

demonstrating the robustness of MSL under the variations of contrast agent and aortic valve

regurgitation. The contrast of the first volume is strong (though with some imaging artifacts

presented around the aortic root), while the second volume has quite weak contrast. The amount

of regurgitation also varies quite a lot from no regurgitation (Fig. 7a) to severe regurgitation

(Fig. 7d).

D. Aortic Arch Segmentation

The aortic arch is missing in about half of our dataset due to the limited field-of-view of the C-

arm CT, therefore, the missing or presence of the aortic arch needs to be detected automatically.

Since the aorta has a tubular shape, the intersection perpendicular to its centerline is close to

a circle. A tracking based approach is often used to trace the circular shape, which works well

on the ascending and descending aorta parts. However, the aorta centerline orientation needs

to be estimated and updated robustly during the tracking of the bending arch [42]. Otherwise,

a tracking error may be propagated to the following slices, resulting in a failure (e.g., tracing

into the supra-aortic arteries or the nearby pulmonary artery). In this paper, we treat the aortic

arch as a holistic anatomical structure. In our part-based aorta model (Fig. 5), the aortic arch is

defined as the part from the top of the aorta to the axial slice where the intersection of the aorta

diverges into two separated parts. As the case of the aortic root, MSL is applied to detect and

segment the aortic arch. By segmenting the bending aortic root and arch with a model based

approach, the remaining parts are much easier to handle. Since the intersection of the ascending

and descending aorta parts to an axial slice is close to a circle, it can be tracked efficiently

without estimating the centerline orientation.

E. Tracking of Ascending and Descending Aorta Parts

The length of the visible ascending and descending aorta parts varies significantly from volume

to volume. Consequently, we propose to use a tracking technique to deal with this variation.

Instead of using a time-consuming Hough transform based circle detector [13], [14], we use

machine learning technique to train a 2D circle detector on an axial image slice using 2D Haar

wavelet features [51]. The tracking of the ascending aorta starts from the top of the aortic root
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(a)

(b)

Fig. 8. Aorta boundary refinement. (a) Initial synthesized tubular mesh after tracking the ascending and descending aorta parts.

(b) Final segmentation after boundary refinement. The first three columns show three orthogonal cuts of the volume and the last

column shows the corresponding 3D meshes.

and is performed slice by slice, moving toward the patient’s head. The detected circle on a slice

is propagated to the next slice and the circle detector is applied in a neighborhood of 6×6 mm2

around the initial estimate. For an image slice containing the ascending aorta, normally, the

detector may find multiple circle candidates around the true position. We pick the one closest

to the circle on the previous slice. If the aortic arch is detected in the volume, the tracking

procedure stops on the slice touching the aortic arch. Otherwise, it stops when no aortic circles

are detected or it reaches the top volume border. Tracking of the descending aorta is quite similar.

It starts from the aortic arch, moves toward the patient’s abdomen, and stops on the slice with

no aortic circles detected.

F. Aorta Boundary Refinement

After tracking the ascending and descending aorta parts, we get the centerline of the whole

aorta. Comment 19A generalized-cylinder model is synthesized as an initial estimate of the aorta shape and

the radius at each centerline point is set to the radius of the detected circle. Fig. 8a shows the
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(a) (b) (c) (d)

Fig. 9. Automatic aorta segmentation on a few example volumes. (a) Good contrast in the whole aorta. (b) Severe aortic valve

regurgitation. (d) Low contrast. (d) Contrast agent is almost washed out due to bad timing.

synthesized tube after tracking. The initialization is close to the true aorta boundary, however, a

circle does not fit the boundary exactly. A learning based boundary detector is exploited for final

boundary delineation. Interested readers are referred to [16] for more details of the learning based

boundary detector. One difference to the boundary delineation of the aortic root or arch is that we

cannot use the ASM to enforce prior shape constraint since the aorta is not consistent in structure

due to the variation in the field-of-view. Instead, a generic mesh smoothing technique [54] is

used to achieve a smooth surface for the segmented aorta. To be specific, a two-step iterative

approach is used.

1) Use the learning-based boundary detector to adjust each mesh point along the surface

normal to the optimal position where the response of the boundary detector is the largest.

2) Apply generic mesh smoothing.

The above two steps are repeated a couple of times to improve the boundary delineation accuracy.

Fig. 8b shows the result after boundary refinement. More examples of the aorta segmentation

results are shown in Fig. 9.

