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Abstract. The cardiac valvular apparatus, composed of the aortic, mi-
tral, pulmonary and tricuspid valve, is an essential part of the anatomical,
functional and hemodynamic characteristics of the heart and the cardio-
vascular system as a whole. Valvular heart diseases often involve multiple
dysfunctions and require joint assessment and therapy of the valves. In
this paper, we propose a complete and modular patient-specific model
of the cardiac valvular apparatus estimated from 4D cardiac CT data.
A new constrained Multi-linear Shape Model (cMSM), conditioned by
anatomical measurements, is introduced to represent the complex spatio-
temporal variation of the heart valves. The cMSM is exploited within a
learning-based framework to efficiently estimate the patient-specific valve
parameters from cine images. Experiments on 64 4D cardiac CT stud-
ies demonstrate the performance and clinical potential of the proposed
method. To the best of our knowledge, it is the first time cardiologists
and cardiac surgeons can benefit from an automatic quantitative evalu-
ation of the complete valvular apparatus based on non-invasive imaging
techniques. In conjunction with existent patient-specific chamber models,
the presented valvular model enables personalized computation modeling
and realistic simulation of the entire cardiac system.

1 Introduction

The heart valves are an essential anatomical structure regulating the heart cham-
bers hemodynamics and the blood flow between the heart and the human body.
Valvular heart disease (VHD) is a frequent symptom, with a prevalence of 2.5%
among the global population often obliged to complex management and thera-
peutical procedures. Moreover, valve operations are the most expensive and most
precarious cardiac interventions, with an average cost of $141,120 and 4.9% in-
hospital death rate in the US [1].

Due to the strong anatomical, functional and hemodynamic inter-dependency
of the heart valves, VHDs do not affect only one valve, but rather several valves
are impaired. Recent studies demonstrate strong influence of pulmonary artery
systolic pressure on the tricuspid regurgitation severity [2]. In [3, 4] the simultane-
ous evaluation of aortic and mitral valves is encouraged, given the fibrous aortic-
mitral continuity, which anchors the left side valves and facilitates the reciprocal
opening and closing motion during the cardiac cycle. Moreover, in patients with
mitral and tricuspid valve regurgitation, joint surgery is recommended to mini-
mize the risk for successive heart failure or reduced functional capacity. Complex



Fig. 1. Complete heart valves model consisting of aortic valve (AV), mitral valve (MV),
pulmonary valve (PV) and tricuspid valve (TV). Left: Similarity transform illustrated
as a bounding box and anatomical landmarks. Right Complete mesh surface model.

procedures mostly performed in patients with congenital heart diseases, such as
the Ross operation, in which the aortic valve is replaced with the pulmonary, re-
quire comprehensive quantitative and qualitative evaluation of the heart valves.
Morphological and Functional Assessment of the complete heart valve apparatus
is crucial for clinical decision making during diagnosis and severity assessment
as well as treatment selection and planning.

An increased holistic view of the heart, demanded by clinicians is in perfect
accordance with the tremendous scientific effort worldwide, such as the Virtual
Physiological Human project [5], geared towards multi-scale physiological mod-
eling and simulation, which will promote personalized, preventive and predictive
healthcare. However, the majority of cardiac models to date focus on represen-
tation of the left or right ventricle [6], while very few include the left and right
atrium [7], but none explicitly handles the valves. Recently introduced models
of the aortic-mitral coupling [8, 9] do not incorporate the right side valves. A
critical component for a patient-specific computation model of the entire heart
and realistic cardiovascular simulations, which was not reported yet in the liter-
ature, is a personalized and complete representation of the valvular apparatus.
In this paper we propose a complete and modular model of the heart valves
comprising the anatomy of the aortic, mitral, tricuspid and pulmonary valves as
well as their morphological, functional and pathological variations. The patient-
specific valvular apparatus is estimated non-invasively from 4D Computed To-
mography images, using a discriminative learning-based approach. Global valve
location and motion, as well as the non-rigid movement of anatomical valvular
landmarks, are computed within the Marginal Space Learning (MSL) [10] and
Trajectory Spectrum Learning (TSL) [8] frameworks. A novel anatomical Con-
strained Multi-linear Shape Model (cMSM) is introduced to capture complex
spatio-temporal statistics, and in conjunction with robust boundary detectors,
it is applied to extract the complete valvular anatomy and motion. Our approach
enables for integrated quantification and treatment management of heart valves,



