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Abstract

We present two solutions for the scale selection prob-

lem in computer vision. The �rst one is completely non-

parametric and is based on the the adaptive estimation

of the normalized density gradient. Employing the sam-

ple point estimator, we de�ne the Variable Bandwidth

Mean Shift, prove its convergence, and show its superi-

ority over the �xed bandwidth procedure. The second

technique has a semiparametric nature and imposes a

local structure on the data to extract reliable scale in-

formation. The local scale of the underlying density is

taken as the bandwidth which maximizes the magni-

tude of the normalized mean shift vector. Both estima-

tors provide practical tools for autonomous image and

quasi real-time video analysis and several examples are

shown to illustrate their e�ectiveness.

1 Motivation for Variable Bandwidth

The e�cacy of Mean Shift analysis has been demon-

strated in computer vision problems such as tracking

and segmentation in [5, 6]. However, one of the limi-

tations of the mean shift procedure as de�ned in these

papers is that it involves the speci�cation of a scale

parameter. While results obtained appear satisfactory,

when the local characteristics of the feature space di�ers

signi�cantly across data, it is di�cult to �nd an opti-

mal global bandwidth for the mean shift procedure. In

this paper we address the issue of locally adapting the

bandwidth. We also study an alternative approach for

data-driven scale selection which imposes a local struc-

ture on the data. The proposed solutions are tested in

the framework of quasi real-time video analysis.

We review �rst the intrinsic limitations of the �xed

bandwidth density estimation methods. Then, two of

the most popular variable bandwidth estimators, the

balloon and the sample point, are introduced and their

advantages discussed. We conclude the section by show-

ing that, with some precautions, the performance of the

sample point estimator is superior to both �xed band-

width and balloon estimators.

1.1 Fixed Bandwidth Density Estimation

The multivariate �xed bandwidth kernel density es-

timate is de�ned by

f̂(x) =
1

nhd

nX
i=1

K

�
x� xi

h

�
: (1)

where the d-dimensional vectors fxigi=1:::n represent a

random sample from some unknown density f and the

kernel, K, is taken to be a radially symmetric, non-

negative function centered at zero and integrating to

one. The terminology �xed bandwidth is due to the fact

that h is held constant across x 2 Rd. As a result, the

�xed bandwidth procedure (1) estimates the density at

each point x by taking the average of identically scaled

kernels centered at each of the data points.

For pointwise estimation, the classical measure of the

closeness of the estimator f̂ to its target value f is the

mean squared error (MSE), equal to the sum of the

variance and squared bias

MSE(x) = E
h
f̂(x)� f(x)

i
2

= Var
�
f̂(x)

�
+
h
Bias

�
f̂(x)

�i
2

: (2)

Using the multivariate form of the Taylor theorem, the

bias and the variance are approximated by [20, p.97]

Bias(x) �
1

2
h2�2(K)�f(x) (3)

and
Var(x) � n�1h�dR(K)f(x) ; (4)

where �2(K) =
R
z2
1
K(z)dz and R(K) =

R
K(z)dz are

kernel dependent constants, z1 is the �rst component

of the vector z, and � is the Laplace operator.

The tradeo� of bias versus variance can be observed

in (3) and (4). The bias is proportional to h2, which
means that smaller bandwidths give a less biased es-

timator. However, decreasing h implies an increase in

the variance which is proportional to n�1h�d. Thus for
a �xed bandwidth estimator we should choose h that

achieves an optimal compromise between the bias and

variance over all x 2 Rd, i.e., minimizes the mean inte-

grated squared error (MISE)

MISE(x) = E

Z �
f̂(x)� f(x)

�
2

dx : (5)

Nevertheless, the resulting bandwidth formula (see [17,

p.85], [20, p.98]) is of little practical use, since it de-

pends on the Laplacian of the unknown density being

estimated.

The best of the currently available data-driven meth-

ods for bandwidth selection seems to be the plug-in rule

[15], which was proven to be superior to least squares

cross validation and biased cross-validation [11], [16,



p.46]. A practical one dimensional algorithm based on

this method is described in the Appendix. For the mul-

tivariate case, see [20, p.108].