Note that, almost all previous work uses bottom-up approaches [11], [17], [39], [40], [42] to

track the aorta centerline to handle variations. They are neither automatic nor robust to noisy

images. In comparison, we use the top-down MSL [16] to detect the aortic root and arch, and use

bottom-up tracking to detect ascending and descending aorta parts, which have large variations

in length. Our system is a nice combination of both approaches.
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IV. AORTIC VALVE LANDMARK DETECTION

Besides segmenting the aorta, we detect eight aortic valve landmarks (see Fig. 1), i.e., three

aortic hinges, three aortic commissures, and left and right coronary ostia, since they are important

in both surgical planning and providing visual guidance during valve deployment. Though it is

possible to detect each landmark independently [15], the detection results may be inconsistent in

geometry. It also wastes computation power by ignoring the strong geometric constraint among

the landmarks. We propose an efficient hierarchical approach by first detecting a global object

comprised with all eight valve landmarks. From the position, orientation, and scale of this global

object, we can infer the rough position of individual landmarks. Each landmark is then refined

in a small region (e.g., a cube of 10 mm centered on the initial position) under the guidance of

its own specific landmark detector.

A. Optimal Mean Shape for Accurate Shape Initialization

Similar to aortic root detection, we use marginal space learning (MSL) [16] to efficiently

detect the position, orientation, and scale of the global landmark object. For a learning based

method, we need to specify the ground truth of object pose for each training volume, therefore, a

learning algorithm can learn the implicit relationship between the image and object pose, which

is later used to infer the correct pose from an unseen volume. However, there is no standard

way to define the pose of the global object containing eight landmarks. After detecting the

global landmark object, we align the mean shape (which is the average shape of the training set

after global transformation has been compensated) to the global pose to get an initial estimate

of each individual landmark’s position. This initialization needs to be accurate. Otherwise, the

final boundary evolution may get stuck in a wrong position due to the complication of the

surrounding tissues. The mean shape is generally calculated as an average of the normalized

shapes in an object-centered coordinate system. Therefore, the optimal mean shape and optimal

pose definition are closely related. In [16], the orientation of a heart chamber is defined by its

long axis; the position and scale are determined by the oriented bounding box of the chamber

surface mesh. Although working well in applications with relatively small shape variations, the

mean shape derived using the oriented-bounding-box based method is not optimal at all.

In this paper, we present an approach to searching for an optimal mean shape m̄ that can

represent the whole population well. A group of training shapes, M1,M2, . . . ,MN are supposed
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to be given and each shape is represented by J points M j
i , j = 1, . . . , J (J = 8 for the aortic valve

landmarks). The optimal mean shape m̄ should minimizes the residual errors after alignment,

m̄ = arg min
m

N∑
i=1

‖Ti(m)−Mi‖2 . (1)

Here, Ti is the corresponding transformation from the mean shape m̄ to each individual shape

Mi. This procedure is called generalized Procrustes analysis [55] in the literature. An iterative

approach can be used to search for the optimal solution. We first randomly pick an example

shape as a mean shape. We then align each shape to the current mean shape. The average of

the aligned shapes (the simple average of the corresponding points) is calculated as a new mean

shape. The iterative procedure converges to a locally optimal solution after a few iterations.

The similarity transformation with isotropic scaling is often used as the transformation T .

However, MSL can efficiently estimate anisotropic scales of an object. By removing more

deformations, the shape space after alignment is more compact and the mean shape can represent

the whole population more accurately. Therefore, we use an anisotropic similarity transforma-

tion to represent the transformation between two shapes, i.e., T represents translation (T =

[X, Y, Z]′), rotation (represented as a rotation matrix R), and anisotropic scaling (Sx, Sy, Sz).

The transformation of a 3D point P is

T (P ) = R


Sx 0 0

0 Sy 0

0 0 Sz

P + T. (2)

The optimal T to align two shapes m and M is

T̂ , R̂, Ŝ = arg min
T,R,S

J∑
j=1

∥∥∥∥∥∥∥∥∥

R


Sx 0 0

0 Sy 0

0 0 Sz

mj + T

−M j

∥∥∥∥∥∥∥∥∥
2

. (3)

Suppose there is a common scale s = (Sx + Sy + Sz)/3, and let S ′x = Sx/s, S ′y = Sy/s, and

S ′z = Sz/s. Equation (3) can be re-written as

T̂ , R̂, Ŝ = arg min
T,R,S

J∑
j=1

∥∥∥∥∥∥∥∥∥

Rs


S ′x 0 0

0 S ′y 0

0 0 S ′z

mj + T

−M j

∥∥∥∥∥∥∥∥∥
2

. (4)
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Since there are no closed-form solutions for estimating the anisotropic similarity transforma-

tion, we propose a two-step iterative approach to searching for the optimal transformation.