Fig. 2. Anatomical Landmark Model and Complete Valve Model of the aortic valve
(left), mitral valve (middle) and pulmonary valve (right).

and together with a patient specific chamber model [10], it will enable compre-
hensive heart simulations [11].

2 Physiological Model of the Heart Valves

In this section we introduce the complete heart valves model, which includes
the aortic, mitral, tricuspid and pulmonary valves, and captures morphological,
functional and pathological variations. To reduce anatomical complexity and
facilitate effective estimation, the heart valve model is represent on two abstrac-
tion layers: Anatomical Landmark Model - which represents the global location
and motion of each valve, as well as the motion of the corresponding anatomic
landmarks; Complete Valve Model - which parameterizes the full anatomy and
dynamics of the vales using dense surface meshes.
Anatomical Landmark Model. The global dynamic variation of each valve
is parametrized as a temporal dependent similarity transform (see Fig. 1).

B = {(x1, x2, x3) , (q1, q2, q3) , (s1, s2, s3) , t} (1)

(x1, x2, x3) is the translation, (q1, q2, q3) the quaternion representation of the
rotation, (s1, s2, s3) the similarity transform scaling factors and t the temporal
position in the cardiac cycle. A set of 33 anatomical landmarks, described in the
next paragraph, are used to parameterize the complex and synchronized motion
pattern of all valves, which explains the non-linearities of the hemodynamic
movements. Thereby, each landmark is described by a T time-step trajectory
in a three dimensional space, normalized by the temporal dependent similarity
transform D:

Ln (B) = {l1, l2, . . . lT } n ∈ 1 . . . 33 li ∈ R3 (2)

Complete Valve Model. The final valves model is completed with a set of 13
dense surface meshes. Each mesh is sampled along anatomical grids of vertices
defined through the landmarks:

Vq (L,B) =
{
v1,v2, · · · ,vKq

}
q ∈ 1 . . . 13 vi ∈ R3 (3)



where vi are the vertices, and Kq is the total number of vertices of mesh q.
Aortic valve: The aortic valve is constrained by 11 landmarks (3 commissures,
3 hinges, 3 leaflet tips and 2 ostias) and four anatomical structures (aortic root,
N-, L- and R-leaflet). The aortic root is constrained by the hinge and commissure
plane and each leaflet is spanned between two commissures and one hinge, as in
[8], (see Fig. 2 (left)).
Mitral valve: The mitral valve is composed of 7 landmarks (3 trigones, 2 com-
missures and 2 leafleat tips). The anterior leaflet is defined by two trigons, one
leaflet tip and two commisssures and the posterior leaflet by three trigons, one
leaflet tip and one commissure, as in [8], (see Fig. 2 (middle)).
Pulmonary valve: The pulmonary valve is consisting of 9 landmarks (3 com-
missures, 3 hinges and 3 leafleat tips) and four anatomical structures (pulmonary
root, N-, L- and R-leafet), as in [8], (see Fig. 2 (right)).
Tricuspid valve: The function of the tricuspid valve is to regulate the blood
flow from the right atrium to the right ventricle, staying closed during systole
and opened during diastole. The model is constrained by four surface geometries
(annulus, septal-, anterior- and posterior leaflet) (Fig. 3) and six anatomical
landmarks (three commissures and three leaflet tips) which are corresponding to
vertices on the meshes. The tricuspid annulus is represented as a surface mesh
constrained by the three commissures. The tricuspid leaflets, the A, S and P, are
modeled as hyperbolic paraboloids. The vertices on the leaflet border have fixed
correspondences to vertices on the tricuspid annulus. Each leaflet is defined by
two commissures and one leaflet tip.