Note that these data-driven bandwidth selectors

work well for multimodal data, their only assumption

being a certain smoothness in the underlying density.

However, the �xed bandwidth a�ects the estimation

performance, by undersmoothing the tails and over-

smoothing the peaks of the density. The performance

also decreases when the data exhibits local scale varia-

tions.

1.2 Balloon and Sample Point Estimators

According to expression (1), the bandwidth h can

be varied in two ways. First, by selecting a di�erent

bandwidth h = h(x) for each estimation point x, one

can de�ne the balloon density estimator

f̂1(x) =
1

nh(x)d

nX
i=1

K

�
x� xi

h(x)

�
: (6)

In this case, the estimate of f at x is the average of

identically scaled kernels centered at each data point.

Second, by selecting a di�erent bandwidth h = h(xi)
for each data point xi we obtain the sample point density

estimator

f̂2(x) =
1

n

nX
i=1

1

h(xi)d
K

�
x� xi

h(xi)

�
: (7)

for which the estimate of f at x is the average of di�er-

ently scaled kernels centered at each data point.

While the balloon estimator has more intuitive ap-

peal, its performance improvement over the �xed band-

width estimator is insigni�cant. When the bandwidth

h(x) is chosen as a function of the k-th nearest neigh-

bor, the bias and variance are still proportional to h2

and n�1h�d, respectively [8]. In addition, the balloon

estimators usually fail to integrate to one.

The sample point estimators, on the other hand, are

themselves densities, being non-negative and integrat-

ing to one. Their most attractive property is that a par-

ticular choice of h(xi) reduces considerably the bias. In-
deed, when h(xi) is taken to be reciprocal to the square

root of f(xi)

h(xi) = h0

�
�

f(xi)

�
1=2

(8)

the bias becomes proportional to h4, while the variance
remains unchanged, proportional to n�1h�d [1, 8]. In

(8), h0 represents a �xed bandwidth and � is a propor-

tionality constant.

Since f(xi) is unknown it has to be estimated from

the data. The practical approach is to use one of the

methods described in Section 1.1 to �nd h0 and an ini-

tial estimate (called pilot) of f denoted by ~f . Note that
by using ~f instead of f in (8), the nice properties of

the sample point estimators (7) remain unchanged [8].

Various authors [16, p.56], [17, p.101] remarked that

the method is insensitive to the �ne detail of the pilot

estimate. The only provision that should be taken is to

bound the pilot density away from zero.

The �nal estimate (7) is however inuenced by the

choice of the proportionality constant �, which divides

the range of density values into low and high densities.

When the local density is low, i.e., ~f(xi) < �, h(xi)
increases relative to h0 implying more smoothing for

the point xi. For data points that verify ~f(xi) > �, the
bandwidth becomes narrower.

A good initial choice [17, p.101] is to take � as the ge-

ometric mean of
n
~f(xi)

o
i=1:::n

. Our experiments have

shown that for superior results, a certain degree of tun-

ing is required for �. Nevertheless, the sample point

estimator proved to be almost all the time much better

than the �xed bandwidth estimator.

2 Variable Bandwidth Mean Shift

We show next that starting from the sample point es-

timator (7) an adaptive estimator of the density's nor-

malized gradient can be de�ned. The new estimator,

which associates to each data point a di�erently scaled

kernel, is the basic step for an iterative procedure that

we prove to converge to a local mode of the underlying

density, when the kernel obeys some mild constraints.

We called the new procedure the Variable Bandwidth

Mean Shift. Due to its excellent statistical properties,

we anticipate the extensive use of the adaptive estima-

tor by vision applications that require minimal human

intervention.

2.1 De�nitions

To simplify notations we proceed as in [6] by in-

troducing �rst the pro�le of a kernel K as a function

k : [0;1) ! R such that K(x) = k(kxk2). We also

denote hi � h(xi) for all i = 1 : : : n. Then, the sample

point estimator (7) can be written as

f̂K(x) =
1

n

nX
i=1

1

hdi
k

 x� xi

hi


2

!
; (9)

where the subscript K indicates that the estimator is

based on kernel K.