1) Starting from the given anisotropicity (S ′x, S
′
y, S

′
z), we estimate the similarity transformation

with isotropic scaling, (T,R, s).

2) With the given similarity transformation (T,R, s), we update the anisotropicity (S ′x, S
′
y, S

′
z).

In the first step, at beginning, we can assume the scaling is isotropic, S ′x = 1, S ′y = 1, and S ′z = 1.

The isotropic similarity transformation can be estimated using a closed-form solution [55, p. 84].

After some mathematical derivations, we find that the second step also has a closed form solution

as follows,

Ŝ ′x =

∑J
j=1 m

j(x)Qj(x)∑J
j=1m

j(x)2
Ŝ ′y =

∑J
j=1m

j(y)Qj(y)∑J
j=1 m

j(y)2
Ŝ ′z =

∑J
j=1m

j(z)Qj(z)∑J
j=1 m

j(z)2
, (5)

where

Qj =
1

s
R−1(M j − T ). (6)

Since each step reduces the residual shape error after alignment, the process converges. In practice

it converges quickly in 3-5 iterations.

With a module solving the anisotropic similarity transformation between two shapes, we can

plug it into the generalized Procrustes analysis method to search for the optimal mean shape m̄.

Besides the optimal mean shape, the optimal alignment Ti from the mean shape to each training

shape is also obtained. The transformation parameters of the optimal alignment provide the pose

ground truth that MSL can learn to estimate.

B. Unique Mean Shape for Aortic Valve Landmarks

The optimal mean shape m̄ is not unique. Any translation, rotation, and scaling of m̄ is also

an optimum since the transformation of the mean shape can be compensated by the individual

transformation Ti. We remove the unnecessary flexibility of the mean shape using the oriented-

bounding-box based approach [16] as follows. We first define a unique orientation. Suppose

three aortic hinges are denoted as H1, H2, and H3; three aortic commissures are denoted as

C1, C2, and C3; and Ol and Or represent the left and right coronary ostium, respectively. Let

Hc = (H1 + H2 + H3)/3 be the mass center of three aortic hinges and Cc = (C1 + C2 + C3)/3
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(a) (b)

Fig. 10. The aligned of aortic valve landmarks and mean shape (represented as big circles) using (a) the oriented-bounding-box

based approach [16] and (b) the proposed optimization approach.

be the mass center of three aortic commissures. The z axis is defined as a unit vector pointing

from the hinge center Hc to the commissure center Cc

z =
Cc −Hc

‖Cc −Hc‖
. (7)

The x axis is derived as follows

x1 =
Or −Ol

‖Or −Ol‖
, (8)

x2 = (z × x1)× z, (9)

x =
x2

‖x2‖
. (10)

Here, initial axis x1 is defined as a unit vector pointing from the left coronary ostium Ol to the

right coronary ostium Or. We then rotate the x1 axis inside the plane spanned by the x1 and

z axes to make it perpendicular to the z axis, arriving axis x2. The final x axis is achieved by

normalizing x2 to a unit vector. The y axis is then a cross product of the z and x axes, y = z×x.

After defining the orientation of the global shape, we calculate an oriented bounding box for

the eight landmarks. We set the origin of the object-centered coordinate system to the center of

the box. We scale the bounding box anisotropically to make it a cube of 1 mm in length. The
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Fig. 11. The aortic valve landmark detection results on two example data with red dots for the hinges, purple for the commissures,

blue for the left coronary ostium, and green for the right coronary ostium. Each row shows three orthogonal cuts of a volume.

optimal mean shape m̄ is tightly bounded in the cube. After each iteration of the generalized

Procrustes analysis, m̄ is normalized using the above procedure, therefore uniquely defined. We

would like to emphasize that such normalization of the mean shape m̄ does not change its

optimality, but helps to achieve a unique solution.

C. Efficient Hierarchical Aortic Valve Landmark Detection

On our evaluation dataset with 278 volumes Comment 21(see Section VI-A), the mean landmark error

(the Euclidean distance defined in Equation (3)) inferred from the aligned mean shape is about

2.77 mm using the oriented-bounding-box based approach. The Procrustes analysis converges

after three iterations, the mean landmark error is significantly reduced to 1.90 mm. It clearly

shows that the optimal mean shape derived using the proposed method can better represent the

whole shape population. Figs. 10a and b show the distribution of the aligned landmarks using

the oriented-bounding-box based approach and the proposed optimization approach, respectively.
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It is clear that the distribution is more compact using the proposed method.