(a) (b) (c) (d) (e)

Fig. 3. Tricuspid valve model. (a)-(d) shows anatomical landmars (commissures and
leaflet tips) and (e) is showing the complete surface mesh (annulus and leaflets).

3 Patient-Specific Model Estimation

A hierarchical estimation approach is utilized to deduce model parameters, in-
troduced in the previous section from 4D cardiac CT images. First, robust ma-
chine learning techniques are applied to estimate the global valves and anatomic
landmarks parameters introduced in Eq. 1 and 2. Second, we present the novel
anatomical constrained Multi-linear Shape Model (cMSM), which effectively cap-
tures the complex spatio-temporal variation of all valves. Lastly, the cMSM is



applied in a learning-based framework to estimated the complete valve model
described in Eq. 3.

3.1 Landmark Location and Motion Estimation

The global motion and landmarks parameters are estimated within the Marginal
Space Learning framework [7], similar as in [8].

3.2 Constrained Multi-linear Shape Model

Multilinear modeling enables the decomposition of a shape space in a temporal
and spatial component in contrast to active shape models (ASM) where both are
coupled. In this paper we present a Multi-linear MPCA (Multi-linear Principle
Component Analysis) and MICA (Multi-linear Independent Component Anal-
ysis) shape model of all valves which is conditioned by anatomical measurements.

Shape Space. In order to construct the shape model all shapes V are aligned by
calculating the mean sequence model and aligning them using general procrustes
analysis (GPA). This transform is utilized to align all shapes in the sequence.
The normalized shapes are represented as third-order tensors D ∈ R(S×T×P),
where S is the number of patients, T is the frame number inside a multi phase
sequence and P represents the number of shape points.

D = Z ×1 Upatient ×2 Umotion ×3 Upoints

As mentioned by [12] the motion subspace due its non-Gaussian distribution is
decomposed using ICA and the patient and points space using PCA.

D = Z ×1 Upatient ×2 UmotionW−1W ×3 Upoints

= (Z ×2 W1)×1 Upatient ×2 UmotionW−1 ×3 Upoints

= S ×1 Upatient ×2 Cmotion ×3 Upoints

Constrained Model Estimation. A set of anatomical measurements M (m1,m2,
. . . ,mR) extracted from the non-linear valve model is used to condition a sur-
face parameterization Vq (v1,v2, . . . ,vKq ) [13]. Assuming the joint multivariate
distribution (Vq |M) follows a Gaussian distribution a conditioned surface VM

q ,
containing the anatomical measurements M, can be estimated as follows:

VM
q = µVq

+ ΣVqM Σ−1
MM (M− µM)

where µVq is the mean surface parameterization from all training sets of
the valve surface Vq, µM the mean of the measurements M in the training set,
ΣVqM the covariance matrix between Vq and M. The constrained surface VM

q

is used to reconstruct the dynamic motion surface model of the whole sequence.
Therefore we first estimate the patient modes upatient and then use them to
reconstruct Vq (L,D).

upatient = VM
q T−1

(1) T = S ×2 Cmotion ×3 Upoints



where T−1
(1) is the pseudo-inverse of the tensor T flattened along the first mode

and Cmotion the one dimensional motion mode. The complete surface model
for the complete sequence, introduced in Eq. 3, can be extracted by a tensor
multiplication:

Vq (L,D) = S ×1 upatient ×2 Cmotion ×3 Upoints

3.3 Complete Valve Model Estimation

The comprehensive surface model Vq (L,D) of each anatomical structure q, is
estimated by adopting the constrained Multi-linear shape method using anatomi-
cal measurements M defined between the landmarks L1 · · ·LK . E.g. for the aortic
root we use three measurements M = {m1,m2,m3}(m1-inter-commissure dis-
tance, m2-hinge-commissure plane distance, m3-hinge-commissure plane angle).
The shape prediction Vq is locally refined using a boundary detector, trained
using PBT [14] and Steerable features [15].