A natural estimator of the gradient of f is the gra-

dient of f̂K(x)

r̂fK(x) � rf̂K(x) =
2

n

nX
i=1

x� xi

hd+2i

k0

 x� xi

hi


2

!

=
2

n

nX
i=1

xi � x

hd+2i

g

 x� xi

hi


2

!

=
2

n

"
nX
i=1

1

hd+2i

g

 x� xi

hi


2

!#
�



�

2
664
Pn

i=1
xi

hd+2
i

g

�x�xi

hi

2�
Pn

i=1
1

hd+2
i

g

�x�xi

hi

2� � x

3
775 ; (10)

where we denoted

g(x) = �k0(x) ; (11)

and assumed that the derivative of pro�le k exists for

all x 2 [0;1), except for a �nite set of points.

The last bracket in (10) represents the variable band-

width mean shift vector

Mv(x) �

Pn
i=1

xi

hd+2
i

g

�x�xi

hi

2�
Pn

i=1
1

hd+2
i

g

�x�xi

hi

2� � x (12)

To see the signi�cance of expression (12), we de�ne

�rst the kernel G as

G(x) = Cg(kxk2); (13)

where C is a normalization constant that forces G to

integrate to one.

Then, by employing (8), the term that multiplies the

mean shift vector in (10) can be written as

2

n

"
nX
i=1

1

hd+2i

g

 x� xi

hi


2

!#
=

2

C

"Pn
i=1

~f(xi)

n�h2
0

#
f̂G(x)

(14)

where

f̂G(x) � C

Pn
i=1

~f(xi)
1

hd
i

g

�x�xi

hi

2�Pn
i=1

~f(xi)
(15)

is nonnegative and integrates to one, representing an

estimate of the density of the data points weighted by

the pilot density values ~f(xi).
Finally, by using (10), (12), and (14) it results that

Mv(x) =
�

n�1
Pn

i=1
~f(xi)

h2
0

2=C

r̂fK(x)

f̂G(x)
: (16)

Equation (16) represents a generalization of equation

(13) derived in [6] for the �xed bandwidth mean shift.

It shows that the adaptive bandwidth mean shift is an

estimator of the normalized gradient of the underlying

density.

The proportionality constant, however, depends on

the value of �. When � is increased, the norm of the

mean shift vector also increases. On the other hand,

a small value for � implies a small kMvk. Due to this

external variability of the mean shift norm, the conver-

gence property of an iterative procedure based on the

variable bandwidth mean shift is remarkable. Note also

that when � is taken equal to the arithmetic mean ofn
~f(xi)

o
i=1:::n

, the proportionality constant becomes as

in the �xed bandwidth case.

2.2 Properties of the Adaptive Mean Shift

Equation (12) shows an attractive behavior of the

adaptive estimator. The data points lying in large den-

sity regions a�ect a narrower neighborhood since the

kernel bandwidth hi is smaller, but are given a larger

importance, due to the weight 1=hd+2i . By contrast,

the points that correspond to the tails of the under-

lying density are smoothed more and receive a smaller

weight. The extreme points (outliers) receive very small

weights, being thus automatically discarded. Recall

that the �xed bandwidth mean shift [5, 6] associates

the same kernel for each data point.

The most important property of the adaptive esti-

mator is the convergence associated with its repetitive

computation. In other words, if we de�ne themean shift

procedure recursively as the evaluation of the mean shift

vector Mv(x) followed by the translation of the kernel

G by Mv(x), this procedure leads to a stationary point

(zero gradient) of the underlying density. More speci�-

cally, we will show that the point of convergence repre-

sents a stationary point of the sample point estimator

(9). Thus, the superior performance of the sample point

estimator translates into superior performance for the

adaptive mean shift.