After inferring the initial landmark position from the pose of the detected global object, each

landmark is then refined in a small region (e.g., a cube of 10 mm centered on the initial position)

under the guidance of its own specific landmark detector. Trained with the probabilistic boosting

tree classifier, our landmark detector is similar to the detector used by Ionasec et al. [48], but

using the steerable features [16] that can be efficiently extracted from the original volume. On

the contrary, the method of Ionasec et al. needs to resample the original volume to an isotropic

resolution (e.g., 1 mm) to use the Haar wavelet features. Fig. 11 shows the detected aortic valve

landmarks after local refinement on two example volumes.

V. WORKFLOW INTEGRATION FOR TRANSCATHETER AORTIC VALVE IMPLANTATION

In this section, we describe the integration of the automatic aorta segmentation and aortic

valve landmark detection into the transcatheter aortic valve implantation (TAVI) workflow. We

follow the steps the system performs during the valve deployment and discuss the potential

user interactions. All described components have been integrated into an angiographic C-arm

system (Artis zee/zeego with Siemens syngo Workplace, Erlangen, Germany). Right before the

implantation, the physician starts to obtain a 3D C-arm CT volume of the aortic root by acquiring

a rotational 2D image sequence of 200o over 5 seconds on the C-arm system. Via a pigtail

catheter, 15-25 ml contrast agent (diluted to 75 ml) is injected over 5 seconds (with a 1-second

X-ray delay) into the aortic root. To minimize the respiratory motion artifact, the physicians

temporally stop mechanical ventilation to the patient. Furthermore, rapid ventricular pacing 3

is applied to a heart rate that yields no effective heart pumping and minimal blood flow. This

allows using a relatively small amount of contrast agent, compared to approximately 80 ml for a

conventional CT and approximately 15 ml for a single 2D angiogram [56]. After the rotational

run is finished on the C-arm system, all of the following steps 1-5 are started and performed

fully automatically.

1. Reconstructing 3D CT volume from acquired rotational image sequence.

The 3D volume is reconstructed based on a software available with the angiographic C-arm

system [57], which takes about 12 seconds.

3 Comment 6Rapid pacing is regarded as a safe procedure by many physicians. However, a few physicians have concern that rapid pacing

may peel off some cardiac calcifications into the blood circulation, raising the risk of strokes.
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2. Segmenting the aorta and detecting the aortic valve landmarks from 3D volume.

The proposed method is applied to segment the aorta and detect eight aortic valve landmarks:

the aortic hinges that are the lowest points of aortic root cusps (to support finding a C-arm

angulation perpendicular to the aortic root), the coronary artery ostia (which have to stay

open after prosthesis implantation), and the aortic commissures where the cusps meet (to help

orienting anatomically designed valve prostheses). The aorta centerline is also calculated from

the segmented aorta mesh. This process is quite fast, taking about one second.

3. Deriving additional structures from detected landmarks.

We derive a circle parallel to the plane spanned by the three aortic hinges (see red circle

in the bottom-right quadrant of Fig. 12). Visually, this perpendicularity circle degenerates to a

straight line if and only if the three aortic hinges are aligned (see Fig. 13a), which corresponds

to a perpendicular angulation for valve implantation. It is important to avoid tilting of the

deployed prosthetic valve with respect to the aortic root (i.e., the centerline of the prosthetic

valve should be aligned accurately to the centerline of the aortic root) to minimize the post-

procedure complications (e.g., valvular regurgitation and aortic root rupture) [3]. The tilting

inside the imaging plane is relatively easy to correct by the physician during prosthetic valve

positioning under the guidance of fluoroscopy. The out-of-plane tilting is avoided if both the

aortic root and the prosthetic valve have no foreshortening on the imaging plane. The metal

frame of a prosthetic valve is clearly visible under fluoroscopy, therefore can be adjusted to

avoid tilting by checking the top or bottom ring of the prosthesis (see Fig. 13b). However, it is

much more difficult to find a proper angulation for the aortic root. As soft tissue, the aortic root is

not visible under fluoroscopy and contrast agent needs to be injected to check the foreshortening.

Previously, multiple iterations of adjustments need to be performed, composed with 1) injecting

contrast to check the foreshortening, 2) determining the next angulation to try, and 3) rotating

the C-arm to that angulation. Using our system, the physician can perform virtual rotations to

get a proper angulation (on which the derived perpendicularity circle degenerates into a straight

line) and, once done, the C-arm can automatically rotate to the selected angulation. Additionally,

contrast injections for perpendicularity checks can be avoided in this process.