Fig. 4. Examples of estimated personalized model from a multiphase CT sequence.

4 Experimental Results

The accuracy of the proposed method was evaluated using 64 multi phase CT
data sets, containing 640 volumes. The data sets comprise a variety of cardiovas-
cular diseases and due to different acquisition protocols they have heterogeneous
image quality, resolution and sizes. For every study ground-truth annotations
are provided by an expert user. Each evaluation is done using three-fold cross
validation.

The estimation of the Anatomical Landmark Model is performed in two
stages. First the global dynamic motion is evaluated by the Euclidian distance
between the corner points of the ground-truth and estimated box in each frame.
Second, the non-linear landmark model error is computed as the mean Euclidian
distance of all detected landmarks compared to the expert annotation. The com-
plete valve model, containing the dense surface meshes, is measured as the mesh-
to-mesh distance. Results shown in table 1 corroborate that our constrained ML
PCA-ICA shape estimation approach achieves best performance, compared to a
regular ML PCA-ICA method and a standard frame-wise estimation procedure



(tracking by detection). Within four minutes a complete personalized dynamic
model of all valves is estimated with an average accuracy of 1.24 mm. The full
valvular model together with the four chambers of the heart is illustrated in Fig.
4. Important clinical parameters are extracted from the personalized model in

Table 1. System precision for valve model estimation averaged on all valves. Left:
Evaluation of the Anatomical Landmark Model. Right: Comprehensive Surface as-
sessment.

Mean STD Median

Similartity T. [mm] 5.67 2.36 5.29

Landmark Motion [mm] 2.61 1.17 2.41

Mean STD Median

Tracking by Detection [mm] 1.52 0.98 1.47

ML PCA-ICA [mm] 1.39 0.91 1.32

cML PCA-ICA [mm] 1.24 0.91 1.18

the right heart. They include right-ventricle outflow tract (RVOT) radius, Bi-
furcation radius, tricuspid valve area and a joint measurement of the two valves,
the pulmonary and tricuspid valve distance. Quantitative comparison is shown
in Fig. 5 by comparing ground truth measurements and the estimated, demon-
strating a strong correlation.

Fig. 5. Bland altman plots for a) right ventricle output tract diameter, b) pulmonary
valve bifurcation diameter, c) tricuspid valve area and d) distance between pulmonary
and tricuspid valve

Finally we show quantitative comparison between a healthy patient and a
post-operative patient who underwent a Ross operation. Several clinical mea-
surements extracted from the personalized aortic and pulmonary valve model,
demonstrated in Fig. 6), confirm a successful outcome since no regurgitation is
observed at the aortic valve.

5 Conclusion
In this paper, we propose a novel personalized model for quantitative and qual-
itative evaluation of the complete heart valve apparatus in 4D CT. It is capable
to delineate the full anatomy and dynamics needed to depict a large variation of
valve pathologies, especially diseases affecting several valves. Its hierarchical ap-
proach using state of the art machine learning algorithms in combination with



Fig. 6. Measurements (left: aortic (AV) and pulmonary valve (PV) area, middle:
mean commissure-hinge plane height and left: mean leaflet height) obtained from a
normal patient (solid lines) and a post Ross operation patient (dotted line). The red
graph is representing the aortic valve and the blue the pulmonary.

a constrained Multi-linear shape space enables an patient specific model esti-
mation within three minutes and an accuracy of 1.24 mm. Clinical validation
shows strong correspondence between expert- and model estimated anatomical
measurements. The proposed method could spark research in many areas such
as examining interconnections of multiple valves and hemodynamic simulation
of the complete cardiac apparatus.
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