We denote by
�
yj

	
j=1;2:::

the sequence of successive

locations of the kernel G, where

yj+1 =

Pn
i=1

xi

hd+2
i

g

�yj
�xi

hi

2�
Pn

i=1
1

hd+2
i

g

�yj
�xi

hi

2� ; j = 1; 2; : : : (17)

is the weighted mean at yj computed with kernel G

and weights 1=hd+2i , and y
1
is the center of the initial

kernel. The density estimates computed with kernel K
in the points (17) are

f̂K =
n
f̂K(j)

o
j=1;2:::

�

n
f̂K(yj)

o
j=1;2:::

: (18)

We show in Appendix that if the kernel K has a con-

vex and monotonic decreasing pro�le and the kernel G
is de�ned according to (11) and (13), the sequences (17)

and (18) are convergent. This means that the adap-

tive mean shift procedure initialized at a given loca-

tion, converges at a nearby point where the estimator

(9) has zero gradient. In addition, since the modes of

the density are points of zero gradient, it results that

the convergence point is a mode candidate.

The advantage of using the mean shift rather than

the direct computation of (9) followed by a search for lo-

cal maxima is twofold. First, the overall computational

complexity of the mean shift is much smaller than that

of the direct method. The direct search for maxima

requires a number of density function evaluations that

increases exponentially with the space dimension. Sec-

ond, for many applications (see for example [6]) we only



need to know the mode associated with a reduced set

of data points. In this case, the mean shift procedure

becomes a natural process that follows the trail to the

local mode.

The iterative procedure for mode detection based on

the variable bandwidth mean shift is summarized be-

low.

Variable Bandwidth Mean Shift Algorithm

Given the data points fxigi=1:::n:

1. Derive a �xed bandwidth h0 and a pilot estimate
~f using the plug-in rule (see Appendix for the one

dimensional plug-in rule).

2. Compute log� = n�1
Pn

i=1 log
~f(xi).

3. For each data point xi compute its adaptive band-

width h(xi) = h0

h
�= ~f(xi)

i
1=2

.

4. Initialize y
1
with the location of interest and com-

pute iteratively (17) till convergence. The conver-

gence point is a point of zero gradient, hence, a

mode candidate.

2.3 Performance Comparison

We compared the variable and �xed bandwidth mean

shift algorithms for various multimodal data sets that

exhibited also scale variations. The �xed bandwidth

procedure was run with a bandwidth h0 derived from

the plug-in rule given in Appendix.

The plug-in rule was developed for density estima-

tion [15] and since here we are concerned with density

gradient estimation it is recommended [20, p.49] to use

a larger bandwidth to compensate for the inherently in-

creased sensitivity of the estimation process. We have

modi�ed the plug-in rule by halvening the contribution

of the variance term. This change was maintained for all

the experiments presented in this paper. The constant

� of the adaptive procedure was kept as the geometric

mean of
n
~f(xi)

o
i=1:::n

.

As one can see from Figures 1 and 2 the �xed band-

width mean shift resulted in good performance for the

locations where the local scale was in the medium range.

However, the very narrow peaks were fused, while the

tails were broken into pieces. On the other hand, the

adaptive algorithm showed superior performance, by

choosing a proper bandwidth for each data point.

3 Semiparametric Scale Selection

3.1 Motivation

The previous two sections followed purely nonpara-

metric ideas, since no formal structure was assumed

about the data. Implying only a certain smoothness of

the underlying density we used available algorithms for
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Figure 1: A mixture of 200 data points from each
N(5,2), N(17,4), N(37,8), N(70,16), N(145,32). The
continuous line is a scaled version of the density es-
timate. The detected modes are marked proportional
to the number of data points that converged to them.
(a) Histogram of the data. (b) Variable Bandwidth. (c)
Fixed Bandwidth.

scale selection to derive an initial bandwidth h0. The

criterion for bandwidth selection was a global measure

(MISE), hence, h0 achieved an optimal compromise be-

tween the integrated squared bias and the integrated

variance. Then, we modi�ed this bandwidth for each

data point, according to the local density.