To estimate the likelihood for the coronary ostia to stay open after implantation, the physician

wants to measure their distance to the aortic hinge plane. We create a ruler orthogonal to that

plane (see the red ruler in the top-right quadrant of Fig. 12). We decided to show a ruler instead of
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Fig. 12. A screen shot of our prototype. Detected landmarks (coronary ostia in blue and green, commissures in purple, hinges

in red, centerline in yellow) and derived structures (perpendicularity circle and ruler in red) are shown in 3D volume rendering

and three orthogonal intersection planes with 15 mm slice thickness. The panel in the lower right shows the user interface we

added to the existing system.

numbers, because this makes the measurement process transparent to the physician and allows

for user compensation of the measurement in case of mis-detected landmarks. The coronary

artery dilates to a funnel shape around its ostium, with a diameter up to 5 mm. Comment 5Traditionally,

the ostium landmark is put at the center of the funnel shape (as we did in this work), while some

physicians may prefer to put the ostium landmark at the bottom edge close to the aortic hinge

plane to get a more conservative distance measurement. A ruler gives the physicians flexibility

to adjust the measurement based on their own preference.

4. Extract interior of segmented aortic shape out of 3D volume for volume rendering.

The interior of the segmented aorta is extracted from the volume and visualized with volume

rendering. Visualization of coronary arteries is also important, but automatic segmentation is

difficult. To make them visible without segmenting them explicitly, we add voxels within 15
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mm (determined heuristically) to each detected coronary ostium into volume visualization.

5. Computing optimized volume rendering transfer function parameters.

We want to avoid letting the user find manually the appropriate volume rendering parameters

copt for transfer function center and wopt for transfer function width. Therefore, they are calculated

automatically based on the voxel intensities,

copt = fc,inmin + fc,outmout + fc,offset, (11)

wopt = fw,inmin + fw,outmout + fw,offset. (12)

Here, mout (min) is a volume specific value and is determined by the mean intensity of all

voxels outside (inside) the boundary of the segmented aorta with a fixed distance to it. The six

parameters fc,in, fc,out, fw,offset, fw,in, fw,out, fw,offset are tuned on a few training data.

6. Landmark verification or correction.

The automatically detected valve landmarks need to be verified by the physicians, and corrected

if necessary (though it rarely happens in practice). To give the physicians a good initial view,

the volume is centered and zoomed based on the position of the two detected coronary ostia and

as many landmarks as possible are shown on the three orthogonal volume intersection planes

(see Fig. 12).

If landmark positions and visualization are satisfactory, the physician can perform the following

steps:

7. Rotating 3D volume to an appropriate C-arm angulation.

Every rotation of the volume rendering view corresponds to a C-arm angulation (up to in-

plane rotation). Therefore, using the displayed perpendicularity circle or the commissures, the

physician can virtually choose a view that corresponds to an appropriate C-arm angulation. The

system then allows automatically rotating the C-arm to that angulation.

8. Overlay of 3D structures onto fluoroscopic images.

The live overlay (see Fig. 13a) of the rendered 3D visualization onto fluoroscopic images is

based on software available with the angiographic C-arm system. The 3D volume is inherently

registered to the fluoroscopic images because both images are acquired on the same system.

Comment 23The information of any further C-arm rotations and table movements is fed to our application

and the overlay can be dynamically adapted. The adaptation step is purely based on the machine
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coordinate system, therefore, it is robust and fast. However, it does not compensate patient and

cardiac motions, which is part of our future work.

VI. EXPERIMENTS

In this section, we quantitatively evaluate the accuracy of aorta segmentation and aortic valve

landmark detection on a large diverse C-arm CT dataset. Effectiveness of the C-arm CT based

imaging guidance system in the real TAVI workflow is also evaluated, including the aorta model

overlay accuracy and the tilting of the deployed prosthetic valve.

A. Evaluation of Aorta Segmentation and Valve Landmark Detection

We collected a dataset of 319 C-arm CT volumes from 276 patients from 11 clinical sites

over the world (mainly from Germany, Australia, Japan, Canada, and USA). Most patients have

only one C-arm CT volume. Comment 13If the image quality of the first C-arm CT is not good enough,

the physicians may perform another C-arm CT scan. It normally happens on the first few cases

from a new clinical site with limited experience in C-arm CT. Therefore, those patients may

have up to three volumes with variations in contrast agent injection and scan timing. In our

early collection, 15 patients also have a C-arm CT right right after the prosthesis deployment

for post-deployment evaluation, e.g., measuring valve regurgitation. Six patients have prosthetic

valves implanted from previous open-chest surgery. The aortic hinges of the native valve have

been destroyed on all these post-deployment C-arm CT. The size of each slice in a volume is

256× 256 or 512× 512 pixels. A volume contains around 200-300 slices. The image resolution

is isotropic and varies from volume to volume in the range of [0.70, 0.84] mm.