The main problem with this approach is that for

multidimensional multimodal data, it is very di�cult

to determine the right h0 from the sample points and

many of the practical issues are yet to be resolved [20,

p.108]. As a consequence, most of practical algorithms

use empirical bandwidth selection rules that are less

dependent or even independent from the sample data.

This implies a decrease in their performance when the

input statistics is nonstationary, as it happens most of
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Figure 2: A mixture of 200 data points from each
exp(3)+25, 2chi2(4)+50, lognormal(2,1)+90, lognor-
mal(2,1)+90, 190-lognormal(3,1). The continuous line
is a scaled version of the density estimate. The detected
modes are marked proportional to the number of data
points that converged to them. (a) Histogram of the
data. (b) Variable Bandwidth. (c) Fixed Bandwidth.

the time in vision tasks.

3.2 Normalized Mean Shift Based Scale
Selection

We propose in this section a di�erent approach for

bandwidth selection. The idea is to impose a local

structure on the data by assuming that locally the

underlying density is spherical normal with unknown

mean � and covariance matrix � = �2I .

At a �rst look, the task of �nding � and � for each

data point seems to be very di�cult. To locally �t

a normal to the multivariate data one needs a priori

knowledge of the neighborhood size in which the un-

known parameters are to be estimated. If the estima-

tion is performed for several neighborhood sizes, a scale

invariant measure of the goodness of �t is needed.

Fortunately, a simple solution exists. It is based on

the following theorem, valid when the number of avail-

able samples is large.

Theorem 1 If the true density f is normal with pa-

rameters � and � = �2I, and the �xed bandwidth mean

shift is computed with a spherical normal kernel of band-

width h0, then, the bandwidth normalized norm of the

mean shift vector is maximized when h0 � �.

Proof Recall that the �xed bandwidth mean shift

vector computed with kernel G of bandwidth h0 can be

written as

M(x) =
h2
0

2=C

rf̂K(x)

f̂G(x)
: (19)

Since the true density f is normal with covariance

matrix � = �2I it follows that the mean of f̂G(x),

E
h
f̂G(x)

i
� �(x;�2+h2

0
) is also a normal surface with

covariance (�2+h2
0
)I . Likewise, by taking into account

(11) we have E
h
rf̂K(x)

i
= r�(x;�2 + h2

0
).

By assuming that the large sample approximation is

valid (see [18]) it results that

plimM(x) =
h2
0

2=C

E
h
rf̂K(x)

i
E
h
f̂G(x)

i =
h2
0

2=C

r�(x;�2 + h2
0
)

�(x;�2 + h2
0
)

= �

1

2=C

h2
0

�2 + h2
0

(x� �); (20)

where plim denotes probability limit with h0 held con-

stant. This is equivalent to assuming the sample size

su�ciently large to make the variances of the means

relatively small.

Finally, the norm of the bandwidth normalized mean

shift is plimM(x)

h0

 = 1

2=C

h0

�2 + h2
0

kx� �k ; (21)

a quantity that has a unique positive maximum at

h0 = �.

Theorem 1 leads to a very simple and accurate scale

selection rule: the underlying density has the local scale

equal to the bandwidth that maximizes the norm of the

normalized mean shift vector. We expect that a simi-

lar property holds in the case of anisotropic covariance

matrices.

3.3 Scale Selection Experiments

Figure 3a shows a data set of size n = 2000, drawn

from N(4,10). The bandwidth normalized mean shift is

represented in Figure 3b as a function of scale. Observe
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Figure 3: Semiparametric scale selection. (a) Input
data. N(10,4), n = 2000. (b) Normalized mean shift
as a function of scale for the points with positive mean
shift. The upper curves correspond to the points lo-
cated far from the mean. The curves are maximized for
h0 = 4.

the accurate local scale indication by the maxima of the

curves. The same accurate results were obtained for two

and three dimensions.

4 Video Data Analysis

A fundamental task in video data analysis is to de-

tect blobs represented by collections of pixels that are

coherent in spatial, range, and time domain [21]. The

two dimensional space of the lattice is known as the

spatial domain while the gray level, color, spectral, or

texture information is represented in the range domain.

Based on the two new estimators introduced in Sec-

tions 2 and 3 we present next an autonomous technique

that segment a video frame into representative blobs de-

tected in the spatial and color domains. The technique

can be naturally extended to incorporate time informa-

tion, this being one of the subjects of our current work.

We selected the orthogonal features I1 = (R +G +

B)=3, I2 = (R�B)=2 and I3 = (2G�R�B)=4 from [10]

to represent the color information. Due to the orthogo-

nality of the features, the one dimensional plug-in rule

for bandwidth selection can be applied independently

for each color coordinate.

As in [5], the idea is to apply the mean shift proce-

dure for the data points in the joint spatial-range do-

main. Each data point becomes associated to a point

of convergence which represents the local mode of the

density in a d = 2 + 3 dimensional space (2 spatial

components and 3 color components).

We employed a spherical kernel for the spatial do-

main and a product kernel for the three color compo-

nents. The e�ciency of the product kernel is known to

be very close to that of spherical kernels [20, p.104].

Due to the di�erent nature of the two spaces, the

problem of bandwidth selection has been treated dif-

ferently for each space. A �xed bandwidth was �rst

derived for each color component, based on the one di-

mensional plug-in rule. Then, the pilot density has been

computed for each pixel, and the adaptive color band-

widths were determined according to (8) for each pixel.

This process has been repeated for di�erent scales of

the spatial kernel. Finally, the spatial scale has been

selected for each pixel according to the semiparamet-

ric rule. As a result, each pixel received a unique color

bandwidth for color and a unique spatial bandwidth.

To obtain the segmented image, the adaptive mean

shift procedure has been applied in the joint domain.

The blobs were identi�ed as groups of pixels that had

the same connected convergence points (see [5]). The

algorithm is summarized below.

Adaptive Mean Shift Segmentation

Given the image pixels fxi; I1i; I2i; I3igi=1:::n, and a

range of spatial scales r1 : : : rS :

1. Derive h1, h2, h3, a �xed bandwidth for each color

feature.

2. For the spatial scale r1, compute the adaptive

bandwidths h1(xi; r1), h2(xi; r1), h3(xi; r1) and

determine the magnitude of the normalized mean

shift vector M(xi; r1).

3. Repeat Step 2. for the spatial scales r2 : : : rS .

4. Select for each pixel a spatial scale rj according

to the semiparametric rule. Select also the color

bandwidths h1(xi; rj), h2(xi; rj), and h3(xi; rj).

5. Run the adaptive mean shift procedure, and iden-

tify the blobs as groups of pixels having the same

connected convergence points.

Although the adaptive algorithm has an in-

creased complexity, its careful software implementa-

tion with three spatial scales (S=3) runs at about 8

frames/second on a Dual Pentium III at 900MHz for a

video frame size of 320�240 pixels. Figure 4 shows four

examples demonstrating the segmentation of color im-

age data with very di�erent statistics. Figure 5 shows

the stability of the algorithm in segmenting a color se-

quence obtained by panning the camera. The identi�ed

blobs were maintained very stable, although the scene

data changed gradually along with the camera gain.

5 Discussion

The most attractive property of the techniques pro-

posed in this paper is the automatic bandwidth selec-

tion in both color and spatial domain.

The reason we used two di�erent bandwidth selec-

tion techniques for the two spaces was not arbitrary.



While the color information can be collected across the

image, allowing the computation of robust initial band-

width for color, the spatial properties of the blobs vary

drastically across the image, requiring local decisions

for spatial scale selection.

The process de�ned by the mean shift technique in

the color domain resembles bilateral �ltering [19] (see

also [3] for a discussion on the link between bilateral �l-

tering, anisotropic di�usion [12], and adaptive smooth-

ing [13]). Due to the weighting of the data, the adap-

tive bandwidth mean shift is more related to robust

anisotropic di�usion [4].

In the spatial domain, the mean shift is close to mul-

tiscale techniques such as [2], and the semiparametric

scale selection rule resembles in principle to those de-

veloped in [7, 9].