A four-fold cross-validation is performed to evaluate our algorithm. The whole dataset is

randomly split into four roughly equal sets. Three sets are used to train the system and the

remaining set is reserved for testing. The configuration is rotated, until each set has been tested

once.

The aorta segmentation accuracy is measured using the symmetric point-to-mesh distance [16].

For each point on a mesh, we search for the closest point on the other mesh to calculate

the minimum distance. We calculate the point-to-mesh distance from the detected mesh to the

ground-truth and vice versa to make the measurement symmetric. The contrast agent gradually

fades out along the descending aorta, therefore the length of the segmented aorta may differ
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TABLE I

AORTIC VALVE LANDMARK DETECTION ERRORS BASED ON A FOUR-FOLD CROSS-VALIDATION ON 278 VOLUMES. THE

MEAN, STANDARD DEVIATION (STD), AND MEDIAN OF THE ERRORS ARE REPORTED (MEASURED IN MILLIMETERS).

Aortic Hinges Coronary Ostia Aortic Commissures

Mean STD Median Mean STD Median Mean STD Median

After Global Pose Estimation 3.38 1.27 3.16 4.26 1.78 4.01 3.35 1.31 3.18

After Local Refinement 2.09 1.18 1.82 2.07 1.53 1.61 2.17 1.31 1.88

from the manual annotation since it is difficult to determine consistently where the segmentation

should stop. When we calculate the error between the segmented mesh and the ground truth, we

exclude the extra distal part of the descending aorta from evaluation. On average, the length of

the excluded part is about 35 mm, which corresponds to about 15% of the descending aorta. The

mean segmentation error of the remaining aorta is 1.08 mm, with a standard deviation of 0.56

mm. Fig. 9 shows aorta segmentation results on a few volumes. The proposed method is robust

under the variations of the field-of-view, contrast agent, scan timing, and valve regurgitation.

We also quantitatively evaluate the valve landmark detection accuracy. Comment 1

Comment 13

The post-deployment

C-arm CT (15 volumes) is excluded since the native aortic hinges have been destroyed and the

aortic commissures have been significantly deformed. The patients (six volumes) with prosthetic

valves implanted from previous open-chest surgery are excluded for the same reason. We also

exclude a few volumes (20 volumes) with extremely poor image quality that the landmarks

cannot be identified even by an expert (though the aorta can be successfully segmented on these

volumes). Fig. 7b shows an example volume excluded in the evaluation of landmark detection.

For these patients, a second C-arm CT scan with better image quality is available, which is used

to guide the TAVI procedure.

A four-fold cross-validation is performed on the remaining 278 volumes for aortic valve

landmark detection. The landmark detection accuracy is measured using the Euclidean distance

from the detected landmark to the ground truth. Table I shows the detection errors. After global

landmark object pose estimation, we can get a good initial estimate of the landmark position.

The mean errors range from 3.35 to 4.26 mm for different landmarks. Compared to the aortic

hinges and commissures, the initial coronary ostia have a larger mean error of 4.26 mm due to
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TABLE II

ERRORS OF SELECTED AUTOMATIC 3D MEASUREMENTS BASED ON A FOUR-FOLD CROSS-VALIDATION ON 278 VOLUMES,

INCLUDING THE ERROR OF THE DISTANCE MEASUREMENT (IN MILLIMETERS) FROM CORONARY OSTIA TO THE AORTIC

HINGE PLANE, AND THE ANGLE (IN DEGREES) BETWEEN THE DETECTED AND TRUE AORTIC HINGE PLANE NORMALS.

Left Ostium to Hinge Dist. Right Ostium to Hinge Dist. Hinge Plane Normal

Mean STD Median Mean STD Median Mean STD Median

Measurement Errors 2.10 1.86 1.73 2.51 2.03 2.11 3.68o 3.61o 2.73o

the larger variations in the origin of a coronary artery. After local refinement for each landmark,

the error is significantly reduced. For example, the mean error of the aortic hinges reduces from

3.38 mm to 2.09 mm. The coronary ostia achieve the largest reduction in detection error, from

4.26 mm to 2.07 mm. Again, we have difficulty to compare our accuracy directly against the

errors reported in the literature since different imaging modalities are involved. Fig. 11 shows

the detected valve landmarks in two typical volumes.