The uni�cation of all these ideas is an interesting

subject for further research.

Figure 4: Segmentation examples. Frame size: 320�
240 pixels.

APPENDIX

One dimensional plug-in rule [15]

1. Compute ̂ = Q3 � Q1, the sample interquartile

range.

2. Compute a = 0:920̂n�1=7, b = 0:912̂n�1=9.

3. T̂D(b) = �fn(n�1)g
�1b�7

nX
i=1

nX
j=1

�vifb�1(xi�xj)g

where �vi is the sixth derivative of the normal ker-

nel (see [20] [p.177]).

4. ŜD(a) = fn(n�1)g
�1a�5

nX
i=1

nX
j=1

�ivfa�1(xi�xj)g,

where �iv is the forth derivative of the normal ker-

nel.

Figure 5: Sequence of segmented images used to test
the stability of our algorithm. Frame size: 320 � 240
pixels.

5. �̂2(h) = 1:357fŜD(a)=T̂D(b)g
1=7h5=7.

6. Solve the equation in h

[R(K)=f�2
2
(K)ŜD(�̂2(h))g]

1=5n�1=5 � h = 0;

where �2(K) and R(K) are de�ned in (3) and (4),

respectively.

Convergence Proof for Variable Bandwidth

Mean Shift

Since n is �nite the sequence f̂K is bounded, there-

fore, it is su�cient to show that f̂K is strictly monotonic

increasing, i.e., if yj 6= yj+1 then f̂K(j) < f̂K(j + 1),

for all j = 1; 2 : : :.
By assuming without loss of generality that yj = 0

we write

f̂K(j + 1)� f̂K(j) =

=
1

n

nX
i=1

1

hdi

"
k

 yj+1 � xi

hi


2

!
� k

 xihi

2

!#
:(B.1)

The convexity of the pro�le k implies that

k(x2) � k(x1) + k0(x1)(x2 � x1) (B.2)

for all x1; x2 2 [0;1), x1 6= x2, and since k0 = �g, the
inequality (B.2) becomes

k(x2)� k(x1) � g(x1)(x1 � x2): (B.3)



Using now (B.1) and (B.3) we have

f̂K(j + 1)� f̂K(j) �

�

1

n

nX
i=1

1

hd+2i

g

 xihi

2

!�
kxik

2
� kyj+1 � xik

2
�

=
1

n

nX
i=1

1

hd+2i

g

 xihi

2

!�
2y>j+1xi � kyj+1k

2
�

=
1

n
2y>j+1

nX
i=1

xi

hd+2i

g

 xihi

2

!
�

�

1

n
kyj+1k

2

nX
i=1

1

hd+2i

g

 xihi

2

!

(B.4)

and by employing (17) it results that

f̂K(j + 1)� f̂K(j) �
1

n
kyj+1k

2

nX
i=1

1

hd+2
g

 xihi

2

!
:

(B.5)

Since k is monotonic decreasing we have �k0(x) �
g(x) � 0 for all x 2 [0;1). The sumPn

i=1
1

hd+2
g

�xi

hi

2� is strictly positive, since it was

assumed to be nonzero in the de�nition of the mean

shift vector (12). Thus, as long as yj+1 6= yj = 0, the

right term of (B.5) is strictly positive, i.e., f̂K(j +1)�

f̂K(j) > 0. Hence, the sequence f̂K is convergent.

To show the convergence of the sequence
�
yj

	
j=1;2:::

we rewrite (B.5) but without assuming that yj = 0.

After some algebra it results that

f̂K(j+1)�f̂K(j)�
1

n
kyj+1�yjk

2

nX
i=1

1

hd+2i

g

 yj�xihi


2

!

(B.6)
Since f̂K(j+1)� f̂K(j) converges to zero, (B.6) implies

that kyj+1�yjk also converges to zero, i.e.,
�
yj

	
j=1;2:::

is a Cauchy sequence. But any Cauchy sequence is con-

vergent in the Euclidean space, therefore,
�
yj

	
j=1;2:::

is convergent.