Multiple 3D valve measurements can be derived from the segmentation results. Due to the

space limit, we only evaluate the error in measuring the distance from the left and right coronary

ostia to the aortic hinge plane. As shown in Table II, the mean error for measuring the left

coronary ostium to hinge plane distance is 2.10 mm. The right coronary ostium has a larger

mean error of 2.51 mm. The overall distance measurement error is only slightly larger than

the landmark detection errors (2.07 mm for the coronary ostia and 2.09 mm for the aortic

hinges). The aortic hinge plane normal (calculated from the detected aortic hinges) plays an

important role in selecting a proper C-arm angulation, which can affect the tilting of the deployed

prosthetic valve. Therefore, it needs to be estimated accurately. We calculate the angle between

the estimated hinge plane normal and its true value derived from the ground truth. Comment 4As shown in

Table II, the mean angle is 3.68o. A tilting error of 5o is regarded by physicians as almost perfect

(Section VI-B). Our error is within this range, therefore can meet the clinical requirement.

Regarding the segmentation accuracy, we cannot compare our error with those reported in the

literature directly because they used different datasets captured from different imaging modalities.

Most of the previous aorta segmentation methods did not present a quantitative evaluation of the

segmentation accuracy [6], [11], [14], [21], [36], [38] or reported in different error criteria [29],
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Comment 24TABLE III

COMPARISON WITH PREVIOUS AORTA SEGMENTATION METHODS WITH REPORTED QUANTITATIVE MESH ERRORS.

Modality Patients/
Subjects Volumes Resolution (mm3) Automatic Speed Mesh

Error

Zhao et al. [17] MRI 104
16-25 volumes

/subject
1.5× 1.5× 1.5 to
2.0× 2.0× 2.0 No

5 min
/subject 1.55 mm

Bruijne et al. [40] CT 23
2 volumes

/subject 0.448× 0.448× 2.0 No
450 s

/volume 1.4 mma

Waechter et al. [18] CT 20
1 volume
/subject N/A Yes N/A 0.5 mmb

Proposed Method
C-arm

CT 276
319 volumes

in total
0.70-0.84
isotropic Yes

0.8 s
/volume 1.08 mm

a If an aortic aneurysm presents, the outer wall of the aneurysm is segmented, which is more difficult than the aorta lumen.
b The mesh error includes the aortic root and the valve leaflets.

[31], [35], [42]. Table III lists the reported aorta mesh errors available in the literature. Roughly,

our accuracy is comparable to the state-of-the-art, e.g., 1.55 mm reported in [17] on 104 MRI

datasets, 1.4 mm reported in [40] on 23 CT datasets, and 0.5 mm reported in [18] on 20 CT

datasets. Most of the previous work on aortic valve landmark detection focus on coronary ostia

to initialize the tracing of coronary arteries in CTA [10]–[14]. In that application, the detection

accuracy is measured as how many coronary arteries have been successfully traced and no

quantitative distance measurements are reported. In [15], all eight aortic valve landmarks are

detected and the overall landmark detection error is 2.28 mm on CT data, which is comparable

to ours. Comment 3In [18], Waechter et al. reported smaller errors in aorta segmentation and valve landmark

detection. For example, the detection error of the left and right coronary ostia are 1.0 mm to

1.2 mm, respectively, resulting is correspondingly smaller 3D measurement errors (0.6 mm to

0.9 mm for ostia-to-hinge-plane distance and 1.8o for hinge plane normal error). The errors are

evaluated on a small CT dataset with 20 volumes and one volume with failed coronary ostium

detection is excluded. For comparison, we do not exclude any detection outliers. Normally, a

cardiac CT has a higher resolution (often around 0.3-0.4 mm for in-slice resolution) than our C-

arm CT (0.70-0.84 mm). Unfortunately, Waechter et al. did not report the volume resolution of

their dataset. If standard high-resolution cardiac CT is used in [18] and the errors are measured

in voxels, our accuracy in aorta segmentation and landmark detection is comparable to [18].

Our approach is computationally efficient, taking about 1.1 seconds (0.8 seconds for aorta
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(a) (b) Comment 25

Fig. 13. Evaluation of imaging guidance in the TAVI workflow. (a) Overlay with almost perfect matching. (b) Measurement of

potential tilting of the prosthesis (for better illustration we show an image from an angulation not used for valve deployment).

segmentation and 0.3 seconds for valve landmark detection) to process a volume on a computer

with 2.33 GHz quad-core processors and 3 GB memory. It is at least 10 times faster than the

previous methods [12], [17].