Acknowledgment

Peter Meer was supported by the NSF under the

grant IRI 99-87695.

References

[1] I.S. Abramson, \On Bandwidth Variation in Kernel Es-
timates - A Square Root Law," The Annals of Statistics,
10(4):1217{1223, 1982.

[2] N. Ahuja, \A Transform for Multiscale Image Segmen-
tation by Integrated Edge and Region Detection," IEEE
Trans. Pattern Anal. Machine Intell., 18:1211{1235,
1996.

[3] D. Barash, \Bilateral Filtering and Anisotropic Di�u-
sion: Towards a Uni�ed Viewpoint," Hewlett-Packard

HPL-2000-18(R.1). Available at http:www.hpl.hp.com.

[4] M.J. Black, G. Sapiro, D.H. Marimont, D. Heeger,,
\Robust Anisotropic Di�usion," Image Processing,
7(3):421{432, 1998.

[5] D. Comaniciu, P. Meer, \Mean Shift Analysis and Ap-
plications," IEEE Int'l Conf. Comp. Vis., Kerkyra,
Greece, 1197{1203, 1999.

[6] D. Comaniciu, V. Ramesh, P. Meer, \Real-Time Track-
ing of Non-Rigid Objects using Mean Shift," IEEE

Conf. Comp. Vis. Patt. Recogn., Hilton Head, South
Carolina, Vol. 2, 142{149, 2000.

[7] J. Elder, S.W. Zucker, \Local Scale Control for Edge
Detection and Blur Estimation," IEEE Trans. Pattern

Anal. Machine Intell., 20(7):699{716, 1998.

[8] P. Hall, T.C. Hui, J.S. Marron, \Improved Variable
Window Kernel Estimates of Probability Densities,"
The Annals of Statistics, 23(1):1{10, 1995.

[9] T. Lindeberg, \Edge Detection and Ridge Detection
with Automatic Scale Selection," Int. J. Comp. Vision.,
30(2):117{154, 1998.

[10] Y. Ohta, T. Kanade, T. Sakai, \Color Information for
Region Segmentation," Computer Graphics and Image

Processing, 13:222{241, 1980.

[11] B. Park, J.S. Marron, \Comparison of Data-
Driven Bandwidth Selectors," J. Am. Statist. Assoc.,
85(409):66{72, 1990.

[12] P. Perona, J. Malik, \Scale-Space and Edge Detec-
tion Using Anisotropic Di�usion," IEEE Trans. Pattern

Anal. Machine Intell., 12(7):629{639, 1990.

[13] P. Saint-Marc, J.S. Chen, G.G. Medioni, \Adaptive
Smoothing: A General Tool for Early Vision", IEEE
Trans. PAMI, 13(7):514-529, 1991.

[14] D.W. Scott, Multivariate Density Estimation, New
York: Wiley, 1992.

[15] S.J. Sheather, M.C. Jones, \A Reliable Data-based
Bandwidth Selection Method for Kernel Density Esti-
mation," J. R. Statist. Soc. B, 53(3):683{690, 1991.

[16] J.S. Simono�, Smoothing Methods in Statistics, New
York: Springer-Verlag, 1996.

[17] B.W. Silverman, Density Estimation for Statistics and

Data Analysis, New York: Chapman and Hall, 1986.

[18] T.M Stocker, \Smoothing Bias in Density Derivative
Estimation," American Stat. Assoc., 88(423):855{863,
1993.

[19] C. Tomasi, R. Manduchi, \Bilateral Filtering for Gray
and Color Images", Int'l Conf. Comp. Vis., Bombay,
India, 839{846, 1998.

[20] M.P. Wand, M.C. Jones, Kernel Smoothing, London:
Chapman & Hall, 1995.

[21] C. Wren, A. Azarbayejani, T. Darrell, A. Pentland,
\P�nder: Real-Time Tracking of the Human Body,"
IEEE Trans. Pattern Analysis Machine Intell., 19:780{
785, 1997.