B. Evaluation of Imaging Guidance in TAVI Workflow

In the following experiments, we evaluate the accuracy of our imaging guidance system

in patients who received an Edwards Sapien valve prosthesis (Edwards Lifesciences, Irvine,

California, USA). These valves are deployed under rapid ventricular pacing. Retrospectively,

we analyze the first 20 cases that were supported by our system and where the overlay image

scene was documented. We first evaluate the accuracy of the overlay of the 3D model and the

X-ray images. We assume that a misalignment corresponds to a shift parallel to the projection

plane, which simplifies the evaluation but ignores rotations. For each patient, we take an image

from the recorded overlay scene that showed a contrast injection with rapid pacing right before

deployment of the prosthesis (see Fig. 13a). We then measure the shift error as the distance (in

pixels) of a landmark point (e.g., an aortic hinge or coronary ostium) that could be identified

in the X-ray image and 3D overlay. Furthermore, we measure the shift along the aortic root

centerline, which is the most important direction for guiding the implantation. Because of the

projective geometry of the images, a measurement in pixels must be scaled using the known
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length of an object in approximately the same distance to the X-ray detector. For this, we

use the known length of the implanted prosthesis (in mm) divided by its measured height (in

pixels). For the 20 evaluated patients we get a shift error of 3.1 ± 1.9 mm (mean ± standard

deviation) and in centerline direction a shift error of 1.9± 1.5 mm. The reasons for pronounced

deviation in a few patients could be the dislocation of the aortic root by sheath-manipulation

and accidentally movements of the patients caused by the physician. The measured accuracy is

only valid under repeat rapid pacing, which recovers the heart position that we had during the

3D imaging, therefore the influence of cardiac motion is minimized.

We are also interested in how well the system can help to position the valve in the aortic root

anatomy with minimal tilting. Since a C-arm angulation adjusted with our system influences

the final valve tilting, it would be interesting to evaluate the post-deployment valve position

in the patient anatomy. Unfortunately, this would require a post-operative C-arm CT scan,

incurring additional contrast agent injection and X-ray dose, therefore, it is not done for most

patients. Comment 2(The 15 post-deployment volumes in our dataset were captured before the development

of our algorithm. Since the valve deployment was not guided by our system, we could not

use them to evaluate the tilting.) Instead, we determine for each patient the tilting angle of

the implanted prosthesis in the 2D fluoroscopic image under the chosen angulation. Thereby,

we assume the tilting inside the imaging plane has been corrected by the physician during

prosthesis positioning right before the deployment, as discussed in Step 3 of the TAVI workflow

in Section V, therefore, ideally a proper angulation would result in a valve image not showing

any tilting. With this assumption, we also ignore other factors like the complex interaction

of operators, devices, and patient anatomy. We measure the minimum and maximum elliptical

diameters of the upper prosthesis ring in the image in pixels (see Fig. 13b) and derive the tilting

by 90o − acos(dmin/dmax). This value says how perpendicular the valve prosthesis is imaged

right after implantation. For the 20 evaluated patients, we get a tilting of 5.7o ± 5.2o (mean ±

standard deviation). Clinically, a tilting of less than 5o can be stated as very good (obtained in

60% of the patients in our study), 5o-10o as good (30%), 10o-15o as acceptable (5%), and larger

than 15o as inappropriate (5%). The values show that a procedure with C-arm CT support by our

system yields overall good results. Reasons for suboptimal angulation estimation may be due to

the extra dislocation of the aortic root after C-arm CT scan and/or accidental patient movements.
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VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a fully automatic aorta segmentation and valve landmark detection

system in C-arm CT with applications to transcatheter aortic valve implantation (TAVI). The

system is very fast and on average, taking only 1.1 seconds to process a volume. It is fully

automatic and robust under all kinds of variations observed in a real clinical setting, including

changes in the field-of-view, contrast agent injection, scan timing, and aortic valve regurgitation.

In practice, landmark adjustments are only rarely done by the user. The initial clinical trials

have demonstrated the usefulness of our system in the TAVI workflow, e.g., providing a proper

angulation to avoid large tilting of a prosthetic valve after deployment. Hundreds of TAVI

procedures have been performed under the guidance of our system and live demos on real patients

have been presented at several clinical conferences [58]–[60]. Please refer to the supplemental

video for the application of our system in a real TAVI procedure.

A valuable extension of our system would be the integration of pre-operative conventional

CT images into the TAVI workflow. Our segmentation approach is generic, therefore can be

extended easily to other imaging modalities by simple retraining, without any manual parameter

tuning. A similar automatic detection and segmentation system has been built on cardiac CT data

for surgical planning. Robust 2D/3D registration of the CT model onto real-time fluoroscopy is

required to use CT for visual guidance. An automatic registration algorithm has been proposed

and the preliminary results are promising [61]. Currently, it is under system integration for

clinical evaluation.
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